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Abstract—Signal modeling lies at the core of numerous signal
and image processing applications. A recent approach that has
drawn considerable attention is sparse representation modeling,
in which the signal is assumed to be generated as a combination
of a few atoms from a given dictionary. In this work we consider
a Bayesian setting and go beyond the classic assumption of
independence between the atoms. The main goal of this paper
is to introduce a statistical model that takes such dependencies
into account and show how this model can be used for sparse
signal recovery. We follow the suggestion of two recent works
and assume that the sparsity pattern is modeled by a Boltzmann
machine, a commonly used graphical model. We show that for
general dependency models, exact MAP estimation of the sparse
representation becomes computationally complex. To simplify
the computations, we propose a greedy approximation for the
MAP estimator. We then consider a special case where exact
MAP is feasible, by assuming that the dictionary is unitary and
the dependency model corresponds to a certain sparse graph.
Exploiting this structure, we develop an efficient message-passing
algorithm that recovers the underlying signal. The effectiveness
of our developed pursuit methods is demonstrated on synthetic
signals, where we compare the denoising performance to that
of previous recovery methods that do not exploit the statistical
dependencies. Finally, when the model parameters defining the
underlying graph are unknown, we suggest an algorithm that
learns these parameters directly from the data, leading to an
iterative scheme for adaptive sparse signal recovery.

Index Terms—Sparse representations, signal synthesis,
Bayesian estimation, MAP, MRF, Boltzmann machine, greedy
pursuit, unitary dictionary, decomposable model, message
passing, pseudo-likelihood, SESOP.

I. I NTRODUCTION

Signal modeling based on sparse representations is used
in numerous signal and image processing applications, such
as denoising, restoration, source separation, compression and
sampling (for a comprehensive review see [1]). The basic
ingredients of a typical generation model are a sparse repre-
sentationx, a dictionary that is applied on this representation
and additive noise. Each of these ingredients can be regarded
deterministic or random, leading to different recovery methods
and performance guarantees. In this paper we focus on the
modeling of the sparse representation. The classical approach
to sparse recovery considers a deterministic sparse represen-
tation and signal recovery is formulated as a deterministic
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optimization problem. Some examples include greedy pur-
suit algorithms like orthogonal matching pursuit (OMP) and
CoSaMP, and convex relaxations like basis pursuit denoising
and the Dantzig selector (for comprehensive reviews see [1],
[2]).

Recent works [3], [4], [5], [6], [7], [8] suggested imposing
additional assumptions on the support ofx (the sparsity pat-
tern), which is still regarded deterministic there. These works
show that using structured sparsity models that go beyond
simple sparsity can boost the performance of standard sparse
recovery algorithms in many cases. Two typical examples for
such models are wavelet trees [3] and block-sparsity [5], [6].
The first accounts for the fact that the large wavelet coefficients
of piecewise smooth signals and images tend to live on a
rooted, connected tree structure [9]. The second model is based
on the assumption that the signal exhibits special structure in
the form of the nonzero coefficients occurring in clusters. This
is a special case of a more general model, where the signal is
assumed to lie in a union of subspaces [4], [5]. Block-sparsity
arises naturally in many setups, such as recovery of multi-
band signals [10], [11] and the multiple measurement vector
(MMV) problem. However, there are many other setups in
which sparse elements do not fit such simple models.

In many applications it can be difficult to provide one
deterministic model that describes all signals of interest. For
example, in the special case of wavelet trees it is well known
that statistical models, such as hidden Markov trees (HMTs)
[12], is more reliable than a deterministic one. Guided by the
observation that statistical models can often be more powerful
than deterministic ones, it is natural to consider more general
Bayesian modeling, in which the sparse representation is
assumed to be a random vector. Many sparsity-favoring priors
for the representation coefficients have been suggested in
statistics, such as the Laplace prior, "spike-and-slab" (mixture
of narrow and wide Gaussian distributions) and Student’st
distribution (for a comprehensive review see [13]). However,
the representation coefficients are typically assumed to be
independent of each other.

Here we are interested in Bayesian modeling that takes into
account not only the values of the representation coefficients,
but also their sparsity pattern (the support ofx). In this
framework sparsity is achieved by placing a prior distribution
on the support, and the representation coefficients are modeled
through a conditional distribution given the support. The most
simple prior for the support assumes that the entries of the
sparsity pattern are independent and identically distributed
(i.i.d.) (see e.g. [14]). However, in practice, atoms in the
dictionary are often not used with the same frequency. To
account for this behavior, we can relax the assumption that
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the entries are identically distributed and assign different
probabilities to be turned "on" for each entry (see e.g. [15]).

Besides the modeling aspect, another key ingredient in
Bayesian formulations is the design objective. Two popular
techniques are maximuma posteriori (MAP) and minimum
mean square error (MMSE) estimators. Typically these esti-
mators are computationally complex, so that they can only be
approximated. For example, approximate MAP estimation can
be performed using a wide range of inference methods, such
as the relevance vector machine [16] and Markov chain Monte
Carlo (MCMC) [17]. Such estimators are derived in [13], [18]
based on sparsity-favoring priors onx and approximate infer-
ence methods. In [14], [19] approximate MMSE estimators are
developed, based on an i.i.d prior on the support. Finally, in
the special case of a square and unitary dictionary, assuming
independent entries in the support and Gaussian coefficients,
it is well known that the exact MAP and MMSE estimators
can be easily computed [15].

