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ABSTRACT

We investigate the impact of using non-ideal lowpass lters in the
modulated wideband (MWC) converter, which is a recent sub-
Nyquist sampling system for sparse wideband analog signals. We
begin by deriving a perfect reconstruction condition for general
lowpass lters, which coincides with the well-known Nyquist inter-
symbol interference (ISI) criterion in communication theory. Then,
we propose to compensate for the non-ideal lowpass lters using a
digital FIR correction scheme. The proposed solution is validated
by experimental results.

Index Terms— Compressed sensing, modulated wideband con-
verter, multiband sampling, non-ideal lowpass lters.

1. INTRODUCTION

Ef cient sampling of wideband analog signals is a challenging prob-
lem, since their Nyquist rates may exceed the speci cations of the
best analog-to-digital converters (ADCs) nowadays by orders of
magnitude. The modulated wideband converter (MWC) [1, 2] is a
recent sub-Nyquist system for sampling multiband signals of wide
spectral ranges. The MWC, depicted in Fig. 1 and further described
in Section 2, consists of simple mixers and lowpass lters. By ex-
ploiting frequency sparsity of multiband signals, the MWC is able
to signi cantly reduce the conversion rate.
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Fig. 1. A block diagram of the modulated wideband converter. The
MWC consists of m parallel channels, which mix the input against
m periodic waveforms. The mixed signal is then lowpass ltered
and sampled at a low rate.
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The original MWC requires ideal analog lowpass lters to ac-
complish the reconstruction process. In practice, implementing ideal
lters is generally dif cult and the usual option is to employ high-
order Butterworth or Chebyshev lters. Direct use of such off-the-
shelf lters does not guarantee perfect reconstruction (PR) in the
recovered signal. Indeed, this problem is encountered in the practi-
cal implementation of the MWC. Therefore, methods of compensa-
tion for the imperfections of non-ideal lowpass lters is an important
problem. This is the main motivation of this work.

In this paper we aim at extending the MWC to enable the use
of practical lowpass lters. Under the assumption of near perfect
stopband response, we show that, with only a moderate amount of
oversampling, the imperfections caused by non-ideal lters can be
effectively corrected in the digital domain. The contribution of our
work is two-fold. First, we derive a perfect reconstruction condi-
tion that must be satis ed by lowpass lters in the MWC. We show
that the ideal lowpass lter is not the only choice that guarantees
PR. Indeed, we prove that perfect reconstruction can be achieved by
Nyquist lters [6], which are more general. For cases where the PR
condition is not satis ed, we propose a compensation method oper-
ating in the digital domain for perfect reconstruction, using a simple
bank of nite impulse response (FIR) lters. The coef cients of the
FIR lters are designed to meet the PR condition and closed-form
expressions for the lter coef cients are provided. Both numerical
simulations and real measured data demonstrate that the proposed
compensation method can signi cantly reduce the reconstruction er-
ror using low-order FIR lters.

The paper is organized as follows. Section 2 provides a brief
introduction to the MWC. In Section 3 we study the MWC with
non-ideal lters. We derive the PR condition and propose the digital
compensation method. Section 4 provides experimental results.

2. THE MODULATEDWIDEBAND CONVERTER

The MWC is a sub-Nyquist sampling system for sampling sparse
wideband analog signals. It consists of two stages: sampling and
reconstruction. In this section, we brie y introduce the mechanism
and principle of the MWC.

2.1. Sampling

In the sampling stage, the signal x(t) enters m channels simultane-
ously. In the ith channel, x(t) is multiplied by a Tp- periodic mixing
function pi(t). After mixing, the output is lowpass ltered with cut-
off frequency 1/(2Ts) and then uniformly sampled at rate 1/Ts. The
overall sampling frequency of the MWC is thenm/Ts.

The input x(t) is assumed to be a sparse wideband analog signal
bandlimited to [−fNYQ/2, fNYQ/2], where fNYQ can be very large,
much larger than the sampling frequencym/Ts. The support of x(t)
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resides within N frequency intervals, or bands, such that the width
of each band does not exceedB Hz. The band positions are arbitrary
and in particular unknown in advance. For example, in communica-
tionsN represents the number of concurrent transmissions and B is
speci ed by the speci c modulation techniques in use.

