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Abstract—Signal modeling lies at the core of numerous signal optimization problem. Some examples include greedy pur-
and image processing applications. A recent approach thatds suit algorithms like orthogonal matching pursuit (OMP) and
drawn considerable attention is sparse representation magling, CoSaMP, and convex relaxations like basis pursuit dergisin

in which the signal is assumed to be generated as a combinatio . . .
of a few atoms from a given dictionary. In this work we conside and the Dantzig selector (for comprehensive reviews sge [1]

a Bayesian setting and go beyond the classic assumption of(2]).
independence between the atoms. The main goal of this paper Recent works[[3],[14],[15],[15], 7], [[8] suggested imposing

is to introduce a statistical model that takes such dependames gdditional assumptions on the supportaofthe sparsity pat-
into account and show how this model can be used for sparse oy which is still regarded deterministic there. Theseks

signal recovery. We follow the suggestion of two recent work . .
and assume that the sparsity pattern is modeled by a Boltzman SNOW that using structured sparsity models that go beyond

machine, a commonly used graphical model. We show that for Simple sparsity can boost the performance of standardespars
general dependency models, exact MAP estimation of the spe recovery algorithms in many cases. Two typical examples for
representation becomes computationally complex. To simify  such models are wavelet treés [3] and block-sparsity [4], [6
the computations, we propose a greedy approximation for the Thg first accounts for the fact that the large wavelet coeffits
MAP estimator. We then consider a special case where exact . - - - .

MAP is feasible, by assuming that the dictionary is unitary and of piecewise smooth signals and images tend to I'V? on a
the dependency model corresponds to a certain sparse graph.rooted, connected tree structure [9]. The second modebistba
Exploiting this structure, we develop an efficient messagpassing on the assumption that the signal exhibits special stradtur
algorithm that recovers the underlying signal. The effectveness the form of the nonzero coefficients occurring in clustetsisT

of our developed pursuit methods is demonstrated on synthiet is a special case of a more general model, where the signal is

signals, where we compare the denoising performance to that . . .
of previous recovery methods that do not exploit the statistal assumed to lie in a union of subspaces [4], [5]. Block-sparsi

dependencies. Finally, when the model parameters definingie arises naturally in many setups, such as recovery of multi-
underlying graph are unknown, we suggest an algorithm that band signals[[10],.[11] and the multiple measurement vector

learns these parameters directly from the data, leading to @ (MMV) problem. However, there are many other setups in
iterative scheme for adaptive sparse signal recovery. which sparse elements do not fit such simple models.

Index Terms—Sparse representations, signal synthesis, In many applications it can be difficult to provide one
Bayesian estimation, MAP, MRF, Boltzmann machine, greedy deterministic model that describes all signals of interEsr
pursuit, unitary  dictionary, decomposable model, message gyample, in the special case of wavelet trees it is well known
passing, pseudo-likelihood, SESOP. L .

that statistical models, such as hidden Markov trees (HMTSs)
[12], is more reliable than a deterministic one. Guided l®y th

. INTRODUCTION ; L
) ) . _ observation that statistical models can often be more dolver
Signal modeling based on sparse representations is Ugegh deterministic ones, it is natural to consider more g&ne

in numerous signal and image processing applications, syghyesian modeling, in which the sparse representation is
as denoising, restoration, source separation, COmpreasio assymed to be a random vector. Many sparsity-favoring rior
sampling (for a comprehensive review see [1]). The basis; the representation coefficients have been suggested in
ingredients of a typical generation model are a sparse TePEatistics, such as the Laplace prior, "spike-and-slatift(me
sentationz, a dictionary that is applied on this representatiogf narrow and wide Gaussian distributions) and Student's
and additive noise. Each of these ingredients can be reiarggstribution (for a comprehensive review séel[13]). Howeve
deterministic or random, leading to different recoverymoels ne representation coefficients are typically assumed to be
and performance guarantees. In this paper we focus on Fﬁ&ependent of each other.

modeling of the sparse representation. The classical appro Here we are interested in Bayesian modeling that takes into
to sparse recovery considers a deterministic sparse BPreiccount not only the values of the representation coeffisjen
tation and signal recovery is formulated as a determinisig also their sparsity pattern (the support ©f In this
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the entries are identically distributed and assign difierewhereas all the other stages, including the stopping rule fo
probabilities to be turned "on" for each entry (see €e.gl)[15]the algorithm, remain unchanged.

Besides the modeling aspect, another key ingredient inThe current paper is aimed at further exploring the BM-
Bayesian formulations is the design objective. Two populdased model proposed in]22]. Our main contributions inelud
techniques are maximum posteriori (MAP) and minimum exploring settings where exact MAP estimation is computa-
mean square error (MMSE) estimators. Typically these estienally feasible and designing specialized methods fdhbo
mators are computationally complex, so that they can only MAP estimation and model estimation. We develop an efficient
approximated. For example, approximate MAP estimation camessage-passing algorithm for signal recovery which obtai
be performed using a wide range of inference methods, suble exact MAP estimate under some additional modeling
as the relevance vector machihel[16] and Markov chain Mordgsumptions. We also suggest a greedy algorithm for signal
Carlo (MCMC) [17]. Such estimators are derived[in|[13]./[18tecovery which approximates the MAP estimator for the gen-
based on sparsity-favoring priors enand approximate infer- eral BM-based model. The proposed greedy algorithm takes
ence methods. I1n [14], [19] approximate MMSE estimators aiteto account the statistical generative model throughdiitsa
developed, based on an i.i.d prior on the support. Finally, stages, including the stopping rule. The main contribistiamd
the special case of a square and unitary dictionary, assumirawbacks of the two recent works which used the BM-based
independent entries in the support and Gaussian coefficiemodel [22], [23], as well as the differences between these
it is well known that the exact MAP and MMSE estimatorsvorks and the current work, will be discussed in more detail
can be easily computed [15]. in SectionIX.

Independence between the entries in the support can be @he paper is organized as follows. In Secfidn Il we motivate
useful assumption, as it keeps the computational compleke need for inserting probabilistic dependencies between
ity low and the performance analysis simple. Neverthelegsdements in the support by considering sparse represgmsati
this assumption can be quite restrictive and leads to loskimage patches over a DCT dictionary. In Section Il we
of representation power. Real-life signals exhibit sigwifit introduce useful notions and tools from the graphical medel
connections between the atoms in the dictionary used far thifeld and explore the BM prior. SectidnllV defines the signal
synthesis. For example, it is well known that when imag®@odel and the MAP estimation problem. In Sectloh V we
patches are represented using the discrete cosine transfdevelop a greedy approximation of the MAP estimator for the
(DCT) or a wavelet transform, the locations of the largBM prior. We then present setups where the problem can be
coefficients are strongly correlated. Several recent wiitks solved exactly and develop an efficient algorithm for olitain
[20], [21], [22], [23] have made attempts to go beyond thihe exact solution in Sectidn VI. We explore the performance
classic assumption of independence and suggested sHitistif these two algorithms through synthetic experiments in
models that take dependencies into account. The specil c8ectior[ VIl. Estimation of the model parameters and adaptiv
of wavelet trees has been addressed’in [7], [20], where HM3$parse signal recovery are addressed in SeEfion VIII. lgjnal
are merged into standard sparse recovery algorithms, irordre discuss relations to past works in Secfion IX.
to improve some of their stages and lead to more reliable
recovery. Another statistical model designed to captuee th
tree structure for wavelet coefficients, was suggested1h [2
An approximate MAP estimator was developed there based orin this section we provide motivation for inserting prob-
this model and MCMC inference. abilistic dependencies between elements in the support. We