Independence between the entries in the support can be a
useful assumption, as it keeps the computational complex-
ity low and the performance analysis simple. Nevertheless,
this assumption can be quite restrictive and leads to loss
of representation power. Real-life signals exhibit significant
connections between the atoms in the dictionary used for their
synthesis. For example, it is well known that when image
patches are represented using the discrete cosine transform
(DCT) or a wavelet transform, the locations of the large
coefficients are strongly correlated. Several recent works[7],
[20], [21], [22], [23] have made attempts to go beyond the
classic assumption of independence and suggested statistical
models that take dependencies into account. The special case
of wavelet trees has been addressed in [7], [20], where HMTs
are merged into standard sparse recovery algorithms, in order
to improve some of their stages and lead to more reliable
recovery. Another statistical model designed to capture the
tree structure for wavelet coefficients, was suggested in [21].
An approximate MAP estimator was developed there based on
this model and MCMC inference.

Here we consider more general dependency models based
on undirected graphs, which are also referred as Markov
random fields (MRFs). Graphical models [24] provide a full
and concise description for the prior distribution on the support
and allow to perform probabilistic inference using powerful
methods developed in the field of graph theory. Two examples
of such techniques that are widely used for MAP estimation
are belief propagation [24] and graph cuts [25]. In [22] the
authors propose a generative model for sparse representations
that is based on a Boltzmann Machine (BM), an appealing
MRF for the prior on the support. This allows for introducing
the concept of interactions in a general sparse coding model.
An approximate MAP estimator is then developed by means
of Gibbs sampling and simulated annealing [17]. Note how-
ever that these are general-purpose optimization techniques,
which often suffer from high computational effort and a slow
convergence rate. In [23] a BM prior on the support is used in
order to improve the CoSaMP algorithm. Note however that
the Bayesian model is used only in one stage of the algorithm
(the one that obtains an estimate for the support givenx),

whereas all the other stages, including the stopping rule for
the algorithm, remain unchanged.

The current paper is aimed at further exploring the BM-
based model proposed in [22]. Our main contributions include
exploring settings where exact MAP estimation is computa-
tionally feasible and designing specialized methods for both
MAP estimation and model estimation. We develop an efficient
message-passing algorithm for signal recovery which obtains
the exact MAP estimate under some additional modeling
assumptions. We also suggest a greedy algorithm for signal
recovery which approximates the MAP estimator for the gen-
eral BM-based model. The proposed greedy algorithm takes
into account the statistical generative model throughout all its
stages, including the stopping rule. The main contributions and
drawbacks of the two recent works which used the BM-based
model [22], [23], as well as the differences between these
works and the current work, will be discussed in more detail
in Section IX.

The paper is organized as follows. In Section II we motivate
the need for inserting probabilistic dependencies between
elements in the support by considering sparse representations
of image patches over a DCT dictionary. In Section III we
introduce useful notions and tools from the graphical models
field and explore the BM prior. Section IV defines the signal
model and the MAP estimation problem. In Section V we
develop a greedy approximation of the MAP estimator for the
BM prior. We then present setups where the problem can be
solved exactly and develop an efficient algorithm for obtaining
the exact solution in Section VI. We explore the performance
of these two algorithms through synthetic experiments in
Section VII. Estimation of the model parameters and adaptive
sparse signal recovery are addressed in Section VIII. Finally,
we discuss relations to past works in Section IX.

II. M OTIVATION

In this section we provide motivation for inserting prob-
abilistic dependencies between elements in the support. We
consider a set ofN = 100, 000 patches of size8-by-8 that
are extracted out of several noise-free natural images. For
each patch, we perform a preliminary stage of DC removal
by subtracting the average value of the patch, and then obtain
sparse representations of these patches over an overcomplete
DCT dictionary of size64-by-256 (n-by-m) using the OMP
algorithm. We consider a model error ofσ = 2, so that OMP
stops when the residual error falls belowǫ =

√
nσ = 16.

We then compute the empirical marginal distributions for
each of the dictionary atoms and for all pairs of atoms,
namely we approximatePr(Si = 1), i = 1, . . . ,m and
Pr(Si = 1, Sj = 1), i = 1, . . . ,m − 1, j > i, whereS
is a binary vector of sizem and Si = 1 denotes that the
ith atom is being used. The empirical conditional probability
Pr(Si = 1|Sj = 1) can then be computed as the ratio between
Pr(Si = 1, Sj = 1) andPr(Sj = 1).

We address several assumptions that are commonly used in
the sparse recovery field and suggest validity tests for each
of them. The first assumption is that the elements in the
support vector are identically distributed, namelyPr(Si =
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Figure 1. Validity tests for several assumptions on the support vector: identical distributions, independency and block-sparsity. Left: A plot ofR, Middle:
An image ofU , Right: An image ofV .

1) = p for all i, where 0 ≤ p ≤ 1 is some constant.
This assumption can be examined by comparing the marginal
probabilities Pr(Si = 1) for each atom. The second as-
sumption is independency between elements in the support.
The independency assumption between atomsi andj implies
that Pr(Si = 1|Sj = 1) = Pr(Si = 1). Therefore, we
can test for independency by comparing the marginal and
conditional probabilities for each pair of atoms. Next we turn
to the block-sparsity assumption. Assuming thati and j are
in the same cluster implies that the conditional probabilities
Pr(Si = 1|Sj = 1) andPr(Sj = 1|Si = 1) are near1.

To examine the validity of each of the above-mentioned
assumptions, we compute the variables

Ri =

∣∣∣∣log10
(
Pr(Si = 1)

p

)∣∣∣∣ , 1 ≤ i ≤ m

Ui,j =

∣∣∣∣log10
(
Pr(Si = 1|Sj = 1)

Pr(Si = 1)
+ δ

)∣∣∣∣ , 1 ≤ i, j ≤ m

Vi,j = |log10 (Pr(Si = 1|Sj = 1) + δ)| , 1 ≤ i, j ≤ m (1)

where p denotes the average probability of an entry to be
turned "on" , namelyp , 1

m

∑m
l=1 Pr(Sl = 1), R is a vector of

sizem andU, V are matrices of sizem-by-m. We useδ = 0.1,
so that forPr(Si = 1|Sj = 1) = 0 we get a value1 in Ui,j and
Vi,j (i andj denote the row and column indexes respectively).
In each of the functions in (1) a near-zero result implies that
the corresponding assumption is valid; as we go further away
from zero the validity of the assumption decreases.