The sub-Nyquist sampling of the MWC relies on the following
key observation. The mixing operation scrambles the spectrum of
x(t) such that the baseband frequencies that reside below the l-
ter cutoff contain a mixture of the spectral contents from the entire
Nyquist range. To further illustrate this point, let us consider a single
channel, and let Pi(f) be the spectrum of the mixing function pi(t).
Since pi(t) is Tp- periodic, Pi(f) can be expressed as

Pi(f) =

+∞�
l=−∞

cilδ(f − lfp), (1)

where fp = 1/Tp, cil are arbitrary coef cients and δ(·) is the Dirac
delta function. The spectrum of the mixed signal x̃i(t) = x(t)pi(t)
is then

X̃i(f) = Pi(f) ∗ X(f) =

+∞�
l=−∞

cilX(f − lfp), (2)

where X(f) is the spectrum of x(t). Lowpass ltering with a lter
transfer function H(f) results in a signal yi(t) with spectrum

Yi(f) =
+∞�

l=−∞

cilX(f − lfp)H(f). (3)

After sampling the continuous signal yi(t) at rate fs = 1/Ts, the
discrete time Fourier transform (DTFT) of the samples yi[n] is

Yi(e
jω) =

+∞�
k=−∞

Y

�
fs

2π
(ω − 2kπ)

�

=

+∞�
l,k=−∞

cilX

�
fs

2π
ω − lfp − kfs

�
H

�
fs

2π
ω − kfs

�
,

(4)
for ω ∈ [−π, π]. In the standard MWC, H(f) is an ideal rect func-
tion with cutoff fs/2. ThusH( fs

2π
ω−kfs), ω ∈ [−π, π], is nonzero

only if k = 0. To ease the exposition we further choose1 Ts = Tp.
Then, (4) can be expressed as

Yi(e
jω) =

L0�
l=−L0

cilX

�
fp

2π
ω − lfp

�
, ω ∈ [−π, π], (5)

where L0 is the smallest integer satisfying 2L0 + 1 > fNYQ/fp.
The relation (5) ties the known DTFTs of yi[n] to the unknown

X(f), which is the key to recovery of x(t). For our purpose, it is
convenient to write (5) in matrix form

y(ejω) = Az(ω), (6)

where y(ejω) is am × 1 vector with the ith element Yi(e
jω), z(ω)

is an unknown vector of length L = 2L0 + 1 with the ith element
zi(ω) = X

�
fp

2π
ω − (i − L0 − 1)fp

�
, and A is a m × L matrix

containing the coef cients cil. We note that X
�

fp

2π
ω − lfp

�
, for

|l| ≤ L0, covers all the spectral information of x(t). Therefore,

1This choice is relaxed in [1].

in order to recover x(t), it is suf cient to determine z(ω) for every
ω ∈ [−π, π].

The vector z(ω) is sparse for each ω ∈ [−π, π] due to the sparse
nature of the spectrum of x(t). The sparsity of z(ω) assures that the
MWC can use a small number of channels to recover x(t), which en-
ables sub-Nyquist sampling. For example, in the basic con guration
in which fs = fp = B, it is shown that [1] with a careful selection
of mixing functions, m = 4N , where N is the number of bands, is
suf cient to recover z(ω).

2.2. Reconstruction

The reconstruction stage consists of two steps and is implemented
completely in the time domain. First, the spectral support is de-
termined, and then the signal is recovered from the samples by a
closed-form expression.

Spectral support recovery relies on recent ideas developed in the
context of analog compressed sensing [4] and are implemented by
a series of digital computations, which are grouped together under
the Continuous-to-Finite (CTF) block [1, 3]. Let the support of z(ω)
be S =

�
ω∈[−π,π] supp (z(ω)), where supp(·) is the set of indices

of the nonzero entries of a vector. In other words, if i /∈ S then
zi(ω) = 0 for all ω ∈ [−π, π]. By exploiting the sparsity of z(ω),
the CTF ef ciently infers the support S from a low-complexity nite
program.

Once the support S is determined, it follows from (6) that

zS [n] = A
†
Sy[n]

zi[n] = 0, i /∈ S,
(7)

where z[n] = (z1[n], . . . , zL[n])T and zi[n] is the inverse DTFT of
zi(ω). zS [n] and AS mean the subvector and submatrix comprised
of the rows of z[n] and A indexed by S, respectively. The notation
(·)† denotes the pseudo inverse. Equation (7) allows zi[n] to be
generated at the input rate fs. Every zi[n] is then interpolated to
a continuous baseband signal at rate fs (e.g., using digital-to-analog
devices) yielding (complex valued) zi(t):

zi(t) =
∞�

n=−∞

zi[n]h(t − nTs), (8)

where h(t) = sinc(πt/Ts). Finally, x(t) is reconstructed by modu-
lating zi(t) to their corresponding bands:

x̂(t) =
�

i∈S,i>L0

Re {zi(t)} cos(2πifpt) + Im {zi(t)} sin(2πifpt),

(9)
where Re(·) and Im(·) denote the real and imaginary part of their
argument, respectively.