Here we consider more general dependency models basedsider a set ofV = 100,000 patches of sizes-by-8 that
on undirected graphs, which are also referred as Markave extracted out of several noise-free natural images. For
random fields (MRFs). Graphical models [24] provide a fukach patch, we perform a preliminary stage of DC removal
and concise description for the prior distribution on thpmurt by subtracting the average value of the patch, and thenrobtai
and allow to perform probabilistic inference using powerfisparse representations of these patches over an over¢emple
methods developed in the field of graph theory. Two examplBET dictionary of size64-by-256 (n-by-m) using the OMP
of such techniques that are widely used for MAP estimaticlgorithm. We consider a model error of= 2, so that OMP
are belief propagatiori [24] and graph cutsi[25]. [n|[22] thetops when the residual error falls belew= /no = 16.
authors propose a generative model for sparse represgrgatiVe then compute the empirical marginal distributions for
that is based on a Boltzmann Machine (BM), an appealirgich of the dictionary atoms and for all pairs of atoms,
MREF for the prior on the support. This allows for introducinghamely we approximaté&r(S; = 1), ¢ = 1,...,m and
the concept of interactions in a general sparse coding modet(S; = 1,5; = 1), i = 1,...,m — 1, j > i, whereS
An approximate MAP estimator is then developed by meais a binary vector of sizen and S; = 1 denotes that the
of Gibbs sampling and simulated annealihg|[17]. Note howth atom is being used. The empirical conditional probapilit
ever that these are general-purpose optimization techsjquPr(S; = 1|S; = 1) can then be computed as the ratio between
which often suffer from high computational effort and a slowr(S; = 1,5; = 1) andPr(S; = 1).
convergence rate. In[23] a BM prior on the support is used in We address several assumptions that are commonly used in
order to improve the CoSaMP algorithm. Note however th#te sparse recovery field and suggest validity tests for each
the Bayesian model is used only in one stage of the algorittoh them. The first assumption is that the elements in the
(the one that obtains an estimate for the support given support vector are identically distributed, namdly(S, =

II. MOTIVATION
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Figure 1. Validity tests for several assumptions on the ettpgector: identical distributions, independency andckigparsity. Left: A plot ofR, Middle:
An image ofU, Right: An image oflV/.

1) = p for all 4, where0 < p < 1 is some constant. significant correlations between pairs of atoms, it in faekes
This assumption can be examined by comparing the margimal use of these properties. Therefore, it seems plausibte th
probabilities Pr(S; = 1) for each atom. The second asa stochastic model that will capture the different nature of
sumption is independency between elements in the suppedch atom, as well as the important interactions between the
The independency assumption between atérusd j implies atoms, can lead to improved performance. In this paper we wil
that Pr(S; = 1|S; = 1) = Pr(S; = 1). Therefore, we show how this can be accomplished in a flexible and adaptive
can test for independency by comparing the marginal anthnner.

conditional probabilities for each pair of atoms. Next wentu

to the block-sparsity assumption. Assuming thatnd ; are 1. GRAPHICAL MODELS

in the same cluster implies that the conditional probaedit The main goal of this paper is using graphical models

Pr(S: = 1|S_j =1 and_Plf(Sj = 15 =1) are nearl. ~ for representing statistical dependencies between elsnien
To examine the validity of each of the above-mentionggle sparsity pattern and developing efficient sparse recov-
assumptions, we compute the variables ery algorithms based on this modeling. In order to set the

Pr(S; =1) _ ground for the signal model and the recovery algorithms, we

Ri = |logyg (7>‘ , lsism provide some necessary notions and methods from the vast
Pr(S; = 1|S; = 1) o literature on graphical models. We begin by presenting MRFs
Ui.j = |logyg ( Pr(S, = 1) + 5> , 1<4,5<m and explain how they can be used for describing statistical

o dependencies. We then focus on the BM, a widely used
Vij =[logyo (Pr(S; = 1[S; = 1) +9)[, 1<i,j<m (1) mRF, explore its properties and explain how it can serve
where p denotes the average probability of an entry to KRS @ useful and powerful prior on the sparsity pattern. For
turned "on", namely £ L >~ Pr(S; = 1), Ris a vector of computational purposes we may want to relax the dependency
sizem andU, V are matrices of sizer-by-m. We uses = 0.1, Mmodel. One possible relaxation, which often reduces compu-
so that forPr(S; = 1|S; = 1) = 0 we get a valué in U; ; and tational complexity and still bares considerable repres@n
V;.; (i and; denote the row and column indexes respectively)OWer, is decomposable models. Finally, we present a pawerf
In each of the functions if{1) a near-zero result implieg thEnethod for probabilistic inference in decomposable madels
the corresponding assumption is valid; as we go further aw@§ined belief propagation. Decomposability will be a mauge!
from zero the validity of the assumption decreases. assumption in Section VI and the algorithm we propose in
The results are shown in Figl. 1. On the left we plot the Va]?_,ectlorm will be based on belief propagation techniques

ues inR. This plot demonstrates that the individual frequencies
can be very far from the average one. Consequently, the D&T Representing Statistical Dependencies by MRFs

atoms are used with varying frequencies. The malfixs | this subsection we briefly review MRFs and how they
displayed in the middle. The black color, which correspondsin used to represent statistical dependencies. Thiswrevie
to near-zero values, is dominant. This illustrates thatrnde- g mainly based on[]24]. A graphical model is defined
pendency assumption is satisfactory for many pairs of DGy its structural and parametric components. The structura
atoms. However, some pairs exhibit significant interactiogomponent is the graply = (V,c) where V is a set of
(see the white diagonals near the main diagonal and thetbrigdes (vertices) and is a set of undirected edges (links
spots). The image on the right displays the matrixwhich petween the nodes). In a graphical model there is a one-
is dominated by the white color, corresponding to near-ofg.gne mapping between noddd,2,...,m} and random
values. High values in the entridg ; or V;; indicate that variables{S;, 9s,...,5m}. Let S, Sg, Sc stand for three
it is not reasonable to assume that the corresponding atofijoint subsets of nodes. We say that is independent of
belong to the same cluster in a block-sparse model (rewdlgc given Sp if Sp separatess, from Sc, namely all paths
of the block sizes). Since this is the case for most pairs getween a node it 4 and a node iS¢ pass via a node in
DCT atoms, we conclude the block-sparsity approach dogs. Thus, simple graph separation is equivalent to conditiona
not capture the dependencies well in this example. independence. The structure can be used to obtain all the
It is interesting to note that while the OMP algorithmglobal conditional independence relations of the prolisthul
reveals different frequencies of appearance for the atards anodel. By "global" we mean that conditional independence



@ e 0 Wi Wiz 0 0 distribution can be easily represented by a MRF - a bjas
0‘ ‘ T is associated with a nodeand a nonzero entry¥;; in the
0 Wi Wa 0 Wi interaction matrix results in an edge connecting nodesd
9 9 0 0 Wss Wi 0 4 with the specified weight. Consequently, the zero entries
(a) Graph (b) Interaction matrix in W have the simple interpretation of missing edges in the

_ _ , o corresponding undirected graph. This means that the $parsi
Figure 2. A simple dependency model forvariables. This is a chordal

graph with3 missing edges. The interaction matrix in the correspondiig pattern of W is directly linked t.O the sparsity of the graph
is banded. structure. From graph separation we get thaiiif; = 0

then S; and S; are statistically independent given all their
r?&ghbors{sl}le N@@UN()), i#i,j- FOr example, if the matrix
corresponds to the undirected graph that appears in Fig.

holds for all variable assignments and does not depend
numerical specifications. For a visual demonstration sge F
[2(a); using the above definition it easy to verify for examplj(a) theny, — Wis — Was — 0. This matrix is shown in
that S; is independent of,, S5 given .S, Ss. Fig.2(b) '

Turning to the parametric component, note that the joint~ o ) )
probability distribution is represented by a local paraimat 1 1€ gjaa);rr?dal\/ved\l/agjlz Iill?e :(r)]easfi)g';/:l pzi)rtint?;nf%tr?giog)s/

tion. More specifically, we use a product of local nonne@ti\ph' P h i h | safi h )
compatibility functions, which are referred to as potelstia ¥, (Sc.)};=; 10 these cliques that will satisfy the require-