The results are shown in Fig. 1. On the left we plot the val-
ues inR. This plot demonstrates that the individual frequencies
can be very far from the average one. Consequently, the DCT
atoms are used with varying frequencies. The matrixU is
displayed in the middle. The black color, which corresponds
to near-zero values, is dominant. This illustrates that theinde-
pendency assumption is satisfactory for many pairs of DCT
atoms. However, some pairs exhibit significant interactions
(see the white diagonals near the main diagonal and the bright
spots). The image on the right displays the matrixV , which
is dominated by the white color, corresponding to near-one
values. High values in the entriesVi,j or Vj,i indicate that
it is not reasonable to assume that the corresponding atoms
belong to the same cluster in a block-sparse model (regardless
of the block sizes). Since this is the case for most pairs of
DCT atoms, we conclude the block-sparsity approach does
not capture the dependencies well in this example.

It is interesting to note that while the OMP algorithm
reveals different frequencies of appearance for the atoms and

significant correlations between pairs of atoms, it in fact makes
no use of these properties. Therefore, it seems plausible that
a stochastic model that will capture the different nature of
each atom, as well as the important interactions between the
atoms, can lead to improved performance. In this paper we will
show how this can be accomplished in a flexible and adaptive
manner.

III. G RAPHICAL MODELS

The main goal of this paper is using graphical models
for representing statistical dependencies between elements in
the sparsity pattern and developing efficient sparse recov-
ery algorithms based on this modeling. In order to set the
ground for the signal model and the recovery algorithms, we
provide some necessary notions and methods from the vast
literature on graphical models. We begin by presenting MRFs
and explain how they can be used for describing statistical
dependencies. We then focus on the BM, a widely used
MRF, explore its properties and explain how it can serve
as a useful and powerful prior on the sparsity pattern. For
computational purposes we may want to relax the dependency
model. One possible relaxation, which often reduces compu-
tational complexity and still bares considerable representation
power, is decomposable models. Finally, we present a powerful
method for probabilistic inference in decomposable models,
coined belief propagation. Decomposability will be a modeling
assumption in Section VI and the algorithm we propose in
Section VI-B will be based on belief propagation techniques.

A. Representing Statistical Dependencies by MRFs

In this subsection we briefly review MRFs and how they
can used to represent statistical dependencies. This review
is mainly based on [24]. A graphical model is defined
by its structural and parametric components. The structural
component is the graphG = (V, ε) where V is a set of
nodes (vertices) andε is a set of undirected edges (links
between the nodes). In a graphical model there is a one-
to-one mapping between nodes{1, 2, . . . ,m} and random
variables{S1, S2, . . . , Sm}. Let SA, SB, SC stand for three
disjoint subsets of nodes. We say thatSA is independent of
SC given SB if SB separatesSA from SC , namely all paths
between a node inSA and a node inSC pass via a node in
SB. Thus, simple graph separation is equivalent to conditional
independence. The structure can be used to obtain all the
global conditional independence relations of the probabilistic
model. By "global" we mean that conditional independence
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Figure 2. A simple dependency model for5 variables. This is a chordal
graph with3 missing edges. The interaction matrix in the correspondingBM
is banded.

holds for all variable assignments and does not depend on
numerical specifications. For a visual demonstration see Fig.
2(a); using the above definition it easy to verify for example
thatS1 is independent ofS4, S5 givenS2, S3.

Turning to the parametric component, note that the joint
probability distribution is represented by a local parametriza-
tion. More specifically, we use a product of local nonnegative
compatibility functions, which are referred to as potentials.
The essence of locality becomes clearer if we define the
notion of cliques. A clique is defined as a fully-connected
subset of nodes in the graph. IfSi and Sj are linked,
they appear together in a clique and thus we can achieve
dependence between them by defining a potential function on
that clique. The maximal cliques of a graph are the cliques
that cannot be extended to include additional nodes without
losing the property of being fully connected. Since all cliques
are subsets of one or more maximal cliques, we can restrict
ourselves to maximal cliques without loss of generality. For
example, in Fig. 2(a) the maximal cliques areC1 = {1, 2, 3},
C2 = {2, 3, 4} andC3 = {3, 4, 5}. To each maximal clique
C we assign a nonnegative potentialΨC(SC). The joint
probability is then given as a product of these potentials, up
to a normalization factorZ:

Pr(S) ,
1

Z

∏

C

ΨC(SC). (2)

If the potentials are taken from the exponential family, namely
ΨC(SC) = exp {−EC(SC)}, thenPr(S) = 1

Z exp{−E(S)},
whereE(S) =

∑
C EC(SC) is the energy of the system.

B. The Boltzmann Machine

In this subsection we focus on the BM, a widely used MRF.
We are about to show that this can serve as a useful and
powerful prior on the sparsity pattern. The BM distributionis
given by:

Pr(S) =
1

Z
exp

(
bTS +

1

2
STWS

)
, (3)

whereS is a binary vector of sizem with values in{−1, 1}m,
W is symmetric andZ is a partition function of the Boltzmann
parametersW, b that normalizes the distribution. We can
further assume that the entries on the main diagonal ofW are
zero, since they contribute a constant to the functionSTWS.
In this work the BM will be used as a prior on the support
of a sparse representation:Si = 1 implies that theith atom is
used for the representation, whereas forSi = −1 this atom is
not used.