3. THE MWC USING NON-IDEAL LOWPASS FILTERS

The lowpass lters in the standard MWC are treated as ideal rect
functions in the frequency domain in order to obtain (5) from (4).
However, in practice, ideal analog lters are dif cult to design and a
practical lowpass lter usually has the following imperfections:
1. H(f) is not necessarily at in the pass band;
2. H(f) does not have sharp edges;
3. The stopband response is not exactly zero.

In this section, we investigate how those imperfections impact per-
fect recovery of the input x(t) through (9) and propose compensation
schemes to correct for these imperfections.
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3.1. The perfect reconstruction condition

We start our analysis from (4), which applies to any analog lter
H(f). There are two summation operations on the right-hand-side
of (4). The sum indexed by subscript l is introduced by the mixing
function pi(t). The sum indexed by k is due to non-ideal stopband of
H(f), which is undesirable since it renders the matrixA in (6) to a
function of ω. The MWCwith a ω-dependentA is beyond the scope
of this paper; this setting is discussed in [5]. Instead, we assume that
the stopband response is designed to be suf ciently small that it can
be neglected (e.g., less than -60 dB), based on which we propose to
oversample yi(t) at rate fs which is larger than the stopband width.
This assumption will be continued to the following discussion.

By assuming that H(f) is zero beyond [−fs/2, fs/2], (4) can
be expressed as

Yi(e
jw) =

L0�
l=−L0

cilQl(ω), (10)

where
Ql(ω) = X

�
fs

2π
ω − lfp

�
H

�
fs

2π
ω

�
. (11)

Therefore, from (7) we actually solve for Ql(ω) rather than zl(ω).
After interpolation in (8) and modulation in (9), the resulted spec-
trum of the reconstructed signal is calculated as

X̂(f) =

L0�
l=−L0

Ql

�
2π

fs
(f + lfp)

�
. (12)

Substituting (11) in (12) we obtain

X̂(f) =

�
� L0�

l=−L0

H(f + lfp)

�
�X(f). (13)

SinceX(f) is only non-zero within [−fNYQ/2, fNYQ/2], the PR con-
dition forH(f) is then

L0�
l=−L0

H(f + lfp) = 1, f ∈
�
−fNYQ

2
,
fNYQ

2

	
. (14)

We note that the PR condition in (14) coincides with the well-
known Nyquist ISI criterion [6], and any lowpass lter that satis es
(14) is usually referred to as a Nyquist lter. Typical examples in-
clude raised cosine functions, Kaiser windows and others [6]. Any
such lter will lead to PR without requiring any further processing.

3.2. Digital compensating FIR lters

In the above discussion we demonstrated that any Nyquist lter
which satis es (14) ensures PR. For lowpass lters that do not meet
the PR condition, we now propose a simple compensation in the
digital domain. The compensation scheme is illustrated in Fig. 2 for
a single channel. Let D(ejω) be the digital frequency response of

x(t)

t = nTs

H(f) D(ejω)

pi(t)

yi(t) yi[n]

Fig. 2. Illustration of one channel of the digital correction scheme.

the compensation lter, where we use the notation ejω to emphasis
that the DTFT is 2π-periodic. The relationship in (10) still holds by
replacing Ql(ω) with

Ql(ω) = X

�
fs

2π
ω − lfp

�
H

�
fs

2π
ω

�
D


ejω
�

. (15)

Therefore, to ensure perfect reconstruction we need to design a dig-
ital lter D(ejω) such that the frequency response of the corrected
analog lter

T (f) = H(f)D


ej2πTsf

�
(16)

satis es (14).
Here we show that we can implement D(ejw) by an FIR lter.

