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Abstraci—We consider the Bavesian inference of a random
(aussian vector in a linear model with a Gaussian model matrix.
We derive the maximum a-posteriori (MAP) estimator for this
moddel and show that i can be foand using 2 simple line search
over a unimodal faction that can be efficiently evaluated. Next,
we discuss the application of this estimaior in the context of near-
optimal detection of near-Gaussian-digiially modulated signals
and demonsirate through simulations that the MAP estimator
siperforms the standard linear MMBSE estimator in terms of
mean sguare error (MSE) and bt ervor rate (BER).

I INTRODUCTION

A generie problemn in many different fields is the estimation
of a random Gaussian vector x in the linear model

v = Gx +w, (1

where G is a linear transformation matrix and w is a Gaussian
noise vector, Three standard methods for estimating x in
this Bayesian framework are the minimum mean sguare error
(MMSE), the linear minimum mean squared error (LMMSE)
and the maximum a-posteriont (MAP) estimators. The first two
approaches are based on a quadratic cost function whereas the
third minimizes a hit-or-miss risk. From a detection point of
view, the MAP method 18 also related to the minimwm error
probability criterion.

Most of the literature concentrates on the simplest case, in
which it s assumed that the model matrix G is completely
gpecified. In this setling, the MMSH, LMMSE and MAP
estimators coincide and have a simple closed form solution.
However, in our model, the mairix G is a randomn matrix
with independent and identically distributed elements and
known second-order statistics. A typical scenario i which
G s random 18 estirnation under aneertaimty conditions. For
example, in communication systems this setting is appropriate
when only partial chamnel state information is available. In
this model, the MMSE, LMMSE and MAP approaches lead
to different estimators, In fact, we will show that the solution
of the MMEE leads (o an infractable inlegration, whereas the
MAP estimator can be efficiently found.

A possible application is digital communication systems
employing near-Gaussian constellation sets. 1 is well known
that in order to achieve capacily in inear Gaussian channels,
powerful coding schemes mwmst be combined with shaping
methods which resalt in near-Gaussian symbels [1], [2]. Two
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practical schemes that obtain shaping gain are “trellis shaping”
31 and “shell mapping” [4]. Another example is the interleave-
division-multiplexing space-time (IDM-ST} scheme, in which
multiple independent data streams are encoded with forward
error comrection (FECY, inferleaved and multiplexed simulia-
neously into different antennas. The superposition of multiple
independent symbols generales a (Gaussian distributed signal
that is capacity achieving [5].

In [6)-[7], the authors derived the maximum lkelihood
(ML) solution for estimating a deterministic unknown vector
x in model (1), In this paper, we extend these results and
incorporate prior information shout x by assuming that it is
a Gaussian random vector. In fact, the MAP estimator can be
interpreted as a regularized ML estimator which utilizes this
prior nformation. When the vanance of the elements in x are
infinite, or when x is uniformly distributed, the MAP criterion
reduces to the ML objective. Thus, the main contribution of
this paper is to generalize the results m [6]-[7] to the case
in which x is a Gausslan random vector with independent
elements of known finite varance. An additional confribution
ig the application of this technique to near-optimal defection
of near-Gaussian digital constellations.

This paper is orgamized as follows. In Section I we
formulate the problem and introduce the MMSE, LMMSE and
MAP estimators, Next, in Section I we provide the numerical
solution to the MAP optimization problem. For comparison
purposes, we review the MMSE and LMMSE methods in
Section 1V, The application of owr resulls in near-optimal
detection are discussed in Sectlon V, and some simulation
resulis are offered in VL Finally, conclading remarks are given
in Section VL

The following notation is used. Boldface upper case letters
denote matrices, boldiace lower case letters denote column
vectors, and St:iﬂdm’d lower case letters denote scalars. The
superscripts (07, (), (97, and ( 3 denote the transpose, the
first and second derivatives, and the pseudoinverse, respec-
tively. By T we denote the idenlity matrix. [|-| is the standard
Buclidean norm, R (X)) is the range of X, Agn (X)) 18 the
smallest eigenvalue of X and X = 0 means that the matrix is
a symimetric positive semidefinite matrix. The functions p(x),
p{xly) and £} denote the probability distribution function
(PDEY of x, the PDF of x given ¥, and the expectation,
respectively.
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1I. PROBLEM FORMULATION