The BM is a special case of the exponential family with
an energy functionE(S) = −bTS − 1

2S
TWS. The BM

distribution can be easily represented by a MRF - a biasbi
is associated with a nodei and a nonzero entryWij in the
interaction matrix results in an edge connecting nodesi and
j with the specified weight. Consequently, the zero entries
in W have the simple interpretation of missing edges in the
corresponding undirected graph. This means that the sparsity
pattern ofW is directly linked to the sparsity of the graph
structure. From graph separation we get that ifWij = 0
then Si and Sj are statistically independent given all their
neighbors{Sl}l∈ N(i)∪N(j), l 6=i,j . For example, if the matrix
W corresponds to the undirected graph that appears in Fig.
2(a) thenW14 = W15 = W25 = 0. This matrix is shown in
Fig. 2(b).

The maximal cliques in the BM are denoted by
C1, . . . , CP and we would like to assign potential functions
{ΨCi (SCi)}Pi=1 to these cliques that will satisfy the require-
mentexp

(
bTS + 1

2S
TWS

)
=

∏P
i=1 ΨCi (SCi). One possible

choice is to assign each of the terms inE(S) using a pre-
specified order of the cliques:biSi is assigned to the clique
that consists ofSi and appears last in the order and a non-zero
termWijSiSj is assigned to the clique that consists ofSi, Sj

and appears last in the order.

Next, we turn to explore the intuitive meaning of the
Boltzmann parameters. In the simple case ofW = 0, the
BM distribution becomesPr(S) = 1

Z

∏m
i=1 exp (biSi). Con-

sequently,{Si}mi=1 are statistically independent and this as-
sumption is referred as "independency". Using straight forward
computations we getPr(Si = −1) = exp(−2bi) Pr(Si = 1)
for i = 1, . . . ,m. SincePr(Si = −1) + Pr(Si = 1) = 1, Si

has the following marginal probability to be turned "on":

pi , Pr(Si = 1) =
1

1 + exp(−2bi)
, 1 ≤ i ≤ m. (4)

WhenW is nonzero, (4) no longer holds. However, the simple
intuition thatSi tends to be turned "off" asbi becomes more
negative, remains true.

We would now like to understand how to describe corre-
lations between elements inS. To this end we focus on the
simple case of a matrixW of size 2-by-2, consisting of one
parameterW12, and provide an exact analysis for this setup.
In order to simplify notations, from now on we usepi|j(u|v)
to denotePr(Si = u|Sj = v). Using these notations we can
write down the following relation for the simple case of a pair
of nodes:

p1 = p1|2(1|1)p2 + p1|2(1| − 1)(1− p2), (5)
where

p1|2(1|1) =
1

1 + exp(−2b1 − 2W12)

p1|2(1| − 1) =
1

1 + exp(−2b1 + 2W12)
. (6)

From (5) we see thatp1 is a convex combination ofp1|2(1|−1)
and p1|2(1|1). Hence, forW12 > 0 we havep1|2(1| − 1) <
p1 < p1|2(1|1) and forW12 < 0 we havep1|2(1|1) < p1 <
p1|2(1| − 1).

For a general matrixW these relations are no longer strictly
accurate. However, they serve as useful rules of thumb: for
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Figure 3. A clique tree which is constructed for the graph that appears in
Fig. 2. In this case the clique tree takes the form of a simple chain of size3.
Potential functions are defined for each of the cliques and exact probabilistic
inference is performed by message-passing.

an "excitatory" interaction (Wij > 0) Si and Sj tend to be
turned "on" ("off") together, and for an "inhibitory" interaction
(Wij < 0) Si andSj tend to be in opposite states. The intuition
into the Boltzmann parameters provides some guidelines as to
how the BM prior can be used for sparse representations. If
the values of the biases in the vectorb are negative "enough"
and there are few strong excitatory interactions, then the mean
cardinality of the support tends to be small. This reveals some
of the power of the BM as a prior on the support in the signal
model. It can achieve sparsity and at the same time capture
statistical dependencies and independencies in the sparsity
pattern.

To conclude this section, note that standard sparsity-favoring
models can be obtained as special cases of the BM model. For
W = 0 and bi =

1
2 ln

(
p

1−p

)
for all i, which correspond to

an i.i.d. prior, the cardinalityk has a Binomial distribution,
namelyk ∼ Bin(p,m). For a low value ofp the cardinalities
are typically much smaller thanm, so that plain sparsity is
achieved. BM can also describe a block-sparsity structure:
Assuming that the firstk1 entries inS correspond to the first
block, the nextk2 to the second block, etc., the interaction
matrix W should be block-diagonal with "large" and positive
entries within each block. The entries inb should be chosen
as mentioned above to encourage sparsity.

C. Decomposable Graphical Models

We now consider decomposability in graphical models [24],
[26]. A triplet {A,B,C} of disjoint subsets of nodes is a
decomposition of a graph if its union covers all the setV , B
separatesA from C andB is fully-connected. It follows that
a graphical model is regarded as decomposable if it can be
recursively decomposed into its maximal cliques, where the
separators are the intersections between the cliques. It iswell
known that a decomposable graph is necessarily chordal, i.e.
every cycle of length four or more in the graph has a an edge
joining two nonconsecutive nodes. Consequently, for a given
MRF we can apply a simple graphical test to verify that it is
decomposable.

In Section VI we consider decomposable BMs. This as-
sumption implies that the matrixW corresponds to a chordal
graph. We now provide some important examples for decom-
posable graphical models and their corresponding interaction
matrices. Note that a graph which contains no cycles of length
four is obviously chordal as it satisfies the required property
in a trivial sense. It follows that a graph with no edges, a
graph consisting of non-overlapping cliques and a tree are all
chordal. The first example is the most trivial chordal graph and
corresponds toW = 0. The second corresponds to a block-
diagonal matrix and as we explained in Section III-B it can

describe a block-sparsity structure. Tree structures are widely
used in applications that are based on a multiscale framework.
A visual demonstration of the corresponding matrix is shown
in [26].