Let {dn}N0

n=−N0
be the coef cients of an FIR lter with order 2N0+

1. The digital frequency response D(ejω) is

D(ejω) =

N0�
n=−N0

dne−jω. (17)

Combining (16) and (17),

T (f) = h(f)H
d, (18)

where h(f) = H(f)∗(e−j2πN0Tsf , . . . , ej2πN0Tsf )T , and d is the
coef cient vector d = (d−N0

, . . . , dN0
)T . The design objective is

to seek coef cients {dn}N0

n=−N0
such that T (f) in (18) best meets

the PR condition in terms of integrated squared error:

min
d

� fNYQ/2

−fNYQ/2








L0�

l=−L0

h(f − lfp)H
d − 1








2

df. (19)

Since (19) is a least-squares problem, it has a closed-form solution.
It can be shown that the optimal solution is:

dopt =

�� fNYQ/2

−fNYQ/2

g(f)g(f)Hdf

�−1 � fNYQ/2

−fNYQ/2

g(f)df (20)

where g(f) =
�L0

l=−L0
h(f− lfp).When h(f) containsH(f) and

is not speci ed analytically, computing the integrals in (20) can be
performed using numerical methods.

4. EXPERIMENTAL VALIDATION

In this section we demonstrate the proposed compensation method
by experimental results, where two examples are studied.

In the rst example we simulate the MWC system with non-
ideal lters and evaluate the overall performance of the proposed
compensation. The input x(t) is a multiband signal consisting of 3
pairs of bands, each of width B = 50MHz, de ned as

x(t) =
3�

i=1

√
EiBsinc(B(t − τi)) cos(2πfi(t − τi)), (21)

where the energy coef cients Ei = {1, 2, 3}, the time offsets τi =
{1.1, 0.3, 0.7} μsecs, and the carriers are set to fi = {1.8, 1.2, 2.8}
GHz. The Nyquist rate of x(t) is fNYQ = 10 GHz. We choose
L0 = 97 and fp = fNYQ/(2L0 + 1) � 51.3 MHz. The number of
channels is m = 50 and the same mixing functions pi(t) are used
as in [1]. The main difference between the simulation in [1] and the
one proposed here is that we use an 8-order Butterworth lter in each
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channel. The 3-dB bandwidth of the Butterworth lter is set to fp.
With a moderate oversampling, fs is chosen as fs = 5/3fp. Finally,
all the continuous signals are represented by a dense grid of 78975
samples observed within [0, 1.6] μsecs, where the time resolution is
1/(5fNYQ). As predicted by our analysis, direct reconstruction us-
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Fig. 3. Reconstructions using Butterworth lters. (a) The multiband
input signal x(t). (b) Direct reconstruction signal. (c) Reconstructed
signal after digital corrections.

ing the standard approach yields distortions in the recovered signal,
which can be found be comparing Fig. 3(b) with Fig. 3(c). We
use a 21-order FIR lter to correct the non-ideal Butterworth lter
in each channel. The coef cients are determined by (20) and the re-
constructed signal after applying digital corrections is plotted in Fig.
3(c). As expected, near perfect recovery is achieved. For further
demonstration, we examine the PR condition of the employed But-
terworth lterH(f) and the corrected lter T (f) (obtained by (16))
in Fig. 4, where

�
l H(f + lfp) and

�
l T (f + lfp) are plotted in

dB. It can be seen that for H(f) there exists signi cant distortions,
which illustrates why direct reconstruction does not ensure PR.
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Fig. 4. PR condition. Dot line represents 20 log10 |
�

l H(f + lfp)|,
and solid line represents 20 log10 |

�
l T (f + lfp)|.

In the second example, we employ the proposed method to cor-
rect a real analog lowpass lter implemented in a recent hardware
realization of the MWC system [7]. The frequency response is mea-
sured by an Agilent HP8753E network analyzer and the magnitude
is shown in Fig. 5. Here we set fp = 60 MHz and fs = 100 MHz,
The results of the correcting FIR lter and the PR condition test are
shown in Fig. 6 and Fig. 7. These results indicate that our pro-
posed compensator can be applied to practical applications in signal
processing and communications.
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Fig. 5. Frequency response of a real lowpass lter.
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Fig. 6. Coef cients of the correcting FIR lter for the real lter.

5. CONCLUSION

In this paper, we treated the problem of compensating the MWC
when the lowpass lters are not ideal. A PR condition for general
lters was developed. We demonstrated that, using a moderate over-
sampling, perfect reconstruction could be achieved by any Nyquist
lter. Then, for lowpass lters which do not satisfy the PR condi-
tion, we proposed to correct them in the digital domain using FIR
lters. We presented a least-squares approach for determining the
coef cients of the compensation lter. Both numerical simulations
and real measured data demonstrated that the proposed compensa-
tion method is effective for recovering near prefect reconstruction.
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