Consider the problem of estimating a random vector x in
the linear model

y=Gx+w, (2)

where G is an NV x K Gaussian matrix with known mean H
and variance O'g > 0, x is a zero-mean (Gaussian vector with
independent elements of variance ¢ > 0 and w is a zero-
mean Gaussian vector with independent elements of variance
a2 > 0. In addition, x, G and w are statistically independent.
It is desired to find an estimator ¥ (y) which is a function
of the observation vector y and the given statistics, that is
optimal in some sense. Under the Bayesian framework, a
typical procedure for choosing X (y) is to define a nonnegative
cost function 7 (x, X {y¥)) and to minimize its expected value
[B]. The most common objective is the quadratic error which
is defined as (See Fig. 1)

C %) =Ix-2WI>. (3)

Minimizing this objective leads to the well known MMSE
estimator

Xuumse (y) = E{x|y}. 4

In many problems, the computational complexity of the
MMSE estimator is impractical. In this case, a common
approach is to resort to a linear MMSE (LMMSE) estimator
which satisfies the following closed form solution:

Xrmmse () = E{xy" } E7 {yyTly, (5

where we have used the fact that x and ¥ are zero mean
random vectors. Allernatively, one may choose to minimize
the hit-or-miss cost given by (See Fig. 1)

(N&§@D—{

where ¢ — 0 i8 a positive scalar. Optimizing this risk yields
the MAP estimator:

0, [x—x@)l<e
1, otherwise

(©)

Xpap (¥) = arg max log py|y (x[¥)- (7)

The main goal of this paper is to derive the MAP estimator
of x in model (2), and compare its performance to the LMMSE
method.

III. MAP ESTIMATION

In this section, we provide an efficient algorithm for finding
the MAP estimator in model (2). The estimator is defined as

Xyrap (y) = arg max {log pyjy (x|y)}

8
= arg max {log pyx (¥[x) + logpy (x) |- v

Due to the Gaussian assumptions, Xpsap (y) is the solution
to
-y - Hx? sy, 2y, Xl
in{ 0 Nlogl(e? |x||* +e2) +
X {G_g HXH2 + G'?Qu ( g H H w) Ug

)

ko o)

IO S g— E (=%

Fig. 1. quadratic cost function (left) and hit-or-miss cost function (right)

Problem (9) is a K-dimensional, nonlinear and nonconvex
optimization program. In [6]-[7] the authors have presented
a method to transform a similar problem into a tractable form
and solve it efficiently. Under their setting, the vector x was
treated as an unknown deferministic vector. In our setting,
the vector x is treated as a random Gaussian vector. This
difference results in an additional quadratic term in the MAP
objective function, namely ||x|?/2, which incorporates the a-
priori information about the random vector x. The following
theorem shows that the technique in [6]-[7] can also be applied
in the MAP problem.
Theorem 3.1: For any t > (), let
F=

min |y — Hx|?
x| x| =2

(10)

and dencte the optimal argument by x(¢). Then, the MAP
estimator of x in the model (2) is x{t*), where t* is the
solution to the following unimodal optimization problem:

argmin {L‘é)

t
2 2
AT + Nlog(a t + o) + 02} (1D

T

Proof: By introducing a slack variable ¢ = [|x|*, we can
rewrite (9) as (11) using f(¢) defined in (10). Tn [7] it was
shown that the line search is unimodal in ¢ > 0 when there
is no prior information on x. In the appendix, we prove that
this property holds also in the MAP case. |

The change of variables in Theorem 3.1 allows for an
efficient solution of the MAP problem since there are standard
methods for evaluating f(#) in (10) for any ¢ > 0. Moreover,
the unimodality ensures that a simple one dimensional search
can find the global optimum. In the rest of this section, we
discuss these two properties.

First we provide a simple method for evaluating f(¢) in
(10). This is a quadratically constrained LS problem whose
solution can be traced back to [9]:

Lemma 3.2: (9], [10]): The solution to

f@)=_ min ly—Hx|’ (12)
is
x(t) = (HTH + 1) HTy, (13)
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where 7 - 15 the anigue roof of the equation

;\‘m in (HT H,]

x(#)]* = (14)

Using the eigenvalue decemgoqnon of HYH, we can cal-

culate [H H - onl) s'HT‘ for different values of 7. The
monotonicity of ﬂn& squared norm in 9 enables us to find
n that satisfies ( 14? usino a bimpie line-search. The search
range is -

sufﬁcienﬂy iarge upper bound. Next,
by plugging the appropriate x(¢) into
algorithn is presenled in Algerithm 1.