Another common decomposable model corresponds to a
banded interaction matrix. In anLth order banded matrix only
the 2L + 1 principle diagonals consist of nonzero elements.
Assuming that the main diagonal is set to zero, we have that
there can be at most(2m−(L+1))L nonzero entries in anLth
order bandedW , instead ofm2 −m nonzeros as in a general
interaction matrix. Consequently, the sparsity ratio ofW is of
order L/m. This matrix corresponds to a chordal graph with
cliquesCi = {Si, . . . , Si+L} , i = 1, . . . ,m−L. For example,
the matrix in Fig. 2(b) is a second order banded matrix of size
5-by-5. This matrix corresponds to a chordal graph (see Fig.
2(a)) with three cliques.

Chordal graphs serve as a natural extension to trees. It
is well known [24] that the cliques of a chordal graph can
be arranged in a clique tree, which is called a junction tree.
In a junction treeT each clique serves as a vertex and any
two cliques containing a nodev are either adjacent inT or
connected by a path made entirely of cliques containingv.
For a visual demonstration see Fig. 3, where a clique tree is
constructed for the chordal graph of Fig. 2(a). In this case
where the interaction matrix is banded, the clique tree is
simply a chain. It can easily be verified that this is in fact
true for a banded interaction matrix of any order.

We now turn to describe belief propagation, a powerful
method for probabilistic inference tasks like computationof
single node marginal distributions and finding the most prob-
able configuration. Exact probabilistic inference can become
computationally infeasible for general dependency modelsas
it requires a summation or maximization over all possible
configurations of the variables. For example, in a general
graphical model withm binary variables the complexity of
exact inference grows exponentially withm. However, for
when the graph structure is sparse, one can often exploit the
sparsity in order to reduce this complexity. The inference
tasks mentioned above can often be performed efficiently
using belief propagation techniques [24]. More specifically,
in a decomposable MRF exact inference takes the form of
a message-passing algorithm, where intermediate factors are
sent as messages along the edges of the junction tree (see for
example the messages passed along the chain in Fig. 3). For
more details on message passing see [24].

The complexity of exact inference via message-passing
strongly depends on the tree-width of the graph. In a de-
composable model this is defined as the size of the largest
maximal clique minus one. For example, in the special case
of a BM with anLth order bandedW we have that the tree-
width is L. We can conclude that for a decomposable model
there is an obvious tradeoff between computational complexity
and representation power. For example, in the special case of
anLth order interaction matrix the computational complexity
of exact inference decreases withL, but at the same time
the graphical model captures fewer interactions. Nevertheless,
decomposable models can serve as a useful relaxation for a
general dependency model, as they can achieve a substantial
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decrease in the complexity of exact inference, while still
capturing the significant interactions.

IV. BM G ENERATIVE MODEL

In this section we use the BM for constructing a stochastic
generative signal model. We consider a signaly which is
modeled asy = Ax+ e, whereA is the dictionary of sizen-
by-m, x is a sparse representation over this dictionary ande is
additive white Gaussian noise (AWGN) with varianceσ2

e . This
is a very common and long-studied model in signal and image
processing. Various works that are based on this model differ
in their modeling for the sparse representationx. We denote
the sparsity pattern byS ∈ {−1, 1}m, whereSi = 1 implies
that the indexi belongs to the support ofx, whereasSi = −1
implies thatxi = 0. The nonzero coefficients ofx are denoted
by xs, wheres is the support ofx. Following [22] we consider
a BM prior for S and a Gaussian distribution with zero mean
and varianceσ2

x,i for each nonzero representation coefficient
xi. Note that the variances of the non-zero representation
coefficients are atom-dependent. It follows that the conditional
distribution ofxs given the supports is

Pr(xs|s) =
1

det (2πΣs)
1/2

exp

{
−1

2
xT
s Σ

−1
s xs

}
(7)

whereΣs is a k × k diagonal matrix with diagonal elements
(Σs)i,i = σ2

x,si , wherek is the cardinality of the supports.
Using the assumption that the noise is AWGN we can also
write down the conditional distribution for the signaly given
its sparse representation:

Pr(y|xs, s) =
1

(2πσ2
e)

n/2
exp

{
− 1

2σ2
e

‖y −Asxs‖22
}
. (8)

Our goal is to recoverx given y. Note however that
Pr(x|y) is a mixture of a discrete distribution forx = 0
and a continuous distribution for all nonzero values ofx.
Consequently, giveny we have thatx = 0 with a nonzero
probability, whereas for any nonzero vectorv the eventx = v
occurs with probability zero. It follows that the MAP estimator
for x given y leads to the trivial solutionx = 0, rendering it
useless. The distributionPr(s|y) however is a discrete one.
Therefore, we suggest to first perform MAP estimation ofs
given y and then proceed with MAP estimation ofx given y
and the estimated supportŝ [15].

We begin by developing an expression forPr(y|s) by
integrating over all possible values ofxs ∈ R

k:

Pr(y|s) =
∫

xs∈Rk

Pr(y|xs, s) Pr(xs|s)dxs (9)

= C
1

det
(

1
σ2
e
AT

s AsΣs + I
)1/2

exp

{
1

2σ2
e

yTAsQ
−1
s AT

s y

}

whereC = 1/(2πσ2
e)

n/2 exp
{
− 1

2σ2
e
‖y‖22

}
is a constant and

Qs = AT
s As + σ2

eΣ
−1
s . This leads to the following estimator

for the support:

ŝ
MAP

=argmax
s∈Ω

Pr(s|y) = argmax
s∈Ω

Pr(y|s) Pr(s)

=argmax
s∈Ω

1

2σ2
e

yTAsQ
−1
s AT

s y− (10)

1

2
ln (det (Qs)) +

1

2
STWS +

(
b− 1

4
v

)T

S

where vi = ln
(
σ2
x,i/σ2

e

)
and S depends ons throughSi =

2·1[i ∈ s]−1 for all i, with 1[·] denoting the indicator function.
The feasible setΩ denotes all2m possible supports. In terms
of S, this is the set of all vectors satisfyingS2

i = 1 for all
i. Note that for an empty support the two first terms in (10)
vanish.

