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ABSTRACT
We address the problem of minimum mean-squared error (MMSE)
estimation under convex constraints. The familiar orthogonality
principle, developed for linear constraints, is generalized to include
convex restrictions. Using the extended principle, we study two
types of convex constraints: constraints on the estimated vector (e.g.
bounded norm), and constraints on the structure ofthe estimator (e.g.
filter with bounded coefficients). It is shown that in both cases there
exists a simple closed form expression for the constrained MMSE
estimator. As an application of our approach, we develop Wiener
type filters under certain restrictions, which allow for practical im-
plementations.

Index Terms- Constrained estimation, Constrained Wiener fil-
tering

1. INTRODUCTION

A common problem in Bayesian estimation is to obtain an estimate
of a random vector (r.v.) x C X based on a realization of another r.v.
y C Y such that some error criterion is minimized [3]. The estima-
tor X (.) assigns an estimated vector x C X to every possible real-
ization of y. Thus, the Bayesian estimation problem is essentially a
problem of constructing a mapping from the space of measurement
vectors Y to the space of signals X based on the joint probability
function of x and y. One of the most commonly used error criteria is
the mean-squared error (MSE), which is given by the expectation of
the 12-norm of the error E[IIx (y) 112]. It is well known that the
estimator minimizing the MSE is 00 (y) = E[x y], the conditional
expectation of x given y. This estimator, although seemingly sim-
ple, is not frequently used due to two main reasons. First, in many
cases it is very hard to obtain an expression for 0, and second, one
often desires to constrain the estimator to belong to a certain class of
mappings because of implementation reasons. For example, when x
and y are two discrete-time random processes, it may be desirable to
constrain the estimator to be a causal filter with bounded coefficients
rather than a general non-linear, non-causal function of the series
{y [n] }. The need to pose restrictions on the estimator arises also
when there is poor knowledge of the distribution of x and y, which
may lead to an unfeasible estimate. For example,when estimating an
image, one may want to restrict the pixel values to be positive.

Solutions to various constrained estimation problems appear in
the signal processing literature, starting from the famous work of
Wiener [4] on linear minimum MSE (MMSE) estimation and pre-
diction of signals, and ranging to finite impulse response (FIR) fil-
tering [5], finite horizon and more. All these problems possess a
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common structure - the constraint on the estimator is linear. Lin-
ear constraints are well treated using the orthogonality principle, or,
more generally, via the concept of conditional expectation in the
wide sense [3]. However, there seems to be no unifying approach
to solving MMSE estimation problems under general convex con-
straints.

In this paper we extend the well known orthogonality principle
to the case of convex constraints on the estimator. We then study
two types of convex restrictions: constraints on the estimated vec-
tor x, and constraints on the structure of the estimator X (.). We
show that in the first case, the solution is simply the projection ofthe
MMSE estimate onto the set of constraints. In the later case, the es-
timator can be obtained from the MMSE estimator using a weighted
projection. To demonstrate the approach, we show how certain re-
strictions can be imposed on the Wiener filter in order to allow for
practical implementations. Specifically, we derive the MMSE filter
under bounded norm and bounded coefficient constraints.

2. NOTATION AND MATHEMATICAL PRELIMINARIES

Calligraphic letters are used to denote vector spaces, subspaces and
sets of vectors. The Moore-Penrose pseudo-inverse of a matrix A is
denoted by At and the Hermitian conjugate is A*. The j'th compo-
nent of a vector v is denoted (v)3 and the (i, j) entry in the matrix
A is denoted (A)i j. A positive (semi) definite operator is written as
A >-(S) 0. Brackets are used for discrete time signals and capital let-
ters for Fourier transforms (e.g. Z (w) = {fz [n] }). Expectation is
denoted by E [.] and conditional expectation is written as E [. .]. An
inner product on a vector space is denoted by (., ). The associated
norm is defined by IxII = xx. A G-weighted inner product,
where G >- 0, is defined as (x, Gy).

