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Abstract-We consider the Bayesian inference of a random
Gaussian vector in a linear model with a Gaussian model matrix.
We derive the maximum a-posteriori (MAP) estimator for this
model and show that it can be found using a simple line search
over a unimodal function that can be efficiently evaluated. Next,
we discuss the application of this estimator in the context of near-
optimal detection of near-Gaussian-digitally modulated signals
and demonstrate through simulations that the MAP estimator
outperforms the standard linear MMSE estimator in terms of
mean square error (MSE) and bit error rate (BER).

I. INTRODUCTION

A generic problem in many different fields is the estimation
of a random Gaussian vector x in the linear model

y = Gx w (11)

where G is a linear transformation matrix and w is a Gaussian
noise vector. Three standard methods for estimating x in
this Bayesian framework are the minimum mean square error
(MMSE), the linear minimum mean squared error (LMMSE)
and the maximum a-posteriori (MAP) estimators. The first two
approaches are based on a quadratic cost function whereas the
third minimizes a hit-or-miss risk. From a detection point of
view, the MAP method is also related to the minimum error
probability criterion.
Most of the literature concentrates on the simplest case, in

which it is assumed that the model matrix G is completely
specified. In this setting, the MMSE, LMMSE and MAP
estimators coincide and have a simple closed form solution.
However, in our model, the matrix G is a random matrix
with independent and identically distributed elements and
known second-order statistics. A typical scenario in which
G is random is estimation under uncertainty conditions. For
example in communication systems this setting is appropriate
hen only partial channel state information is availahle. In

this model, the MMSE, LMMSE and MAP approaches lead
to different estimators. In fact, we will show that the solution
of the MMSE leads to an intractable integration, whereas the
MAP estimator can be efficiently found.
A possible application is digital communication systems

employing near-Gaussian constellation sets. It is well known
that in order to achieve capacity in linear Gaussian channels
powerful coding schemes must be combined with shaping
methods which result in near-Gaussian symbols [1], [2]. Two

practical schemes that obtain shaping gain are "trellis shaping"
[3] and "shell mapping" [4]. Another example is the interleave-
division-multiplexing space-time (IDM-ST) scheme, in which
multiple independent data streams are encoded with forward
error correction (FEC), interleaved and multiplexed simulta-
neously into different antennas. The superposition of multiple
independent symbols generates a Gaussian distributed signal
that is capacity achieving [5].

In [6]-[7], the authors derived the maximum likelihood
(ML) solution for estimating a deterministic unknown vector
x in model (1). In this paper, we extend these results and
incorporate prior information about x by assuming that it is
a Gaussian random vector. In fact, the MAP estimator can be
interpreted as a regularized ML estimator which utilizes this
prior information. When the variance of the elements in x are
infinite, or when x is uniformly distributed, the MAP criterion
reduces to the ML objective. Thus, the main contribution of
this paper is to generalize the results in [6]-[7] to the case
in which x is a Gaussian random vector with independent
elements of known finite variance. An additional contribution
is the application of this technique to near-optimal detection
of near-Gaussian digital constellations.

This paper is organized as follows. In Section II, we
formulate the problem and introduce the MMSE, LMMSE and
MAP estimators. Next, in Section III we provide the numerical
solution to the MAP optimization problem. For comparison
purposes, we review the MMSE and LMMSE methods in
Section IV. The application of our results in near-optimal
detection are discussed in Section V, and some simulation
results are offered in VI. Finally, concluding remarks are given
in Section VII.
The following notation is used. Boldface upper case letters

denote matrices, boldface lower case letters denote column
vectors and standard lower case letters denote scalars The
superscripts ()T,, ( )" ( ) ', and ( )t denote the transpose, the
first and second derivatives, and the pseudoinverse, respec-
tively By I we denote the identity matrix. is the standard
Euclidean norm, R (X) is the range of X, Amir, (X) is the
smallest eigenvalue of X and X 0O means that the matrix is
a symmetric positive semidefinite matrix. The functions p(x),
p(x y) and E{ } denote the probability distribution function
(PDF) of x, the PDF of x given y and the expectation
respectively.
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II. PROBLEM FORMULATION

Consider the problem of estimating a random vector x in
the linear model

y = Gx+w,

1 .5

(2)
where G is an V x K Gaussian matrix with known mean H
and variance (T2 > 0, x is a zero-mean Gaussian vector with
independent elements of variance (7 > 0 and w is a zero-
mean Gaussian vector with independent elements of variance
72 > 0. In addition, x, G and w are statistically independent.
It is desired to find an estimator x y) which is a function
of the observation vector y and the given statistics, that is
optimal in some sense. Under the Bayesian framework, a
typical procedure for choosing x (y) is to define a nonnegative
cost function C (x, x (y)) and to minimize its expected value
[8]. The most common objective is the quadratic error which
is defined as (See Fig. I)