Once we have an estimatês = ŝMAP of the support, we
can compute a MAP estimator ofx using the same formula
as in the oracle estimator (see [15]):

x̂s
MAP

= argmax
xs∈Rk

Pr(x|y, ŝ) =
(
AT

ŝ Aŝ + σ2
eΣ

−1
ŝ

)−1
AT

ŝ y.

(11)
In the sequel we first focus on the case where all model

parameters - the Boltzmann parametersW, b, the variances{
σ2
x,i

}m

i=1
, the dictionaryA and the noise variancesσ2

e are
known. For a general dictionaryA and an arbitrary symmetric
interaction matrixW the exact MAP estimator requires an ex-
haustive search over all2m possible supports. To overcome the
infeasibility of the combinatorial search, two approachescan
be taken. The first is to develop an efficient approximation of
the MAP estimator. We develop such an algorithm in Section
V. An alternative strategy is to make additional assumptions
on the model parameters, namely onA and W , that will
make exact MAP estimation feasible. This is addressed in
Section VI, where we consider unitary dictionariesA and
decomposable BMs. The more practical setup where the model
parameters are also unknown is considered in Section VIII,
for which we derive efficient methods for estimating both the
sparse representations and the model parameters from a set of
signals.

V. A PPROXIMATE MAP ESTIMATION

As we have seen in the previous section, exact MAP
estimation requires an exhaustive search over all2m possible
supports. To simplify the computations, we propose a greedy
approximation. We begin by explaining the core idea of
our greedy algorithm. Our goal is to estimate the support
which achieves the maximal value of the posterior probability
Pr(S|y). This means that our objective function is the one
that appears in (10). We start with an empty support, which
means that{Si}mi=1 are all−1. At the first iteration, we check
each of them possible elements that can be added to the
empty support and evaluate the term in (10). The entryi∗
leading to the largest value is chosen and thusSi∗ is set to
be+1. Given the updated support, we proceed exactly in the
same manner. In every iteration we consider all the remaining
inactive elements and choose the one that leads to the maximal
value in (10) when added to the previously set support. The
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algorithm stops when the value of (10) is decreased for every
additional item in the support.

In each iteration only one entry inS changes - from−1 to
1. This can be used to simplify some of the terms that appear
in (10):

1

2
STWS =

1

2

∑

i,j

WijSiSj = C1 + 2
∑

j

WijSj

bTS =

m∑

i=1

biSi = C2 + 2bi (12)

m∑

i=1

ln
(
σ2
x,i/σ2

e

)
Si = C3 + 2 ln

(
σ2
x,i

)

whereC1, C2, C3 are constants that will not be needed in our
derivation. Consequently, in each iteration it is sufficient to
find an indexi (out of the remaining inactive indexes) that
maximizes the following expression:

V al(i) =
1

2σ2
e

yTAskQ
−1
sk

AT
sky −

1

2
ln (|det (Qsk)|)+

2WT
i Sk + 2bi −

1

2
ln
(
σ2
x,i

)
(13)

wheresk is the support estimated in iterationk − 1 with the
entryi added to it,Qsk = AT

skAsk+σ2
eΣ

−1
sk

andWT
i is theith

row of W . A pseudo-code for the proposed greedy algorithm
is given in Algorithm 1.

Algorithm 1 Greedy algorithm for approximating the MAP
estimator of (10)
Input: Noisy observationsy ∈ R

n and model parameters
W, b, {σx,i}mi=1 , A, σe.

Output: A recoveryŝMAP for the support.
s0∗ = ∅, S0

∗ = −1m×1

k = 1
repeat

for i /∈ sk−1
∗ do

sk = sk−1
∗ ∪ i

Sk[j] =

{
Sk−1[j] , j 6= i

1 , j = i
EvaluateV al(i) using (13).

end for
i∗ = argmaxi {V al(i)}

sk∗ = sk−1
∗ ∪ i∗, Sk

∗ [j] =

{
Sk−1
∗ [j] , j 6= i∗

1 , j = i∗
k = k + 1

until Pr
(
sk∗ |y

)
< Pr

(
sk−1
∗ |y

)

Return: ŝMAP = sk−1
∗

We now provide some intuitive meaning to the terms in
(13). The termyTAskQ

−1
sk

AT
sky is equivalent to the residual

error
∥∥rk

∥∥2
2
, whererk = y − Ask

(
AT

skAsk
)−1

AT
sky is the

residual in respect to the signal. To see that, notice that the
following relation holds:

∥∥rk
∥∥2
2
= ‖y‖22 − yTAsk

(
AT

skAsk
)−1

AT
sky. (14)

Using the definition ofQsk it can be easily verified that the

two terms take a similar form, up to a regularization factor
in the pseudoinverse ofAsk . Next, we turn to the terms
WT

i Sk andbi. The first corresponds to the sum of interactions
between theith atom and the rest of the atoms which arise
from turning it on (the rest remain unchanged). The second
term is the separate bias for theith atom. As the sum of
interactions and the separate bias become larger, using the
ith atom for the representation leads to an increase in the
objective function. Consequently, the total objective of (13)
takes into consideration both the residual error in respectto the
signal and the prior on the support. This can lead to improved
performance over greedy pursuit algorithms like OMP and
CoSaMP, which are aimed at minimizing the residual error
alone.

