Sparse Source Separation from Orthogonal Mixtures

Moshe Mishali and Yonina C. Eldar
Department of Electrical Engineering, Technion – Israel Institute of Technology

- **Problem Formulation**
 \[\mathbf{X} = \mathbf{\Psi} \mathbf{S} \]
 Given \(\mathbf{X} \) find an orthogonal \(\mathbf{\Psi} \) and sparse \(\mathbf{S} \)

 - **Assumptions:**
 * No noise
 * \(K \) active sources (exactly) at each snapshot
 * The nonzero values are drawn from some continuous distribution (or positive).
 * See extensions for the general case

- **Stage 1 – Source Recovery**
 Orthogonal mixture preserves inner products
 \[\mathbf{C} = \mathbf{X}^T \mathbf{X} = \mathbf{S}^T \mathbf{S} \]

 \(-\text{R1}\) \(C_{ik} = 0 \) implies that supp(\(\mathbf{S}_k \)) and supp(\(\mathbf{S}_j \)) are disjoint

 \(-\text{R2}\) \(C_{ik} \neq 0 \) implies supp(\(\mathbf{S}_k \)) \(\cap \) supp(\(\mathbf{S}_j \)) is not empty

 \(-\text{R3}\) Every column \(\mathbf{S}_k \) contains exactly \(K \) non-zeros

 \(-\text{R4}\) Row permutations of \(\mathbf{S} \) are allowed

 Construct the support by iteratively applying (R1) – (R4)

- **Stage 2 - Source and Mixture Recovery**

 \[\begin{align*}
 (\hat{\mathbf{\Psi}}, \hat{\mathbf{S}}) &= \arg \min \| \mathbf{X} - \mathbf{\Psi} \mathbf{S} \|_F \\
 & \quad \text{s.t. } \mathbf{\Psi}^T \mathbf{\Psi} = \mathbf{I}, \\
 & \quad \text{supp}(\mathbf{S}_k) = \emptyset, \quad (i, k) \in \Omega_0
 \end{align*} \]

 \(-\text{Optimal } \mathbf{S} \) given \(\mathbf{\Psi} \)
 \(-\text{Optimal } \mathbf{\Psi} \) given \(\mathbf{S} \)

 Alternate minimization based on \(\nabla \mathcal{L}(\mathbf{S}, \mathbf{\Psi}) = 0 \)

- **Motivation**
 \[(\hat{\mathbf{\Psi}}, \hat{\mathbf{S}}) = \arg \min \| \mathbf{X} - \mathbf{\Psi} \mathbf{S} \|_F \]

 s.t. \(\mathbf{\Psi}^T \mathbf{\Psi} = \mathbf{I}, \quad 1 \leq i \leq T \)

 \(-\text{Known methods:}
 - In [1]: \(\min_{\mathbf{\Phi}} \sum_{\alpha} \| \mathbf{\Phi}^T \mathbf{X}_{\alpha} \|_1 \)
 - In [2-4]:
 \(-\text{Combinatorial}
 \(-\text{Nonconvex}
 \(-\text{Many local minima in practice}
 \(-\text{Nonorthogonal } \mathbf{\Psi} \)

- **Algorithm**
 Sketch (full pseudo-code in paper)

 - Maintain a dynamic list of rules
 - Sweep through \(\mathbf{S} \) columns and update estimated support and rules list
 - Resolve singleton rules
 - Resolve rules when symmetry allows
 - Repeat till no further changes

 \(-\text{# Iterations is bounded by } nKT \)

 (Typically much smaller)

 Partial support recovery is usually “good enough”

- **Extensions**
 - Support recovery in the presence of noise
 - Preprocessing to determine the sparsity levels \(\| \mathbf{S}_i \|_0 \)
 - Additional update rules based on support blockness

- **Numerical Experiments**
 \(-100 \text{ trials on random } \mathbf{S}, \mathbf{\Psi} \)

 \(-\text{Success: } \mathbf{S} = \hat{\mathbf{S}} \) and \(\mathbf{\Psi} = \hat{\mathbf{\Psi}} \) (up to row/column permutation, resp.)

 \(-\text{K-SVD} [3]: \text{Learn an } n \times n \text{ dictionary } \mathbf{\Psi} \)

- **References (short list)**