C (X, x (y)) =x -X (y) 2 (3)

Minimizing this objective leads to the well known MMSE
estimnator

X5ALISE(y) = E {xly}. (4)
In many problems, the computational complexity of the
MMSE estimator is impractical. In this case a common
approach is to resort to a linear MMSE (LMMSE) estimator
which satisfies the following closed form solution.

XLSAIMSE (y) = E fxy}E{tyy}' y, (5)
where we have used the fact that x and y are zero mean
random vectors. Alternatively, one may choose to minimize
the hit-or-miss cost given by (See Fig. 1)

(x ' (y)) x x(y)C(x,x(y)) I, otherwise

{
(x -

1 .5 Tc(x)

0.5[

£ (x-&)

Fig. 1. quadratic cost function (left) and hit-or-miss cost function (right)

Problem (9) is a K-dimensional, nonlinear and nonconvex
optimization program. In [6]-[7] the authors have presented
a method to transform a similar problem into a tractable form
and solve it efficiently. Under their setting, the vector x was
treated as an unknown determinuistic vector. In our setting,
the vector x is treated as a random Gaussian vector. This
difference results in an additional quadratic term in the MAP
objective function, namely ||X|| 2 o/j2 which incorporates the a-
priori information about the random vector x. The following
theorem shows that the technique in [6]-[7] can also be applied
in the MAP problem.

Theorem 3.]: For any t > 0, let

11 Z, iTf (t) uxii yl2
x:lx l' t

ixl (1 0)

and denote the optimal argument by x(t). Then, the MAP
estimator of x in the model (2) is x(t*), where t* is the
solution to the following unimodal optimization problem:

arg min { f(t)
C

(6)

where e 0 is a positive scalar. Optimizing this risk yields
the MAP estimator:

XMJAP (y) = argmaxlogpxIy (x y)) (7)
x

The main goal of this paper is to derive the MAP estimator
of x in model (2), and compare its performance to the LMMSE
method.

III. MAP ESTIMATION

In this section, we provide an efficient algorithm for finding
the MAP estimator in model (2). The estimator is defined as

XMAP (y) = armmax {log pxly (xy)}
x

aru nmax{lo py Ix(yx) +lo px(x)} (
x

Due to the Gaussian assumptions, XMAP (y) is the solution
to

mi . yII-
(T9 X

H2 2
cw

Ylog(o2+52X2 ) + X 2NlogT9 w __7 (29)

(9)

Nlog(uT2t + c2?)+ 2 (1 1)

Proof: By introducing a slack variable t = x 2, we can
rewrite (9) as (II) using f (t) defined in (10). In [7] it was
shown that the line search is unimodal in t > 0 when there
is no prior information on x. In the appendix, we prove that
this property holds also in the MAP case. U

The change of variables in Theorem 3.1 allows for an
efficient solution of the MAP problem si.nce there are standard
methods for evaluating f(t) in (10) for any t > 0. Moreover,
the unimodality ensures that a simple one dimensional search
can find the global optimum. In the rest of this section, we
discuss these two properties.

First we provide a simple method for evaluating f (t) in
(10). This is a quadratically constrained LS problem whose
solution can be traced back to [9].
Lemma 3.2 (9], 10]): The solution to

f(t) minm 1y -Hx
x.2, t

(12)

is

x(t) (HTH )t HTy (13)
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where r, >-Aj (HTH) is the unique root of the equ

lx(t)l2 =t

Using the eigenvalue decomposition of HTH, we can

culate (HTH + i) HTy for different values of q.
monotonicity of this squared norm in rq enables us to
i] that satisfies (14) using a simple line-search. The sc
range is -Amin (HTH) < q J<J1aJ where 'Jma, iS
sufficiently large upper bound. Next, f (t) can be evalt
by plugging the appropriate x(t) into Iy -Hx(t)
algorithm is presented in Algorithm 1.