To conclude this section, note that the recent work of [23]
used a BM-based Bayesian modeling for the sparse repre-
sentation to improve the CoSaMP algorithm. The resulting
algorithm is referred as lattice matching pursuit (LaMP).
The inherent differences between our approach and the one
suggested in [23] are explained in Section IX.

VI. EXACT MAP ESTIMATION

A. Model Assumptions

In this section we consider a simplified setup where exact
MAP estimation is feasible. A recent work [15] treated the
special case of a unitary dictionary for independent-based
priors, and developed closed-form expressions for the MAP
and MMSE estimators. We follow a similar route here and
assume that the dictionary is unitary. In this case we can make
a very useful observation which is stated in Theorem 1. A
proof of this theorem is provided in Appendix A.

Theorem 1: Let A be a unitary dictionary. Then the BM
distribution is a conjugate prior for the MAP estimation
problem of (10), namely thea posteriori distributionPr(S|y)
is a BM with the same interaction matrixW and a modified
bias vectorq with entries:

qi = bi +
1

4

{
σ2
x,i

σ2
e(σ

2
e + σ2

x,i)

(
yTai

)2 − ln

[
1 +

σ2
x,i

σ2
e

]}

(15)
for all i, whereai is the ith column ofA.

Notice in (15) thatqi is linearly dependent on the original
bias bi and quadratically dependent on the inner product
between the signaly and the atomai. This aligns with the
simple intuition that an atom is more likely to be used for
representing a signal if it has ana priori tendency to be
turned "on" and if it bares high similarity to the signal (this
is expressed by a large inner product). From Theorem 1 the
MAP estimation problem of (10) takes on the form of integer
programming. More specifically, this is a Boolean quadratic
program (QP):

maximize
S

(
qTS +

1

2
STWS

)
s.t. S2

i = 1, 1 ≤ i ≤ m. (16)

This is a well-known combinatorial optimization problem [27]
that is closely related to multiuser detection in communication
systems, a long-studied topic [28]. The Boolean QP remains
computationally intensive if we do not use any approximations
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or make any additional assumptions regarding the interaction
matrix W . The vast range of approximation methods used
for multiuser detection, like semi-definite programming (SDP)
relaxation, can be adapted to our setup. Another approximation
approach, which is commonly used for energy minimization in
the BM, is based on a Gibbs sampler and simulated annealing
techniques [17], which remain computationally demanding.
Our interest here is in cases for which simple exact solutions
exist. We therefore relax the dependency model, namely make
additional modeling assumptions onW .

We first consider the simple case ofW = 0, which
corresponds to the independency assumption. Using Theorem
1, we can follow the same analysis as in Section III-B for
W = 0 by replacing the bias vectorb by q. Consequently, in
this case we have:

Pr(S|y) =
m∏

i=1

Pr(Si|y), (17)

wherePr(Si = 1|y) = 1/(1+exp(−2qi)) for all i. Notice that
Pr(Si = 1|y) > Pr(Si = −1|y) if qi > 0. This means that
the ith entry of Ŝ

MAP
equals1, namelyi is in the support,

if qi > 0. Using (15) we obtain the following MAP estimator
for S:

Ŝi,MAP =

{
1,
−1,

∣∣yTai
∣∣ >

√
2σe

ci

√
ln

[
1−pi√
1−c2ipi

]

otherwise

(18)

wherepi is defined in (4) andci =
√

σ2
x,i/(σ2

x,i+σ2
e). These

results correspond to those of [15] for the MAP estimator
under a unitary dictionary.

To add dependencies into our model, we may consider two
approaches, each relying on a different assumption onW .
First, we can assume that all entries inW are non-negative. If
this assumption holds, then the energy function defined by the
Boltzmann parametersW, q is regarded "sub-modular" and it
can be minimized via graph cuts [25]. The basic technique
is to construct a specialized graph for the energy function
to be minimized such that the minimum cut on the graph
also minimizes the energy. The minimum cut, in turn, can
be computed by max flow algorithms with complexity which
is polynomial inm. The recent work [23] is based on this
approach and we will relate to it in more detail in Section IX.

Here we take a different approach, which seems to be more
appropriate for our setup. This approach makes an assumption
on the structural component of the MRF - we assume that the
BM is decomposable with a small tree-width. This type
of MRF was explored in detail in Section III-C. The above
assumption implies that the matrixW has a special sparse
structure - it corresponds to a chordal graph where the size
of the largest maximal clique is small. As we have seen in
Section III-C, decomposable models can serve as a very useful
relaxation for general dependency models. Another motivation
for this assumption arises from the results that were shown
in Section II for the special case of image patches and a
DCT dictionary. It was shown there that independency can be
considered a reasonable assumption for many pairs of DCT
atoms. This observation has the interpretation of a sparse

structure for the interaction matrixW . Consequently, it seems
plausible that a matrixW with a sparse structure can capture
most of the significant interactions in this case.

From Theorem 1 it follows that if the above assumption on
the structure ofW holds for the BM prior onS it also holds for
BM posterior (since both distributions correspond to the same
interaction matrix). We can therefore use belief propagation
techniques to find the MAP solution. We next present in detail
a concrete message passing algorithm for obtaining an exact
solution to (16) under a bandedW matrix.