A projection operator onto a closed and convex setA in a Hilbert
space H is denoted by PA (.) and defined as

PA (h) = argmin lh -all.aEA (1)

It can be shown that PA (h) C A is the projection of h onto A if and
only if [1]

Re{(h-PA(h),PA(h)-a)}>0, VaCA. (2)

Since PA ( ) depends on the inner product on K, we use the notation
p(G) (.) to denote a projection with respect to a G-weighted inner
product, which we refer to as the G-weighted projection onto A. We
note that p(G) (h) is well defined even when G S 0, as long as the
vector h is orthogonal to the null-space of G.

Projections onto subspaces can be expressed in terms of frames.
A set of vectors {h,} in a Hilbert space KH is called a frame for a
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subspace A if there exist constants 0 < A < B <o0 such that

A llall2 < (a, hn)l < B la2, Va C A. (3)
n

The projection of h C 1t onto A can be written as a linear combina-
tion ofthe frame vectors PA (h) = ik (a)k hk, where the (possibly
infinite) vector of coefficients a can be chosen as [2]:

a = Gv (4)

with matrix G and vector v defined by

(G)j k = (hk, hj), (v)j = (h, hj (5)

In our Bayesian estimation setup, the space ofmeasurement vec-
tors is denoted by Y and the space of signals is denoted by X (e.g.
Rm and Rn). Throughout the paper, it is assumed that X is a Hilbert
space with inner product ( and associated norm I The
MSE of an estimator X (y) is defined as E [I _ (y) ]X.

3. EXTENDED ORTHOGONALITY PRINCIPLE

The theory of MMSE estimation under linear constraints is well
established via the concept of conditional expectation in the wide
sense [3]. In this section we give a brief overview of the basic
ideas underlying this theory and then extend it to general convex
constraints.

Let (Q, F, P) be a probability space of r.v.'s taking values
in X. The set of all finite variance r.v.'s is denoted by L2
{x: E [III2 < oc}. An inner product on L2 is defined by
(u, V)2 = E u(, v)X . It can be shown that L2 is a Hilbert space
given that two r.v.'s u,v are considered identical if u = v with prob-
ability 1 (w.p.1).

Let 'Hy be the subspace of L2 generated by applying all (Borel
measurable) operators from Y to X on the r.v. y:

KHy { $(y) Y - X, E [q$(y)%12 o}< . (6)

The set 'Hy is the set of r.v.'s in L2 that can constitute an estimate
for x based on y. The conditional expectation ofx given y is the pro-
jection of x onto the subspace 'Hy and is denoted by xo = E [xly].
Clearly, the r.v. xo is the MMSE estimate of x given y since it min-
imizes the distance 11x X 22, which is equivalent to minimizing
the MSE, E [11 X

When one restricts the search for the MMSE estimator to a cer-
tain family of operators, the set of candidate r.v.'s is narrowed down
to a subset A C 'Hy. In the special case where A is a closed sub-
space of 'Hy, the MMSE estimate XA among all r.v.'s in A, is the
orthogonal projection of x onto A and is termed the conditional ex-
pectation in the wide sense of x given A. Restrictions of this type
are referred to herein as linear constraints.

The most famous example of a linear constraint is the restriction
that X (.) be a linear operator. In this case A is the subspace of r.v.'s
formed by applying all linear transformations to the measurement
vector y and the conditional expectation in the wide sense ofx given
A is the familiar linear MMSE (LMMSE) estimator.

From the properties ofprojections in Hilbert spaces one immedi-
ately obtains the following characterization of the MMSE estimator
under a linear constraint, known as the orthogonality principle. Sup-
pose that A is a closed subspace of 'Hy. Then OA (y) is the MMSE
estimator of x among all r.v.'s in A if and only if

E[(X - A(Y),b(Y))X =0, V$(y) CA. (7)

Thus, the error x -A (y) using the optimal estimator in A has to
be orthogonal to any other estimator in A. For example, ifA is the
subspace in 'Hy of all the linear operators from Y to X, then the
error of OA (y), which is the LMMSE estimator, is orthogonal to
every linear transformation of the measurement vector y.

The orthogonality principle can be employed to solve a variety
of constrained estimation problems in which the constraint is linear.
For example, in the Wiener filtering setting, restricting the filter to
be causal, FIR of order N, or any other restriction on the support of
the filter are all linear constraints as they all correspond to subspaces
of 'Hy. However, an amplitude constraint such as Ih [n] < E is
nonlinear and cannot be treated by the same procedure

In the following theorem, we extend the orthogonality principle
to nonlinear constraints that are closed convex sets in 'Hy.