Algorithm 1 Constrained Least Squares (Lemma 3.2)
Input: t, H, y, Amin (:HTH), 'qmax
Output: f (t),x

1: L = -Amin (HTH)
2: 'qR = 'Jmax
3: repeat
4: TIM = ?ILN +77R4 17 J7 2 1l
5: x (HTH + qjyll, ) 'HTy
6: E = xx- t
7: if E > 0 then
8: 'L = M
9: else

10: 'JR TIMr
11: end if
12: until CE < Emin
13: f (t) =Iy -HxI

Now that we have an efficient method for evaluating f (t),
it remains to solve (11). The unimodality property ensures
that this line search can be efficiently implemented using the
Golden Section search [11]. Theoretically, the search region
is defined to be over 0 t < oc. However, in practice, the
search can be confined to 0 < t <tma where tma * is a
sufficiently large upper bound. This algorithm is presented in
Algorithm 2.

ation Algorithm 2 MAP Estimation Solution of eq. (H)
Input: y, H, (TX, U(2, 2, N, tmax

(14) Output: x

1: tL = 0

.cal- 2: tR = tmax
1.n-

(-\/5-
:

4:
5:
6:
7:

8:

9:

10:

11:

12:
13:
14:
15:

p = 4
repeat
A tR -X
tA = tL +
tB = tR-
r(tA) = 2

r(tB) = 2

if r(tA) <
tR = tB

else
tL = tA

end if
until r(tA)

tL

PA
PA
f (tA)
tA +C2
f(B)
'tB+2)
r(tB)

log(TrgtA W)
+ N log(or2tB + a2 )
then

tA
Cf2
tB

r(tB)l < C

LMMSE estimator given by

XLAINISE (y) = H('HH + KT2I + T

I)

= (HEsTH + qLMMAS E I) -'HTY,?

y (16)

where TILAI1fSE = Kr +0- Note that (16) has the same
form as (13) with a different regularization term 'MLV1MSE
However, while 'JLMM7SE is deterministic and always positive,
the MAP regularization parameter n is a random variable
which may be negative.

V. BAYESIAN DETECTION OF DIGITAL CONSTELLATIONS

We now discuss the application of the MAP estimator in
the context of near-optimal detection of near-Gaussian digital
constellations. The jointly optimal detector is given by [12]

(17)XMIAP (y) = arg max Pxly (x y)
x(D

IV. MMSE ESTIMATION

For comparison, we now discuss the MMSE and LMMSE
estimators of x in model (2). The MMSE estimator can be
written as

E x yj
EfEfx'y Gj y

f ~~~~2
EJ T G4wZ

~ ~ ~
y}_

_ :_ 9

(15)
-1

GTr yY-

where D is the modulation alphabet. The complexity of
the MAP detector is exponential in K, due to the discrete
nature of the support which has ID K elements and is usually
unrealizable. Instead, we suggest a low complexity suboptimal
detector based on the MAP estimator presented in Section III.
The jointly optimal detector given by (17) can be written as
(9), but this time, the support of x is D FK. Thus, it is the
solution to

min ~y -Hx~
xCD U2xEEDKc| (72 llXI2 +

9 1 1

1N log( 1229nn UwJ I 2

(18)

Unfortunately, it is easy to see that the computational com-

plexity involved in solving (15) is too high for practical
applications. Instead, a common approach is to consider the

However, as the support of D increases, that is to say, the

number of data bins gets larger, the solution of (18) converges
to the solution of (9).

65

XI,NISE (Y)

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on October 31, 2009 at 06:27 from IEEE Xplore.  Restrictions apply. 



Therefore, an appealing near-optimal approach for approx-
imating the MAP detector is

XD-MAP (y) = quantize (XMAP (y)), (19)

where XNIAP (y) is the solution to (11). In the limit of infinite
number of bins, XDVAp is effectively equal to x-hAP
and is optimal. In that case, the detection problem, generally
considered to be exponential complex, can be solved with
linear complexity, given in Section III.

For comparison purposes, the LMMSE detector is given by

XD-LMIAISE (y) = quantize (xLA-MSE (Y))

> 0.2

(I)r_

n 0.15

. 0.1

.0

0

m 0.05-

(20)

where XL-NI lISE (y) is given by (16).

VI. SIMULATION RESULTS

We now provide numerical results illustrating the behaviowr
of our new estimator. For this simulation the parameters are

N = 40, K = 4. The matrix H was chosen as a concatenation
of ten 4 x 4 matrices with unit diagonal elements and 0.5
off-diagonal elements. The vector x is a zero-mean Gaussian,
digitally modulated, stemming 8 different symbols as shown in
Fig. 2. The variance of each element is 1.5. Each symbol maps

3 bits using gray labeling, thus, neighboring symbols differ
by only one bit. The simulation results for the bit error rate
(BER) and mean square error (MSE) of the MAP and LMMSE
estimators are presented in Figs. 3 and 4, respectively, for
different values of a 2 = {0 0.02, 0.04}. As expected, in the
special case where (T = 0, the MAP and LMMSE estimators
are identical. On the other hand, when T9 = {0.02, 0.04}, the
MAP estimator yields better performances in terms of both
MSE and BER.