; (!) can be evaiua‘(ed
: PR .
ly — Hx(®)||". This

Algorithm 1 Constrained Least Squares (Femmag 3.2)
Input: #, H, y, Ay (HTH),
Cstput: FE)x

e = ""’}‘?min iHTH}

R 7 Nmas

repeat

T

,,,,, {)i;r
= (H7H + npd)
i

then

,,,,, 1 Iil‘y
9
7. i >0
HL = fim
else
HR = HAL
end if

until |e] < e

Now that we have an efficient method for evaluating £(2),
it remains to solve (11). The unimodality property ensures
that this line search can be elficiently implemented using the
Golden Section search [11]. Theoretically, the search region
is defined o be over 0 < ¢ < oo, However, in practice, the
search can be confined to 0 < b s WHEre foge 18 4
sufticiently large upper bound. This algorithm is presented in
Algorithm 2.

1V, MMSH ESTIMATION

For comparison, we now discuss the MMSE and LMMSE
estitnators of x in model (2). The MMSE estimator can be
written as
= FEixly}
1D {E{X\V.,G\\ 3
l . ffi:

Unfortunately, it is easy to see that the computational com-
plexity involved in solving (15) is too high for practical
apphications. Instead, a common approach is to consider the

Xararsm (y)

(15

E

65

Algorithm 2 MAP Hstimation - Solution of eq. (11)
Input: y, H, o7, o2,

Ouiput: x

2 ot
T N, lnas

1 lp =

2ty = E'n/_w,a. .

h o UL

3 T

4. repeal

5 N=1ip—i;

6 la =l +pA

7. tp =itp - pA

8 r{ta) = ;% + Nlog(aZis + o5) + f;#
9 r{tp) = ng{tfiz Nlogloiip +o5) + 2
0. if r(ty) < r(ip) then :
1L tp=lip

120 else

1% br == dg

14:  end if

15 until [rF4) - r(tn)] -

LMMSE estimator given by

(16)

= (11 H+?} sarsel)

2
<,

where nppvse = Ko, ’}' Note that (16) has the same
form as (13) with a dlﬁ(_}’bni regularization term gy sE-
However, while nyr s s is deterministic and always positive,
the MAP regularization parameter » I8 a random variable
which may he negative.

Y. BAYESIAN DETECTION OF DIGITAL CONSTELLATIONS

We now discuss the application of the MAP estimator in
the context of near-optimal detection of near-Gaussian digital
constellations. The iointly optimal detector is given by [172]

{x (1h

Kprap {y) = arg 108X, Py v,

xt DE
where 13 s the modolation alphabel. The complexity of
the MAP detectar is exponential m K, due to the discrete
nature of the support which has '!) Y elements and is usually
unrcalizable. Instead, we suggest a Tow complexity suboplinal
detector based on the MAP estimator presented in Section I
The aomtiy (}pumai detector given by (17 um be written as
(9}, Thus, it is the
b(ﬁlﬂi(m to

min J

xEDE L(J‘

+ N Eog(gi x[[* 4o

(18)
However, as the suppoit of D increases, that is to say, the

number of data bins gets larger, the solution of (18) converges
to the solution of (9).
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Therefore, an appealing near-optimal approach for approx-
imnaling the MAP deleclor 1

%p wmap (y) = quantize (Rarap (¥)), (19

where ¥ 74 p (v) 18 the solution to (113 In the limit of infinite
number of bins, Xp_srap I8 effectively equal to Xpsap,
and is optimal. In that case, the detection problem, generally
considered to he exponential complex, can be solved with
linear complexity, given in Section 1L

For comparison purposes, the LMMSH detector is given by

20y
where Xz er () is given by (163,

VI, SIMULATION RESULTS

We now provide nomerical results illostrating the behavior
of our new estimator. For this simulation the parameters are
N =40, K = 4. The mairix H was chosen as a concalenalion
of ten 4 x 4 matrices with unit diagonal elements and 0.5
off-diagonal elements. The vector X is a zero-mean Gaussian,
digitally modulated, sternming 8 different symbols as shown in
Fig. 2. The variance of each element is 1.5. Hach symbol maps
3 hils using gray labeling, thus, neighboring symbols dilfer
by only one bit. The simulation resulis for the bit error rate
(BER) and mean square error (MSE) of the MAP and LMMGSE
estitnators are presented in Figs. 3 and 4, respectively, for
different values of 2 = {0,0.02,0.04}. As expected, in the
gpecial case where rrg = {}, the MAP and LMMSH estimators
are identical. On the other hand, when J:f = {(.02,0.04}, the
MAP estimator yields better performanées in terms of both
MSH and BER.