Theorem 1 Let A be a closed convex set in the space ofrv.'s 'Hy.
Then O$A (y) C A is the MMSE estimator in A ifand only if

Re {E [(x -OA (Y), OA (Y) $(y))X } > 0, (Y)A.
(8)

Proof. Follows immediately from (2). *
Note that in contrast to the orthogonality principle, condition (8)

is an inequality and therefore does not lead to an equation, whose
solution is the MMSE estimator in A. Nevertheless, there are cases
in which (8) leads to a simple scheme for obtaining the constrained
MMSE estimator, as discussed in the following sections.

4. CONSTRAINTS ON THE ESTIMATED VECTOR

Consider the problem ofMMSE estimation under a constraint on the
estimated vector x. Specifically, we are interested in the case where
x is constrained to lie in a given closed convex set W' C X. This
type of constraints includes, for example, restricting the norm of the
vector x to be bounded by a given value E or imposing that (x) i > 0.
From the viewpoint of the estimator X (.), we confine ourselves to
operators whose image is contained in A', i.e. we consider only
r.v.'sintheset A { (y) Y:-Y W,E[ q(y) ] <oE}.
Clearly, A is a closed convex set in 'Hy. Therefore, using (8) we
obtain the following.

Theorem 2 Let W be a closed convex set in the space ofsignals X,
and let A be the set o r.v.'s in KHy that take values only in W. Then
the MMSE estimator in A is

OA (Y) = Pw (E [xly]). (9)

Proof. Plugging (9) in (8) and using the smoothing property, we get

Re {E [(x -PW (E [xly]), Pw (E [xly]) -$(Y))x]}
= Re {E [E [(x -Pv (E [xly]), Pw (E [xly]) - X (Y))XY] }
= Re E [(E [xly] -PW (E [xly]),Pw (E [xly]) -(Y))x]}.

Now, since X (y) C A' for every y, we conclude from (2) that the
real part ofthe inner product is non-negative for every y. After taking
the expectation over y, the real-part remains positive and hence (8)
is satisfied. C

Theorem 2 states that the estimation scheme consists of project-
ing the optimal estimate o = E [x Iy] onto the set A'. This intuitive
result can be used to obtain the optimal estimate of x with bounded
energy, bounded components, or in a subspace of X. For example,
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let x C Rm and y C RInk. Then using (9), the MMSE estimate of x
with 12-norm bounded by a given value , is simply

r~ X 1.0XO 2<

11 22o11 2 ' E
(10)

Similarly, the optimal estimate whose components satisfy |(x)i <
Ei, for some given set of non-negative scalars { i}, is x = f, (xo),
where f, (.) is the component-wise clipping function given by

I()i < Ei
Wzi > Ei
Wzi < -Ei

(1 1)

Finally, the optimal estimate in a subspace A' C Rm is

x = Pvw5o (12)

where Pvw is the m x m projection matrix onto A'.

5. STRUCTURAL CONSTRAINTS ON THE ESTIMATOR

We now consider the case in which the structure of the estimator is
constrained to be of a certain form. Specifically, we design an esti-
mator possessing the form of a linear combination of operators with
certain convex constraints on the coefficients of the combination.

Suppose that one desires an estimator of the type

q (y) E (a)k Ok (Y)
k

where { k } are a set of given operators from Y to X If the
{Ok (y)} form a frame for a subspace A C Hy, and no furth(
striction is posed on the coefficient vector a, then the MMSE
mator in A is obtained by using the vector (4):

ao = Cv

where the matrix G and vector v in (5) are given, in our case, b

(G)j,k = E [(k (Y) 7 Xi (Y)), I (V)j = E [(, Oj (y)),

This is the familiar LMMSE estimator of x given the r.v.'s {$k
In many cases, the matrix G is close to singular, causing th

efficients of the linear combination to attain very large values.
an effect is usually undesired in practical implementations. H(
we are interested in the case where the vector a is constrained
in a closed convex set A' C 12. This, for example, includes seek
representation with bounded coefficients. Interestingly, the sol
to this constrained estimation problem, as in (9), amounts to a]
ing a certain transformation to the unconstrained coefficient v
ao in (14), as described in the following theorem.