The essence of locality becomes clearer if we define tHNtexp (b7S + 3S8TWS) = T2, Y. (Se,)- One possible
notion of cliques. A clique is defined as a fully-connecteB10iC€ iS to assign each of the terms Ai{S) using a pre-
subset of nodes in the graph. K; and S; are linked, specmed_order of the clique$;S; is assigned to the clique
they appear together in a clique and thus we can achidat consists qSi anq appears Iast_m the order aqd a non-zero
dependence between them by defining a potential function &M Wi;:9:S; is assigned to the clique that consists%f.5;
that clique. The maximal cliques of a graph are the cliqué§d appears last in the order.

that cannot be extended to include additional nodes withoutNext, we turn to explore the intuitve meaning of the
losing the property of being fully connected. Since all gig Boltzmann parameters. In the simple casel@f = 0, the
are subsets of one or more maximal cliques, we can restfid¥l distribution become®r(S) = L [, exp (b;S;). Con-
ourselves to maximal cliques without loss of generalityr Fgequently,{S;};", are statistically independent and this as-
example, in Fig[2(a) the maximal cliques arge = {1,2,3}, sumption is referred as "independency". Using straigivwéod

Cy = {2,3,4} and C3 = {3,4,5}. To each maximal clique computations we ger(S; = —1) = exp(—2b;) Pr(S; = 1)

C we assign a nonnegative potentidi(Sc). The joint fori=1,...,m. SincePr(S; = —1) + Pr(S; = 1) =1, S;
probability is then given as a product of these potentigls, thas the following marginal probability to be turned "on":

to a normalization factoZ: N 1
Pr(s) 2 - I] wo(so) @) +exp(—2b;)
c WhenW is nonzero,[(#}) no longer holds. However, the simple

If the potentials are taken from the exponential family, eym intuition thatS; tends to be turned "off" ak; becomes more
\I’C(Sc) _ exp{—Ec(SC)}, thenPr(S) = % exp{—E(S)}, negative, remains true.

where E(S) = >~ Ec(Sc) is the energy of the system. We would now like to understand how to describe corre-
lations between elements ifl. To this end we focus on the
simple case of a matri¥/’ of size 2-by-2, consisting of one

) ) ) arametef¥15, and provide an exact analysis for this setup.
In this subsection we focus on the BM, a widely used MRy, order to simplify notations, from now on we ugpg; (ufv)

We are abput to show thqt this can serve as a _useful %ddenotePr(Si = u|S; = v). Using these notations we can
powerful prior on the sparsity pattern. The BM distributisn rite down the following relation for the simple case of arpai

B. The Boltzmann Machine

given by: of nodes:
Pr(S) = %exp (bTS + %STWS) , 3 p1 = p12(1]1)p2 + p1j2(1] = 1)(1 = p2), (5)
where
whereS is a binary vector of size: with values in{—1, 1}, 1
W is symmetric and is a partition function of the Boltzmann p12(11) = 1+ exp(—2b; — 2Wh)
parametersW, b that normalizes the distribution. We can 1
further assume that the entries on the main diagon&¥ cdre pi2(1l = 1) (6)

zero, since they contribute a constant to the funcS8iv S. L+ exp(=261 +2W1z)
In this work the BM will be used as a prior on the supportfom [3) we see that; is a convex combination of; 5(1|—1)
of a sparse representatiofi; = 1 implies that theith atom is andpi2(1[1). Hence, forlWiz > 0 we havep; (1] — 1) <
used for the representation, whereas $pr= —1 this atom is P1 < p1j2(1[1) and for Wi < 0 we havep,o(1[1) < p1 <
not used. pr2(1f = 1).

The BM is a special case of the exponential family with For a general matri¥V’ these relations are no longer strictly
an energy function£(S) = —b7'S — %STWS. The BM accurate. However, they serve as useful rules of thumb: for
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- — : describe a block-sparsity structure. Tree structures glely
used in applications that are based on a multiscale framewor
m T wmn o e ﬁ\] \[/|256Lia| demonstration of the corresponding matrix is shown

Figure 3. A clique tree which is constructed for the graplt #ygpears in Another common decomposable model corresponds to a
Fig.[3. In this case the clique tree takes the form of a simplircof size3.  panded interaction matrix. In afith order banded matrix only
E?éfgggéf;ngg%fnfged %?'gidssfg;eeiﬂ]sgage cliques amtteprobabilistic e o1, +1 principle diagonals consist of nonzero elements.
Assuming that the main diagonal is set to zero, we have that
an "excitatory" interactionW;; > 0) S; and S; tend to be there can be at mo$2m—(L+1))L nonzero entries in afith
turned "on" ("off") together, and for an "inhibitory" intection order bandedV, instead ofm? — m nonzeros as in a general
(W;; < 0) S; andS; tend to be in opposite states. The intuitiofinteraction matrix. Consequently, the sparsity ratid1ofis of
into the Boltzmann parameters provides some guidelines aotder L/m. This matrix corresponds to a chordal graph with
how the BM prior can be used for sparse representationscliquesC; = {S;,...,Si+.}, it =1,...,m— L. For example,
the values of the biases in the vectoare negative "enough" the matrix in Fig[2(b) is a second order banded matrix of size
and there are few strong excitatory interactions, then tearm 5-by-5. This matrix corresponds to a chordal graph (see Fig.
cardinality of the support tends to be small. This reveatseso [2(a)) with three cliques.
of the power of the BM as a prior on the support in the signal Chordal graphs serve as a natural extension to trees. It
model. It can achieve sparsity and at the same time captisewvell known [24] that the cliques of a chordal graph can
statistical dependencies and independencies in the sparbe arranged in a clique tree, which is called a junction tree.
pattern. In a junction treeT" each clique serves as a vertex and any
To conclude this section, note that standard sparsityrilago two cliques containing a node are either adjacent ifi’ or
models can be obtained as special cases of the BM model. Eonnected by a path made entirely of cliques containing

W =0 andb; = %m p ) for all i, which correspond to For a visual demonstration see Hig. 3, where a clique tree is

T-p .
an i.i.d. prior, the cardinapityc has a Binomial distribution, constructed for the chordal graph of FIg. 2(a). In this case