Next, we compare the behavior of the MAP and LMMSE
regularization factors for various values of (<2. While the
regularization factor of the LMMSE estimator rMMSE, iS
deterministic and fully determined by the problem parameters,
the regularization factor of the MAP estimator r, is a random
variable. Fig 5 depicts the empirical distribution of the reg-

ularization factors the MAP and LMMSE estimators, for the
case or2= 0.04. The results show that the average value of
is smaller than rMMESE for every <2 Since we show that the
MSE of the MAP estimator is lower than the LMMSE, we can

conclude that the LMMSE is an underestimate of the true value
of x. We also observe that both and 9qLIMSE decrease as

<T decreases. This is not surprising since as the observations
are less noisy, less regularization is needed. Moreover, we

notice that the r1 can have negative values, that is to say,
deregulariziation fiori.

VII CONCLUSIONS

In this work, we introduced the MAP estimator of a random
Gaussian vector x in a linear model with random transforma-
tion matrix G. We derived the MAP estimator and provided
an efficient method for finding it by transforming the multi-

dimensional, nonlinear and nonconvex problem into a simple
tractable form. Next, we proposed a detection scheme for near-

Gaussian- digitally modulated symbols with linear complexity.

II
"r

-6 -4 -2 0

x

2 4 6

Fig. 2. Near-Gaussian constellation of 8 symbols.

102
m

Fig. 3. Bit error rate of a MIMO systeimn with N = 40, K = 4 for various
values of gT

Simulation results show the improved performance offered by
our new approach in comparison to the standard LMMSE
method in terms of both MSE and BER.

Appendix

In this Appendix, we show that (l1) is unimodal in t > 0.
First, we will show that f(t) is convex in t > 0. In [10] and
[13], it was shown that strong duality holds in this special case

and that is equal to the value of its dual program

f(t)
TT TH(HTH 1)t1HTymax, v v- -,

st HTH + qlIn0
HTy R(HTH + q1l)

'it

(21)

Thus, f (t) is the pointwise maximum of a family of affine

functions of and therefore is convex in t > 0
Next, we will show that

r(t)= f() +Nlog(T2t+52)
w

t
(22)
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Fig. 4. Mean square error of a MIMO system with N = 40, K
various values of aT2.

The second derivative is

/(t)= ff"(t)
r"(t))C

2f (t)g4
I (Cr2t +) r2 )3e2sl2 )2

Pluggilng in (23) results iln

0N 4

((T2t + (J2 )2

f"(t)
for 92

Fig. 5. Distribution of rl for oa0

values of a2 .
0.04, N = 40, K

is unimodal in t > O. We use the following result from [13]:
If r'(t) = 0 implies r (t) > 0 for any t > O, then r(t) is
unimodal in t > 0. The condition r (t) = 0 states that

r'(t) f (t)

crgt cr
f (t)g2

Multiplying by 2 " 2 and rearranging yields

f((t),74
T22t + or2 )3V<r IVu

NcT4 (T fI(t)Jt-t)
( 2t+ (2 )2 ((2t+ G2)2
+ o2

(or9t + (,)

Now, f(t) is convex, which means that f"(t) > O. Therefore,
the first term of is non-negative. The second and third terms
are positive since oT 0 o, (T2 > 0 and or2 > O. This concludes
the proof.
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f (t)o

((o2t + u2 )2

N.J40

f1(t)o2
(o2t + u12 )2

(25)

r 2-2 2 2) 2 -
(c2t + c22 (orat+ u2)
+ 2N.T4 2(T 2 f (t)(
((72t + g72 )2 52t + 2 )2

Jf (t)(o2
(oj2t + Cf2 )2

a((g22 + (72)6
)(9t w (6

(Gr2t + o72 )2gT9t + (T Q5 (Jg2t + crc)

9q
0.1 lOlg(lf) 8 0.1 lOlg )

MAP , MAP
-0-- LMMSE --MMAFLMM

O
2 -1 0 1 2 -2 -1 0 2

O 1 2 -2 -1 O

f I WtT2Pf' (-f )

Na 2
9

((T2t + (T 2 )2 (T2t + (T 29 w 9 IV
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