Theorem 3 Let {q$k (y)} be a set of rv.'s that form a frame
subspace in 'Hy, and letW be a closed convex set in 12. Then at
all the estimators oftheform h (y) = Ik (a)k Ok (y) with a E

the coefficient vector that minimizes the MSE is aW
with G and ao given in (15) and (14) respectively.

The proof of the theorem relies on condition (8) and is orr
due to lack of space.

Note that in contrast to the case of constraints on the
mated vector (9), here the relation between the unconstrainec
constrained coefficients is not a simple projection but rather
weighted projection. The methods coincide only i f{qk (y) } ar
correlated r.v.'s with equal variance, in which case G = a21.

We now present some examples of Theorem 3.

5.1. A Quadratic constraint

Consider the family of estimators of the form (13) where the coeffi-
cients are constrained to have bounded weighted norm:

a*Wa < (16)

where E > 0 and W is a positive definite matrix such that W-1 is
bounded. From Theorem 3, the optimal set of coefficients under this
constraint is

a = (G + AW)t Gao (17)

where A > 0 is the minimal value for which (16) holds.
We see that imposing a quadratic constraint amounts to adding a

regularization term to the matrix G in (14) (as Gao can be replaced
by v). An example of the use of (17) is given in Section 6 in the
context of Wiener filtering.

5.2. An loo Constraint

Suppose that the matrix G is not singular and that it can be factored
as G = UU*. We wish to obtain an estimator of the form (13) with
a coefficient vector a, whose coordinates along the columns {Ui} of
U are bounded by a given set of non-negative scalars { i}:

I(Ui,a)I < Ei

(13) From Theorem 3, the optimal coefficient vector is

r.v.'s a = (U*) 1fE (U*ao)

(18)

(19)

.iI i
%.,

where fE (.) is the component-wise clipping function (11).esti-
It can be seen that in contrast to (17), this constraint causes the

coefficient vector a to be a non-linear function of ao. In Section 6
(14) we use (19) to impose certain restrictions on the coefficients of the

Wiener filter.
)y

x] 6. CONSTRAINED WIENER FILTER
(15)

One of the most widely used applications of MSE estimation in the
e co- field of signal processing is the Wiener filter. The discrete version of
Such the optimal filtering problem is the following. Given a wide sense

ence, stationary (WSS) signal y [n], produce an estimate x [n] ofthe signal
to lie x [n] such that the MSE E[ x [n] -x [n] 12] is minimized. The opti-
ding a mal linear estimator happens to be also time invariant and is known
Lution as the Wiener filter [4]. In this section we point out some possi-
pply- ble drawbacks of the Wiener solution, and derive an expression for
rector the MMSE filter under certain constraints which allow for practical

implementations.
In order to derive an expression for a constrained Wiener filter,

for a we first develop the unconstrained Wiener solution within our frame-
nong work. Our problem is to design a filter hm0 [n] that minimizes the
_ A', MSE at a certain time instance mo, thus

00

x [mo] = E hmo [k] y [mo -k]
k=-oo

(20)

Comparing (20) with (13) we see that they are ofthe same form with
the random variables {y [mo -k]} playing the role of the random
vectors {qk (y)}. Using (3) it can be shown that {y [mo -k] } form
a frame for a subspace in 'Hy if and only if there exist constants
0 < A < B < oc such that the spectrum of y [n] satisfies

(21)
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where Q, tA { Syy (w) 7& O}.
To find hmo [n], the matrix form in (14) is used, with v and G

given by (15):

(v)j = E [x [mo] y [mo-j]] ,Rxy (22)

(G)j,k = E [y [mo -k] y [moj]] Ryy [j-k]. (23)

Evidently, both v and G are independent of mo. The optimal filter
is thus also independent of mo and is given from (4) by h = Wv,
where the infinite vector h corresponds to the series {h [n] }.

The matrix G is an infinite Toeplitz matrix that corresponds to
convolution with Ryy [n] and v is an infinite vector corresponding
to the series Rxy [n]. Hence, it is easily verified that the frequency
response of the optimal filter H (w) can be chosen as

0
Sy

w (24)

If the lower bound in (21) is very small, then there may be fre-
quencies at which Syy (w) is close to zero. This typically causes
the impulse response of the filter to attain large values and have a
slow decay, properties which may be undesirable in practical imple-
mentations. To overcome these difficulties, we may impose certain
constraints on the filter that suppress the magnitude of H (w) or,
alternatively, bound the coefficients of the filter h [n] in the time do-
main. Two such constraints are considered in the following sections.