namelyk ~ Bin(p,m). For a low value ofy the cardinalities V\{here the in.teraction mat_rix is baned, the cIliqge .tree is
are typically much smaller tham, so that plain sparsity is simply a chain. It.can ea_sny be yenﬂed that this is in fact
achieved. BM can also describe a block-sparsity structufé4@ for a banded interaction matrix of any order.
Assuming that the firsk; entries inS correspond to the first We now turn to describe belief propagation, a powerful
block, the nextk, to the second block, etc., the interactiof€thod for probabilistic inference tasks like computatain
matrix W should be block-diagonal with "large” and positivéingle node marginal distributions and finding the most prob
entries within each block. The entries bnshould be chosen @ble configuration. Exact probabilistic inference can beeo
as mentioned above to encourage sparsity. _compu_tauonally |nfeas_|ble for gen_er_al d_ependency model_s
it requires a summation or maximization over all possible
. configurations of the variables. For example, in a general
C. Decomposable Graphical Models graphical model withm binary variables the complexity of
We now consider decomposability in graphical models [24¢xact inference grows exponentially withh. However, for
[26]. A triplet {A, B,C} of disjoint subsets of nodes is awhen the graph structure is sparse, one can often exploit the
decomposition of a graph if its union covers all the BetB sparsity in order to reduce this complexity. The inference
separatesA from C and B is fully-connected. It follows that tasks mentioned above can often be performed efficiently
a graphical model is regarded as decomposable if it can b&ing belief propagation techniques [24]. More specificall
recursively decomposed into its maximal cliques, where tle a decomposable MRF exact inference takes the form of
separators are the intersections between the cligueswklls a message-passing algorithm, where intermediate facters a
known that a decomposable graph is necessarily chordal, sent as messages along the edges of the junction tree (see for
every cycle of length four or more in the graph has a an edgeample the messages passed along the chain iJFig. 3). For
joining two nonconsecutive nodes. Consequently, for argivenore details on message passing $eé [24].
MRF we can apply a simple graphical test to verify that it is The complexity of exact inference via message-passing
decomposable. strongly depends on the tree-width of the graph. In a de-
In Section[V] we consider decomposable BMs. This asomposable model this is defined as the size of the largest
sumption implies that the matriX’ corresponds to a chordalmaximal clique minus one. For example, in the special case
graph. We now provide some important examples for decowf a BM with an Lth order banded?V we have that the tree-
posable graphical models and their corresponding interactwidth is L. We can conclude that for a decomposable model
matrices. Note that a graph which contains no cycles of lkenghere is an obvious tradeoff between computational conitylex
four is obviously chordal as it satisfies the required prgperand representation power. For example, in the special dase o
in a trivial sense. It follows that a graph with no edges, an Lth order interaction matrix the computational complexity
graph consisting of non-overlapping cliques and a tree lire af exact inference decreases with but at the same time
chordal. The first example is the most trivial chordal grapti a the graphical model captures fewer interactions. Nevéztise
corresponds td¥ = 0. The second corresponds to a blockdecomposable models can serve as a useful relaxation for a
diagonal matrix and as we explained in Section 1Il-B it cageneral dependency model, as they can achieve a substantial



decrease in the complexity of exact inference, while stilbr the support:
capturing the significant interactions.

§ =argmaxPr(sly) = argmaxPr(y|s) Pr(s)

MAP

EIS9) seQ

1 T —1 AT
=4ar maT AQ7 A y— 10
s,gesz Ugy Y (10)

IV. BM GENERATIVE MODEL 1 1 1 \T
3 In (det (Qs)) + §STWS + (b - Zv) S
In this section we use the BM for constructing a stochasti

generative signal model. We consider a sigpaivhich is ;?T[a_rzvi] _:1 1]%5:"/ ”Egitsri‘ﬁ]i :rift?nndtsh::f]dti?:;g??u%c ti) )
modeled agy = Ax + e, whereA is the dictionary of sizen- 'e 5 b 9 :

. e .
by-m,  Is a sparse representation over this dictionary aixd The feasible sef) denotes alb™ possible supports. In terms

additive white Gaussian noise (AWGN) with variange This of S, th'i 'S fthe set of all vectors iatlsfymgf = 1 for all
is a very common and long-studied model in signal and imal'eN.Othe that for an empty support the two first terms(inl (10)
processing. Various works that are based on this modelrdif?eanls ) . .

Once we have an estimate= $),4p Of the support, we

in their modeling for the sparse representatioriVe denote : X
the sparsity pattern b§ e {—1,1}™, whereS; — 1 implies can compute a MA_P estimator af using the same formula
that the index belongs to the support af, whereasS; = —1 as in the oracle estimator (s¢e][15]):

implies thatz; = 0. The nonzero coefficients of are denoted 4 _ = argmaxPr(zy, §) = (A§A§ T nggl)—l ATy,

by x,, wheres is the support of:. Following [22] we consider Mar z,ERF

a BM prior for S and a Gaussian distribution with zero mean ) (11)
and variances?; for each nonzero representation coefficient In the sequel we first focus on the case where all model
z;. Note that the variances of the non-zero representatiBﬁrQ"’“””eters - the Boltzmann parameté¥sb, the variances

coefficients are atom-dependent. It follows that the cémaéd {77 .i},_,. the dictionaryA and the noise variances’ are
distribution of 2, given the support is known. For a general dictionary and an arbitrary symmetric

interaction matrixit’ the exact MAP estimator requires an ex-
= ————— 5 exp {—LCSTESI%} 7 haustiyg §earch over zﬂf”_ poss?ble supports. To overcome the
det (27X5) 2 infeasibility of the combinatorial search, two approachas

whereY, is ak x k diagonal matrix with diagonal elementsPe taken. The first is to develop an efficient approximation of
(Z,)is = 02, , wherek is the cardinality of the suppokt the MAP estimator. We develop such an algorithm in Section

xT,s8;"

Using the assumption that the noise is AWGN we can al% An alternative strategy is to make additional assumpstion

write down the conditional distribution for the signaigiven ©On theé model parameters, namely ehand W, that will
its sparse representation: make exact MAP estimation feasible. This is addressed in

) ) Section[V], where we consider unitary dictionarids and
Pr(y|zs, s) = 7 exp {__2|y _ Asxslg} . (8) decomposable BMs. The more pracncall setup \{vhere the model
(2mo2) 20¢ parameters are also unknown is considered in Se€fiond VIII,
for which we derive efficient methods for estimating both the
sparse representations and the model parameters from & set o
signals.

Pr(zsls)

Our goal is to recoverr given y. Note however that
Pr(z|y) is a mixture of a discrete distribution for = 0
and a continuous distribution for all nonzero values aof
Consequently, givery we have thatr = 0 with a nonzero
probability, whereas for any nonzero vectothe eventr = v V. APPROXIMATE MAP ESTIMATION
occurs with probability zero. It follows that the MAP estitoa
for z giveny leads to the trivial solution: = 0, rendering it ~As we have seen in the previous section, exact MAP
useless. The distributioRr(s|y) however is a discrete one.estimation requires an exhaustive search ovegz'alppossible
Therefore, we suggest to first perform MAP estimationsof supports. To simplify the computations, we propose a greedy

giveny and then proceed with MAP estimation efgiveny approximation. We begin by explaining the core idea of
and the estimated suppar15]. our greedy algorithm. Our goal is to estimate the support

which achieves the maximal value of the posterior probgbili
Pr(S|y). This means that our objective function is the one
that appears in_(10). We start with an empty support, which
Pr(y|s) = / Pr(y|zs, s) Pr(z|s)das (9) means tha{S;};" are all—1. At the first iteration, we check
z,ERF each of them possible elements that can be added to the

We begin by developing an expression fBr(y|s) by
integrating over all possible values of € R¥:

_c 1 1 T A O-1AT empty support and evaluate the term [n](10). The enfry
- L 172 SXP @U Qs Ay leading to the largest value is chosen and tBysis set to
det (a_gAs AsXs + I) be +1. Given the updated support, we proceed exactly in the

12 . S\ same manner. In every iteration we consider all the remginin
where C' = 1/(2r0?) exp{—ﬁgHsz} is a constant and jnactive elements and choose the one that leads to the mlaxima
Qs = AT A, + 02X 1. This leads to the following estimatorvalue in [I0) when added to the previously set support. The



algorithm stops when the value ¢f{10) is decreased for evdwyo terms take a similar form, up to a regularization factor

additional item in the support. in the pseudoinverse ofi.». Next, we turn to the terms
In each iteration only one entry ifi changes - from-1to  W7I'S* andb;. The first corresponds to the sum of interactions

1. This can be used to simplify some of the terms that appdzetween theith atom and the rest of the atoms which arise

in (Z0): from turning it on (the rest remain unchanged). The second
1, 1 term is the separate bias for thith atom. As the sum of
55 WS = 3 ZWU&SJ‘ =0y +22Wijsj interactions and the separate bias become larger, using the
i,j J ith atom for the representation leads to an increase in the
m objective function. Consequently, the total objective [@8)(
Tg —
'S = Z biS; = C2 + 2b; (12)  takes into consideration both the residual error in resoeitte

=1 signal and the prior on the support. This can lead to improved

iln (Ui i/UZ) S, = Cs+2In (02 ) performance over greedy pursuit algorithms like OMP and

P Yl o CoSaMP, which are aimed at minimizing the residual error

lone.