Next, we compare the behavior of the MAP and LMMSE
regularization factors for various values of 2. While the
regularization factor of the LMMSE estimalor mrararss, 18
deterministic and fully determined by the problem parameters,
the regularization factor of the MAP estimator 7, is a random
variable. Fig 5 depicls the empirical distribution of the reg-
ularization factors the MAP and LMMESE estimators, for the
case cr; = .04, The resulis gshow that the average value of
is smaller than np a5 g for every crﬁ,. Since we show that the
MSE of the MATD estimator is lower than the LMMSE, we can
conclude that the LMMSE is an underestimate of the true value
of x. We also observe that both v and nrararsr decrease as
o2 decreases. This is nol surprising since as the chservations
are less noisy, less regularization s needed. Moreover, we
notice that the » can have negative values, that is o say,
deregularization form.

VIl CoNCLUSIONS

In this work, we introduced the MAP estimator of a random
(raussian vector x in a linear model with random transforma-
tion matrix (5. We derived the MAP estimator and provided
an eflicient method for finding it by transforming the mulii-
dimensional, nonlinear and nonconvex problem into a simple

tractable form. Next, we proposed a detection scheme for near-
Gaussian-digitally modualated symbols with linear complexity.
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Fig. 2. NearGaussian constellation of § symbols.
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Fig. 3. Bit emor mate of a MIVMO system with N = 40, K = 4 for varous

values of o2,

Simulation results show the improved performance offered by
our new approach in comparison to the standard LMMSE
method in terms of both MSE and BER.

Appendix

I this Appendix, we show that (11) is animodal in £ > (.
First, we will show that f(¢) is convex in ¢ > (0. In [10] and
L1331, it was shown that sirong doalily holds in this special case
and that is equal to the value of its dual program

max, Yy -y H{HTH | n]':IT HTy —nt
ft) =< st HH+gl>0
H7y e R (HTH + i)
(21)

Thus, f{#) is the pointwise maximum of a family of affine
{funciions of and therefore i1s convex m ¢ > 0.
Next, we will show that

s g \ 1
+ Nlogl(eZt + oo} + — (22)
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Fig. 5. Distribution of 5 far 02 = 0.04, N = 40, K = 4 for different
values of o3,

is unimodal in ¢ = 0. We use the following result from [13]:
It (#) = 0 implies » {(£) = 0 lor any ¢ > 0, then r(#) is
unimodal in ¢ = 0. The condition » (#) = 0 states that

; (¢ RO No? 1
7{£¥ - {‘f () e )!( & 5 + 5 .g - + . _Q
L, agt 72, (ot + gEY: ait bon  og
23
F)og Nojg  opf't)
(Uf;f b 72 )8 ((I;?f by (Jéi AL
o2
Vg
YO YEICE (24
+a§(s§é o) (24)
67
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The second derivative 18

() = ‘;f:#.({;)z — = iﬂﬁ)J; -3 ]U.kt)k é“’
ogt boy  logthoy)t (agttoy)” (25
2 ()} Nog B
TRt (0%t o)

Plugging in (23) results in

227 {1y oy Frgh 2
P O T 1l M 0
-2? 2 (02 5232 (g2t a2
gLt oo {agz o) ((}'g/ b as)
B 2Nog 202 f1(t) 207
' 2¢ 232 [ r2E 1 T2 32 2 24 2
(rrg - 72 ) (Jgt + T .rrl,(.rrgr b aZ) 26)
IP\I"!{T{‘{ .
"Ya
(’Iér A
i 2‘73 N ’Va:f
- P TPy P g
ot +of  oi{eit+ i) ( gy

£ -

Now, f{#} is convex, which means that f7{#) > 0. Therefore,
the first term of is non—negative The second and third terms
are posilive since frj = (), <7 > 0and rr2 > 0. This concludes
the proof.
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