6.1. Wiener filter with a quadratic constraint

We first restrict the norm ofthe filter by considering only those filters
for which

lr

J HH(w)2L(w)dw < E (25)

for some E > 0 and weighting L (w) that satisfies L (w) > C for
some C > 0. Using Parseval's theorem, (25) can be written as
h*Wh < E /2w, where W is the infinite Toeplitz matrix defined by
(W)m,n A [m -n]. As can be seen, this is a convex constraint
of the type (16). Thus, the solution of the optimal filtering problem
under constraint (25) is given by (17):

h = (G + AW)t v. (26)

The matrices G andW are both infinite Toeplitz matrices that corre-
spond to convolution with Ryy [n] and 1 [n] respectively. Therefore,
the quadratically-constrained Wiener filter H (w) is given by

{ S~'y(w) w c Q
H(w) = Syy(w)+AL(w)

0 w Q,
(27)

where A > 0 is the minimal value for which (25) holds and QC A
{w SYY (w) + AL (w) 7& 0}. Note that now, even if the lower bound
of Syy (w) is small, we can still ensure that H (w) does not explode
by choosing a weighting function L (w) that is bounded below by a
larger positive number.

The quadratically-constrained Wiener filter does not have an ex-
plicit solution in the sense that there is no closed form for A. How-
ever, in practical applications the exact value of E in (25) is usually
not very important as long as the filter is realizable. Hence the exact
value of A is not crucial but rather the form ofthe frequency response
is what matters. In cases where the value of E is important, one can
use the bisection algorithm to obtain the optimal A.

An interesting fact is that the quadratically-constrained Wiener
filter is identical to the unconstrained Wiener solution designed to

estimate x [n] from the measurements y [n] = y [n] + z [n], where
z [n] is a WSS process with spectrum S,, (w) = AL (w). Hence,
the effect of constraining the filter to belong to the class defined in
(25), can be understood as designing a filter to estimate x [n] from
a noisy version of the measurements instead of using the measure-
ments themselves.

6.2. Wiener filter with an loo constraint

A more intuitive approach for specifying a restriction on the Wiener
filter is to do so in the time domain. Specifically, we seek the MMSE
filter subject to the constraint:

F- l{H (w) L* (w)} [n] < E [n], n C Z (28)

where { [n]}n is a series of non-negative numbers. It turns out
that this problem has a simple solution given that Syy (w) > 0 and
L (w) is a factorization of Syy (w), i.e. the relation L (w) L* (w) =
Syy (w) holds. Note that we do not require spectral factorization
in the sense that 1 [n] be a causal series, but any decomposition of
Syy (w) into a multiplication oftwo conjugate functions. For exam-
ple L (w) = Sy(w) is a valid choice. Under these restrictions,
constraint (28) is of the form (18) and thus the solution is given by
(19), which, in our case, reduces to

H(w) (w)LF{f (F l {SLC(W)}[])}() (29)

where f, (.) is the component-wise clipping function (11).
As a special case of (28), we may obtain the causal Wiener filter.

This is done by setting E [n] = 0 for n < 0 and E [n] -0o for
n > 0 and using the spectral factorization L (w) = S- (w) and
L* (w) = S+ (w), where S+ (w) is the Fourier transform of a causal
series. Constraint (28), then, causes H (w) S+ (w) to be causal, and
since S+ (w) is causal, this implies that H (w) is causal as well.
Substituting this specific choice of E [n] and L (w) in (29), we get
the known expression for the causal Wiener filter [4].

Another interesting special case of (28) is the condition

f"',H (w) Sy (w)dw < Eo. This constraint can be brought to
the form of (28) by setting E [n] - oo for n 7& 0 and E [0] = Eo /27
and using L (w) = S (w). Substituting these expressions into
(29), the solution is

H(w) = ( SY (w) c)

where c = max { 2f(f, S,y (w) /S (w) dw

(30)

0o) ,0}.
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