To conclude this section, note that the recent work of [23]
used a BM-based Bayesian modeling for the sparse repre-

agentation to improve the CoSaMP algorithm. The resulting
algorithm is referred as lattice matching pursuit (LaMP).

1 . .

TASkQ;IAZ“ky . §1n(|det (Qu)]) + The inherent differences between our approach and the one

where(C1, Cs, C3 are constants that will not be needed in ouf?l
derivation. Consequently, in each iteration it is suffitiém
find an index: (out of the remaining inactive indexes) th
maximizes the following expression:

Val(i) = : ; i
al(i) 2a§y suggested in [23] are explained in Sectiod 1X.
1
T gk 2
ZWi 57 +2bi — 3 n (07;) (13) V1. EXACT MAP ESTIMATION

wheresy, is the support estimated in iteratidn— 1 with the A. Model Assumptions

entryi added to itQ,. = A%, Ay +025 " andW ] is theith I this section we consider a simplified setup where exact
row of W. A pseudo-code for the proposed greedy algorithmAP estimation is feasible. A recent work [15] treated the
is given in Algorithm[1. special case of a unitary dictionary for independent-based

priors, and developed closed-form expressions for the MAP
Algorithm 1 Greedy algorithm for approximating the MAPand MMSE estimators. We follow a similar route here and

estimator of [(ID) assume that the dictionary is unitary. In this case we caremak

Input: Noisy observationgy € R” and model parametersa very useful observation which is stated in Theofém 1. A
Wb, {owitie,, A, oe. proof of this theorem is provided in AppendiX A.

Output: A recoverysyap for the support. Theorem 1. Let A be a unitary dictionary. Then the BM
9 =0, §0=_—1mx! distribution is a conjugate prior for the MAP estimation
k=1 problem of [I0), namely tha posteriori distributionPr(S|y)
repeat is a BM with the same interaction matrb¥ and a modified

for i ¢ s¥~1 do bias vectorg with entries:
k_ k=1,
st =s ;szl[l o -—b-—i—l o, ( Ta-)2—ln 1+a§7.
Sk[j] = N 7 LRV P T B o2
1 ‘ o J=1 ’ (15)
EvaluateVal(i) using (13). for all i, wherea, is theith column of A.

end for

- ) Notice in [I5) thaty; is linearly dependent on the original
i = argmax{Val(i)}

bias b; and quadratically dependent on the inner product

sF = st-1 UG, SH[j] = S A between the signaj and the atomu;. This aligns with the
1 , ] =1x simple intuition that an atom is more likely to be used for
k=k+1 representing a signal if it has aa priori tendency to be
until Pr (s¥ly) < Pr(sf='y) turned "on" and if it bares high similarity to the signal ghi
Return: Syap = s"7! is expressed by a large inner product). From Thedrem 1 the

MAP estimation problem of(10) takes on the form of integer
Rrogramming. More specifically, this is a Boolean quadratic

We now provide some intuitive meaning to the terms i
b g program (QP):

(@3). The termy” A, Q' ALy is equivalent to the residual
k|2 E _ T T, - 1
error 7 Hz wherer® =y — Ay (AL A) Agy is the maX|m|ze<qTS+ —STWS) st.S2=1,1<i<m. (16)
residual in respect to the signal. To see that, notice that th S 2
following relation holds: This is a well-known combinatorial optimization problen[2
k)2 2 T T -1 7 that is closely related to multiuser detection in commutiicea
= —yt A (AL A Alny. 14 . o .
HT H2 lyllz =™ Ase ( s Sk) sk¥ (14) systems, a long-studied topic [28]. The Boolean QP remains
Using the definition of@Q.x it can be easily verified that the computationally intensive if we do not use any approxinrio



or make any additional assumptions regarding the intenactistructure for the interaction matri*’. Consequently, it seems
matrix W. The vast range of approximation methods usquausible that a matri¥¥” with a sparse structure can capture
for multiuser detection, like semi-definite programmin®f most of the significant interactions in this case.

relaxation, can be adapted to our setup. Another approiamat From Theorenil it follows that if the above assumption on
approach, which is commonly used for energy minimization itme structure of¥ holds for the BM prior orf it also holds for

the BM, is based on a Gibbs sampler and simulated annealBigl posterior (since both distributions correspond to thmea
techniques|[[17], which remain computationally demandingteraction matrix). We can therefore use belief propagati
Our interest here is in cases for which simple exact solatiotechniques to find the MAP solution. We next present in detail
exist. We therefore relax the dependency model, namely make&oncrete message passing algorithm for obtaining an exact
additional modeling assumptions #. solution to [I6) under a bandé&l matrix.

We first consider the simple case & = 0, which
corresponds to the independency assumption. Using Theor,
EI] we can follow the same analysis as in Secfion 1II-B for Bhe Message-Passing Algorithm

= 0 by replacing the bias vectdrby g. Consequently, in Before we go into the details of the proposed message-

this case we have: passing algorithm, we make a simple observation that will
m simplify the formulation of this algorithm. As we have seen
Pr(Sly) = H r(Sily), (17) in SectionIl-B, a posterior BM distribution with paramese

el W, q can be written (up to a normalization factor which has

no significance in the MAP estimation problem) as a product
of potential functions defined on the maximal cliques in the
corresponding graph:

wherePr(S; = 1ly) = 1/(+exp(—24:)) for all . Notice that
Pr(S; = 1ly) > Pr(S; = —1[y) if ¢; > 0. This means that

the ith entry of S, ,, equalsl, namelyi is in the support,

if g; > 0. Using [15) we obtain the following MAP estimator 1 P
for : exp (qTS + QSTWS) =1 ¥e. (Sc) (19)
A _ 1, ‘yTai’ > \/E—U In [71’} where P is the the number of maximal cliques. By replacing
Simap = { -1, B A ] (18) e potentials{ ¢, (Sc,)} with their logarithms, which are
otherwise denoted byl U¢. (S¢,) ¢, we remain with quadratic functions
wherep; is defined in[(4) and; = /7%./(s2 ,+02). These of the variables of S}, :
results correspond to those of [15] for the MAP estimator P
under a unitary dictionary. STWS+¢"S=> V¢, (Sc,). (20)
To add dependencies into our model, we may consider two i=1

approaches, each relying on a different assumptionion Thijs can be very useful from a computational point of view
First, we can assume that all entriesiin are non-negative. If as there is no need to Compute exponents, which can lead to
this assumption holds, then the energy function defined &y tfarge values. Each product that appears in a standard neessag
Boltzmann parameterd’, ¢ is regarded "sub-modular” and itpassing algorithm is replaced by summation.

can be minimized via graph cuts [25]. The basic techniquefor concreteness we will focus on the special case of an
is to construct a specialized graph for the energy functigith order banded interaction matri% of size m-by-m, as

to be minimized such that the minimum cut on the grapfescribed in SectioR TIIAC. In this case the maximal cliques
also minimizes the energy. The minimum cut, in turn, cagreC; = {Si,..., Sy}, i=1,...,m—L, so that all cliques

be computed by max flow algorithms with complexity whichyre of sizeL + 1 and the tree-width i€. The clique tree takes

is polynomial inm. The recent work[[23] is based on thishe form of a simple chain of lengtlh — L. We denote the
approach and we will relate to it in more detail in Secfioh IXtinnermost" clique in this chain bg),, wherek = [m 2L 1}

Here we take a different approach, which seems to be makg choose an order for the cliques where the cliques at both
appropriate for our setup. This approach makes an assumpé@iges of the chain appear first and the “"innermost" clique
on the structural component of the MRF - we assume that thgpears last and set the clique potentials according toutee r
BM is decomposable with a small tree-width This type of thumb that was mentioned in Section 1l1-B. Consequently,
of MRF was explored in detail in SectiC. The abOVQhe |Ogarithms of the potentia|s are given by
assumption implies that the matri¥’ has a special sparse

. : i+ L

structure - it corresponds to a chordal graph where the size @S; + lz Wi S:S) L 1<i<k-—1
of the largest maximal clique is small. As we have seen in I=it1

: k+L k+L—1 k+L
Sectior(Il-G, decomposable models can serve as ave_rylusqiuci _ Z GS;i+ S S WSS, L i=k
relaxation for general dependency models. Another madimat =k =541
for this assumption arises from the results that were shown g i+L— 1W S.g Eil<i< I
in Section[ for the special case of image patches and a Qi+ LPi+L T l; LitLOWitL K+ lsesm=
DCT dictionary. It was shown there that independency can be (22)
considered a reasonable assumption for many pairs of D@F, is a function ofS,,...,S;;r. We pass messages "in-

atoms. This observation has the interpretation of a spamsards" starting fromC; and C,,_; until the clique Cj



receives messages from both sides: sampling sparsity patterns from the BM. The sampled support
. N
and representation vectors are denoted{by), 2} _ .

max ‘T’ci , =1
Miig1 = Si . (22) We begin by examining a setup that satisfies the simplifying
max Ve, +mi—1,i , 2<i<k-1 assumptions of Section VI. We assume that the dictionary
~ . A € R™*™ js a unitary DCT dictionary withm = 64,
gax Ve, y =m—1L and that'W is a banded interaction matrix with = 9.
Mii=1 =193 o Ve, +mis , m—L—-1<i<k+1 The nonzero entries in the upper triangle 16f are drawn
Sivr " o independently froni/ [-Ay, Aw] (the lower triangle is de-
where m; ;.1 depends onS;y1,...,Si1z and m;;_; on termined from the symmetry of/’) and the entries in the
S;,...,Sir1—1. The arguments that correspond to each of th#as vectorh € R™ are drawn independently frolv" (bo, 1).
maximization operators are denoted®y;, 1, i = 1,...,k— The parameter§o, ;};", are in the rangg15,60]. In this
land®;; 1, i = k+1,...,m— L (these have the same formcase we can apply both of the algorithms that were suggested
as the messages with "max" replaced by "argmax"). The MA® this paper. We also consider two additional algorithms - a
estimates are then computed recursively by: standard pursuit algorithm like OMP and a MAP recovery
~ that is based on an independent-based prior like the one
(ks Skpn) = Sargrsnax ey + Mp—1, + M1k that appears in[{18). The OMP algorithm is used only for
i} L identifying the support. Then the recovered support is used
S =®iit1 (Sipar--5Sin), i=k—1,...,1 (23)  obtain an estimate for the representation vector using jd4i)

St =i (S5, S 1), i=k+1,...,m—L. as the MAP estimators. Note that the marginal probabilities
ci-’?ﬁ}?ll for (18) are computed from the Boltzmann parameters
using standard belief propagation techniques [see]lIV@.

compare the performance of the four algorithms for différen

Algorithm 2 Message-passing algorithm for obtaining th80'S€ levels o is in the range2, 30].

exact MAP estimator of {10) in the special case of a unitary " order to explore the dependency of the recovery algo-
dictionary and a banded interaction matrix rithms on the Boltzmann parameters, we create differerst dat
sets, each consisting & = 10, 000 signals and correspond-
ing to different values ofAy, andby. For each of the above-
mentioned algorithms we evaluate two performance criteria

The first one is the probability of error in identifying theidr

The message-passing algorithm in this case is summarize
Algorithm [2.

Input: Noisy observations y and model parameters
W,b,{04,i};~,A,0c. A is unitary andW is an Lth

order banded matrix.
Output: A recoverySuap for the sparsity pattern of.

Step 1: Set the bias vectgrfor the BM posterior distribution support: | X 150 50|

Pr(S|y) using [I5). N -y (24)
Step 2: Assign a potential functiobc, (S¢,) for each clique N~ max(|s|,[3])

Ci ={Si,..., 841}, i=1,...,m— L using [21). The second criterion is the relative recovery error, namely

Step 3: Pass messages "inwards"” starting f@mandCy—1.  the mean recovery error for the representation coefficients
until the "innermost” cliqueC’, receives messages from both}, ;. aiized by their energy:

sides using[(22).
Step 4: Obtain the MAP estimate fér using [23).

M=

120 — 2 O3

Il
A

An important observation is that the complexity of the L
proposed algorithm is exponential ih and not inm. More g: [l
specifically the complexity isO(2% - m). As the value of =1 ?
L is part of our modeling, even whem is relatively large

(25)

) . . The relative error is also evaluated for the Bayesian oracle
(and the exhaustive search which depend26nis clearly . : y
estimator, namely the oracle which knows the true support.

infeasible), the. exact .MAP computation is still feasible %Rote that for a unitary dictionary the relative error for the
long asL remains sufficiently small. If we have for example

- - 1 . Tepresentation coefficients is in fact also the relativereior
éol_yr?c:%gizgﬁ)nihen the complexity i€)(m "), namely it is the noise-free signal, s_inc&AuH% = ||_u||§ for any vector
' u. We performed experiments for a wide range of data sets.
However, for concreteness, we show only several results in
VII. SIMULATIONS ON SYNTHETIC SIGNALS Fig.[d. The MAP estimator of{18) is denoted in the figures

In this section we test the two recovery algorithms th&y "MAP - independency”.
were proposed in the two previous sections (see AlgorithmsThe results in Fig[]4 show that all three MAP estimators
[@[2) and compare their performance to that of previous spamutperform the OMP algorithm, both in terms of the recovered
recovery methods. We assume here that all the parameterswugport and the recovery error. Fdry, = 0.5 the greedy
the BM-based generative model are known and use this mot#&AP and the independent-based MAP serve as excellent
to create random data sets of signals, along with their spaepproximations for the exact BM-based MAP. As we turn to
representations. A standard Gibbs sampler [17] is used &ironger interactions - the variance bfremains the same,
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Figure 4. Probability of error in identifying the suppdiij2and relative recovery errdr (25) for a unitary DCT diction and a banded interaction matrix.
Top: A data set withhg = —1.5 and Ay, = 0.5, leading to an empirical average cardinaljsf = 11. Bottom: A data set withbg = —3.5 and Ay = 2,
leading to an empirical average cardinaljg} = 13.

while Ay is increased fron0.5 to 2 - the quality of these a general (non-sparse) interaction matrix. We use an over-
approximations deteriorates. In this cages decreased from complete64-by-256 DCT dictionary. All the rest of model
—1.5 to —3.5, so that the average cardinality remains mongarameters are the same as before, expect for the interactio
or less the same as before. For "strong" interactions, tiee tmatrix which is no longer banded (we use the same distributio
MAP approximations exhibit a different behavior. At low sei as before for all the entries in the upper triangle). For this
levels ¢. = 5 and below) the greedy algorithm serves asetup exact MAP estimation is no longer possible and we
a very good approximation to the exact MAP, whereas faan use only the greedy approximation for MAP. We compare
higher noise levels the performance gap increases rafidey. the performance of our BM-based greedy algorithm to that of
independent-based MAP however is a bit less accurate tkan@MP and a greedy approximation for an independent-based
greedy one at noise levels belew = 10, but it closes up the MAP. In the latter we use Algorithrhl1 with = 0 and
performance gap in respect to the exact MAP as the noise= %ln (ri/1-p»)), @ = 1,...,m, where the single node
level increases. probabilitiesp; = Pr (S; = 1) are computed empirically from

We now provide some additional observations that wetge data. In this setup we evaluate the probability of emor i
drawn from similar sets of experiments which are not showiie support[(24) and the relative recovery error in respect t
here. We observed that increasidgy without changingy, the noise-free signal:
leads to performance gap described above. However, when
is increased and\yy remains unchanged, the approximations
for MAP align with the exact estimator. Note that in both l
cases the average cardinality is increased. We can conclude
from these observations and from the results that appear in

Fig.[4 that the performance gap results from the increadeein t o
interaction level and not from the increase in the cardiiesli 1he results are shown in Figl 5. We see that both greedy

As for higher noise levels, we noticed that all algorithm@PProximations of MAP clearly outperform the OMP algo-
exhibit saturation in their performance. In this setup tharo ithm and that the greedy approximation which takes into
tends to choose an empty support, leading to an obviouséailﬁons'derat'on the interactions is superior over the oneclwhi
in its recovery. Another interesting observation is tha tH9nores them.

independent-based MAP aligns with the exact MAP for high

noise levels (above. = 50).

Next, we turn to the case of a redundant dictionary and

M=z

1
l

(26)

Az® — Az0)|2
N
> [ Az 03

=1
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Figure 5. Probability of error in identifying the suppdrj2zand relative recovery error in respect to the noise-figeas (28) for an overcompleté4-by-256
DCT dictionary and a general (non-sparse) interaction imakhe entries inl¥ are drawn independently frotd [—0.1, 0.1] and the entries in the bias vector
b € R™ are drawn independently frolw" (—2.5,1). This leads to an empirical average cardinaligy = 14.5.

VIIl. A DAPTIVE SPARSESIGNAL RECOVERY constant. Since this is a probability distribution for agen

i i — « T .
In an actual problem suite we are given a set of signa{(?_:énary nodelsi it fo"?""d;tga;vcb 5 2cosh (WS + b;).
{y(l)};\; from which we would like to estimate both theONSeauently, we replader(S|W, b) by

sparse representations and the model parameters. We briefly ™ exp {Sl- (WiTS + bl)}
address this joint estimation problem in this section. For HPr (SiSie, W, b) = H 2 cosh (W['S + b;)

concreteness we focus here only on the estimation of the =1 . =1
Boltzmann parameters. We begin by assuming that we are _ eXp{S (W5+b)} . (30)
given the sparse representations, namely we have a data 2m [T, cosh (WIS +b;)

set of ii.d. example® = {y(”,:c(”,S(l)}fil, from which

we would like to learn the Boltzmann parametétss. We Ve define the log-PL by:

consider a maximum likelihood (ML) approach for estimating N m N
W, b: o L,(W.0) = 3> " (Pr ()52, w0)) (31)
[WML,bML} = argmaxL (W, b) (27) I=11i=1
W.,b T

where = (sm) (WS(” + b) —17 (Ws<l> + b) — mN In(2)

N =1

1 T

LW,0) = 5 > [(S(l)) ws® + bTS(l)} —NIn(Z(W;b)) wherep(z) = In(cosh(z)) and the functiorp(-) operates on

=1 28) a vector entry-wise. To explore the properties of the log-PL

is the log likelihood function for the Boltzmann parameleréunCtIon It is usefzul to place all the I;oltzmgnn parameters
namelyL(W, b) = In (Pr (D|W, b)). We can see froni{27) that~ _there arep = (m Jr.m)/z gnknowns (" ~m)/2 in the upper
the estimation of¥, b depends only on the suppo{ts(l)}N . triangle ofW andm in b) - in a column vectot. F(_)r each ex-
S . ) ! ' Ji=1" _ampleS® in the data set we can construct matri¢$, '
ML estimation of W, b is computationally intensive due to thatBOu — (SO (WSs® + b 400y — WSO + b
the exponential complexity im associated with the partition so tha = ( ) ( + ) an = t0.
function Z (W, b). Therefore, we turn to approximated ML es- Using these notations the log-PL function 6f1(31) can be
timators. A widely used approach is applying Gibbs samplirrg-formulated as:
and mean-field techniques, see for example [22]. However, N
these methods are usually computationally demanding. A sim £,,(u) = > [B(l)u _17, (C(Z)u)} —mNn2). (32)
pler approach is to replace the likelihood function by pseud =1
likelihood (PL), leading to MPL estimation. This approaclsv e gradient and the hessian 6 (u)
presented in[29] and revisited in [30], where it was shovat th
the MPL estimator is consistent. This means that in the limit N o\T N (A0
of infinite sampling (V — o0), the PL function is maximized v £»(4) => {(B ) - (C ) P (C “)} (33)
by the true parameter values. lle
The basic idea in MPL estimation is to replace the BM_, T . " . !
prior Pr(S|W,b) by the product of all the conditional dis- ViLy(u) == Z [(C( )) diag (p (O( )u)) ct )} > (34)
tributions of each node&; given the rest of the nodeS;c: =t
[T, Pr(S;]S;c, W, b). Each of these conditional distributionsvhere p/(z) = tanh(z) and p”(z) = 1 — tanh®(z). Since
takes on the simple form p(z) is a convex function, it follows that the log-PL function
T is concave inu. Therefore, as an unconstrained convex opti-
Pr (S;|Sie, W.b) = Cexp {S; (W] S + bi) } (29) " mization, we have many reliable algorithms that could be of
where W is the ith row of W and C is a normalization use.

are given by:
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In [30] MPL estimation is treated by means of gradienflgorithm 3 A SESOP3/ algorithm for obtaining the MPL
ascent (GA) methods. These methods are very simple, but iegfimator of the Boltzmann parameters
well-known th?\t th.ey suffer_ from a §IOW convergence ratej:[3]1nput: A data set of support$S(l)}f\i _
Another optimization algorithm which converges more glyick o ~!
is Newton [31]. Note however that the problem dimensions
here can be very large. For example, when= 64 as in an
8-by-8 image patch, we have = 2080 unknown parameters. . 0
Since Newton iterations requires inverting the Hessiarrimat ie;eat

it becomes computationally demanding. Instead we would S . . (i .

. . . tep 1 Evaluatel,(47) and VL, (4’) using [32)3B).
I|kebro useTantr?fﬁuer(;t algorithm tthatla can treattlla}rge—bscale Step 2 Set the matrixQ7 using the current gradient
problems. To this end we suggest the sequential subspace VL, (i) and M previous stepqa’ — ii~! j—1

optimization (SESOP) method [32], which is known to lead i o i=j—M"

to a significant speedup in respect to gradient descent. Step 3 Determine the step sizes by Newton iterations.
The basic idea in SESOP is to use the following update rule

for the parameter vector in each iteration:

utput: A recovery}/T/,B for the Boltzmann parameters.
Initialization: SetW to zero and® according to[(36), and
construct from them a column vectaf.

Step 4 @/ = a7 + QI
J=J+1
W =l + QI (35) until VL, (@7) <eorj>J
where Q7 is a matrix consisting of various (normalized) Return: W, b extracted out ofi’.
direction vectors in its columns and is a vector containing
the step size in each direction. In our setting we use only the
current gradieny’ = V£, (u?) and M recent stepp’ = u' — Was able to learn most of the significant interactions.
w1l i=j—M,...,j—1. We use the abbreviation SESOP- So far we focused on estimatiri§/, b. However, given the
M for this mode of the algorithm. The vectof is determined data set, we often need to evalua the model parame-
in each iteration by an inner optimization stage. Since wers, including the dictionaryl and the variancego? }" .
use a small number of directions, the optimization problem Furthermore, in practice the sparse representations ace al
respect ta/ is a small-scale one and we can apply Newton itinknown. We suggest using a block-coordinate optimization
erations to solve it, using,; £, (u/11) = (Qj)T VL, (uith) approach for approximating the solution of the joint estiora
and V2, £, (uit!) = (Qj)Tng,p(ujH)Qj. problem, which results in an iterative scheme for adaptive

To initialize the algorithm we set the interaction matrix tgParse signal recovery. Each iteration in this scheme stansi

zero, namely we allow no interactions. We then perform 9f two stages: sparse coding where we apply a MAP estimator

separate MPL estimation éfwherelV is fixed to zero, which f%r the sparse representations when the model pa_rameears ar
results in fixed, and model update based on the current estimate of the

R 1 sparse representations. First steps towards this goahleea t
b = atanhlﬁ Z Si(l)] , (36) in[33], where we demonstrate the effectiveness of the adapt
1=1 model-based approach on image patches. We intend to explore
for all i. We stop the algorithm either when the norm othis further in our future work.
the gradient vectow £, (u) decreases below a pre-determined

thresholde, or after a fixed number of iterations A pseudo- IX. RELATION TO PAST WORKS
code that summarizes the learning algorithm for the Boltama In this section we briefly relate to two recent worksl1[22],
parameters is provided in Algorithii 3. [23] that used the BM as a prior on the support of the

To demonstrate the effectiveness of MPL estimation vigpresentation vector. We discuss their main contribstemd
SESOP, we now show some results of synthetic simulatiomsawbacks, and emphasize the differences in our work with
We focus on adth order banded interaction matrix of sizeespect to them. In recent years capturing and exploiting
64-by-64 and follow the same setup we used in Secfion Vependencies between dictionary atoms has become a hot
for the simulations on the unitary dictionary, with paraerst topic in the model-based sparse recovery field. In contrast
Aw = 0.5, bp = —1.5 and a data set of siz&€ = 16,000. We to previous works like[[B],[7],[[20],[121] which considered
use the true support vectors, produced by the Gibbs samapleriependencies in the form of tree structurés,] [22] was the
an input for the learning algorithm and apgl9 iterations of first to propose a general and adaptive model for capturing
both GA and SESOR-to estimate the Boltzmann parametergshese dependencies. The main contribution of this workas th
The results are shown in Fif] 6. We can see on the top tlpmbposal of a new sparse coding model, which is represented
SESOP outperforms GA both in terms of convergence rate lmf a graphical model. The model is based on the celebrated
the PL objective and recovery error for the interaction imatr BM prior, and is provided with a biological motivation thrghu
This is also demonstrated visually on the middle and bottotie architecture of the visual cortex. Note that we usedtéxac
where we can see that for the same number of iteratioti® same graphical model in our work (see Sedfiah 1V).
SESOP reveals much more interactions than GA. In fact, ifIn [22] MAP estimation of the sparse representation and
we set to zero the entries in the trli that correspond to learning of the Boltzmann parameters are handled by means of
rarely used atoms (i.e. if the appearance frequency of aiomgeneral-purpose optimization techniques. For MAP estonat
or j is very low then we sell;; = 0), we can see that SESOP[22] proposes Gibbs sampling and simulated annealing, and
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Figure 6. Top - results of MPL estimation via GA and SESOP: V&lee of the log-PL objective and the average recovery doothe interaction matrix
per entry as functions of the number of iterations. Middtertf left to right): The true interaction matri¥” and MPL estimate via GAV 4. Bottom (from

left to right): MPL estimate via SESOWsgrsop, a banded version of it and a matrix consisting of the intevas in W which are more likely to be
revealed using the given data set. We can see that the latteare very close.

for learning the Boltzmann parameters they suggest Gibte greedy algorithm, including its stopping rule. Our ghee
sampling and mean-field approximations. Note that thea&gorithm works for an arbitrary interaction matrix and fnist
techniques require a high computational effort and suffemf sense it is more general than LaMP. Note also that there is
a slow convergence rate. In fact, as the main purpose of [28) need to provide our algorithm with the desired sparsity
is to introduce the concept of interactions in a sparse gpdifevel. Due to the inherent differences between the setugs th
model, little effort was invested into algorithmic design. are addressed by each of the greedy algorithms, we did not
this sense, our work serves as a natural extensidn fo [22]. \Wempare their denoising performance. Further work is mequi
develop specialized algorithms for both MAP estimation and order to integrate our Bayesian setting into a CoSaM@-lik
learning of the Boltzmann parameters, which are efficiedt amlgorithm and then a more meaningful test could be performed
reliable and at the same time still quite simple.

Next, we turn to[[2B]. This work adapts a signal model like X. CONCLUSIONS
the one presented in_[22], with several modifications. First |n this work we have developed a scheme for adaptive
it is assumed that all the WelghtS in the interaction matr%ode|-based recovery of sparse representa‘[ions_ We aUapte
W are nonnegative. Second, the Gaussian distributions éor #) Bayesian model for signal synthesis, which is based on a
nonzero representation coefficients are replaced by paneameBoltzmann machine, and designed specialized optimization
utility functions. The main contribution of [23] is usingefBM  methods for the estimation problems that arise from this
generative model for extending the CoSaMP algorithm, a WeHodel. This includes MAP estimation of the sparse repre-
known greedy method. The extended algorithm, referred géntation and learning of the model parameters. The main
LaMP, differs from CoSaMP in the stage of the support updag@ntributions of this work include the exploration of seds
in each iteration, which becomes more accurate. This stagevhere exact MAP estimation is possible and the development
now based on graph cuts and this calls to the nonnegativiij/an efficient message-passing algorithm for signal regove
constraint on the entries . The rest of the iterative SChean this setup. We also Suggested a greedy a|gorithm for Bigna
however remains unchanged and is still based on "reSiduaﬁilcovery which approximates the MAP estimator and uses
in each iteration we compute the residual with respect to the Bayesian framework to its full extent. After developing
signal and the algorithm stops when the residual error falise recovery algorithms, we addressed learning issues and
below a pre-determined threshold. Note that LaMP requirggsigned an efficient estimator for the parameters of thehgra
the desired sparsity level as an input, just like CoSaMP. jcal model. Finally, we provided a comprehensive compariso

In our work we take a different greedy approach and ugetween the suggested methods, along with standard sparse
the Bayesian framework to its full extent. The BM-basetkcovery algorithms. We demonstrated the effectivenessiof
generative model is incorporated into all of the stages approach through synthetic experiments.



APPENDIXA
PrROOF OFTHEOREM[

(6]

We show how the assumption that the dictionary is unitarV]
can be used to simplify the expression fBr(S|y). For [g
a unitary dictionary we havel’ A, = I for any support
s. Consequently, for a support of cardinality the matrix
D = ATA, + 02! is a diagonal matrix of size-by-
k with entriesd; = 1 + /o2, i $1,...,85 on its
main diagonal. Straight forward computations show that tiﬂﬁ]
following relations hold:

:Zdi(yTai)za

yTASD_lAZy

[10]

[12]

i€ES
In ((det(D))) = " In (d; (37) [13]

1€ES
Using the definition ofS (S; = 1 implies thati is in the [14]
support andS; = —1 implies otherwise), we can replace[15]

each sum over the entries in the supppit., v; by a sum
over all possible entries" | 3 (S; + 1) v;. Consequently, the
relations in [(3F) can be re-written as: 116}

1 m
T —1 AT, . (T N2
y' AsD ASy_i 5 (S:i + 1) di(y" a;)

=1

=C1 + 1fTS
2 [17]

In ((det(D [18]

:%Z S;+1)In(d) = 02+2gTS (38)
=1 [19]

where C1, Cy are constants and, g are vector with entries
fi = di(yTa;)?, g; In(d;) for i = 1,...,m. Using
the definition of D we place the relations of (B8) into the
appropriate terms i (10) and get:

n(Pr(Sly)) = Cs + (b+ L — 2 -9 "ot Leris

vy =t 102 1 1 2
(39)

where(Cj3 is a constant. It is now easy to verify that the pos-
terior distributionPr(S|y) corresponds to a BM distribution [23]
with the same interaction matri¥ and a modified bias vector
which we denote by = b + & -5 %

[20]
[21]

[22]

[24]

1 T 1 T
Pr(S|y) = 7 exp <q S+ 55’ WS> (40) (25]
where Z is a partition function of the BM parametel¥, ¢
which normalizes the distribution. Using the definitionsfof

g andv we get that[(5) holds.

[26]

[27]
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