B. The Message-Passing Algorithm

Before we go into the details of the proposed message-
passing algorithm, we make a simple observation that will
simplify the formulation of this algorithm. As we have seen
in Section III-B, a posterior BM distribution with parameters
W, q can be written (up to a normalization factor which has
no significance in the MAP estimation problem) as a product
of potential functions defined on the maximal cliques in the
corresponding graph:

exp

(
qTS +

1

2
STWS

)
=

P∏

i=1

ΨCi (SCi) (19)

whereP is the the number of maximal cliques. By replacing
the potentials{ΨCi (SCi)} with their logarithms, which are

denoted by
{
Ψ̃Ci (SCi)

}
, we remain with quadratic functions

of the variables of{Si}mi=1:

STWS + qTS =

P∑

i=1

Ψ̃Ci (SCi) . (20)

This can be very useful from a computational point of view
as there is no need to compute exponents, which can lead to
large values. Each product that appears in a standard message-
passing algorithm is replaced by summation.

For concreteness we will focus on the special case of an
Lth order banded interaction matrixW of size m-by-m, as
described in Section III-C. In this case the maximal cliques
areCi = {Si, . . . , Si+L} , i = 1, . . . ,m−L, so that all cliques
are of sizeL+1 and the tree-width isL. The clique tree takes
the form of a simple chain of lengthm − L. We denote the
"innermost" clique in this chain byCk, wherek =

⌈
m−L−1

2

⌉
.

We choose an order for the cliques where the cliques at both
edges of the chain appear first and the "innermost" clique
appears last and set the clique potentials according to the rule
of thumb that was mentioned in Section III-B. Consequently,
the logarithms of the potentials are given by:

Ψ̃Ci =






qiSi +
i+L∑

l=i+1

WilSiSl , 1 ≤ i ≤ k − 1

k+L∑
j=k

qjSj +
k+L−1∑
j=k

k+L∑
l=j+1

WjlSjSl , i = k

qi+LSi+L +
i+L−1∑
l=i

Wl,i+LSlSi+L , k + 1 ≤ i ≤ m− L

(21)
Ψ̃Ci is a function ofSi, . . . , Si+L. We pass messages "in-
wards" starting fromC1 and Cm−L until the clique Ck
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receives messages from both sides:

mi,i+1 =




max
Si

Ψ̃Ci , i = 1

max
Si

Ψ̃Ci +mi−1,i , 2 ≤ i ≤ k − 1
(22)

mi,i−1 =






max
Si+L

Ψ̃Ci , i = m− L

max
Si+L

Ψ̃Ci +mi+1,i , m− L− 1 ≤ i ≤ k + 1

where mi,i+1 depends onSi+1, . . . , Si+L and mi,i−1 on
Si, . . . , Si+L−1. The arguments that correspond to each of the
maximization operators are denoted byΦi,i+1, i = 1, . . . , k−
1 andΦi,i−1, i = k+1, . . . ,m−L (these have the same form
as the messages with "max" replaced by "argmax"). The MAP
estimates are then computed recursively by:
(
S∗
k , . . . , S

∗
k+L

)
= argmax

Sk,...,Sk+L

Ψ̃Ck
+mk−1,k +mk+1,k

S∗
i = Φi,i+1

(
S∗
i+1, . . . , S

∗
i+L

)
, i = k − 1, . . . , 1 (23)

S∗
i+L = Φi,i−1

(
S∗
i , . . . , S

∗
i+L−1

)
, i = k + 1, . . . ,m− L.

The message-passing algorithm in this case is summarized in
Algorithm 2.

Algorithm 2 Message-passing algorithm for obtaining the
exact MAP estimator of (10) in the special case of a unitary
dictionary and a banded interaction matrix
Input: Noisy observations y and model parameters
W, b, {σx,i}mi=1 , A, σe. A is unitary andW is an Lth
order banded matrix.

Output: A recoveryŜMAP for the sparsity pattern ofx.

Step 1: Set the bias vectorq for the BM posterior distribution
Pr(S|y) using (15).
Step 2: Assign a potential functioñΨCi (SCi) for each clique
Ci = {Si, . . . , Si+L} , i = 1, . . . ,m− L using (21).
Step 3: Pass messages "inwards" starting fromC1 andCm−L

until the "innermost" cliqueCk receives messages from both
sides using (22).
Step 4: Obtain the MAP estimate forS using (23).

An important observation is that the complexity of the
proposed algorithm is exponential inL and not inm. More
specifically the complexity isO(2L · m). As the value of
L is part of our modeling, even whenm is relatively large
(and the exhaustive search which depends on2m is clearly
infeasible), the exact MAP computation is still feasible as
long asL remains sufficiently small. If we have for example
L = γ log2(m) then the complexity isO(m1+γ), namely it is
polynomial inm.

VII. S IMULATIONS ON SYNTHETIC SIGNALS

In this section we test the two recovery algorithms that
were proposed in the two previous sections (see Algorithms
1,2) and compare their performance to that of previous sparse
recovery methods. We assume here that all the parameters of
the BM-based generative model are known and use this model
to create random data sets of signals, along with their sparse
representations. A standard Gibbs sampler [17] is used for

sampling sparsity patterns from the BM. The sampled supports
and representation vectors are denoted by

{
s(l), x(l)

}N

l=1
.

We begin by examining a setup that satisfies the simplifying
assumptions of Section VI. We assume that the dictionary
A ∈ R

m×m is a unitary DCT dictionary withm = 64,
and thatW is a banded interaction matrix withL = 9.
The nonzero entries in the upper triangle ofW are drawn
independently fromU [−∆W ,∆W ] (the lower triangle is de-
termined from the symmetry ofW ) and the entries in the
bias vectorb ∈ R

m are drawn independently fromN (b0, 1).
The parameters{σx,i}mi=1 are in the range[15, 60]. In this
case we can apply both of the algorithms that were suggested
in this paper. We also consider two additional algorithms - a
standard pursuit algorithm like OMP and a MAP recovery
that is based on an independent-based prior like the one
that appears in (18). The OMP algorithm is used only for
identifying the support. Then the recovered support is usedto
obtain an estimate for the representation vector using (11), just
as the MAP estimators. Note that the marginal probabilities
{pi}mi=1 for (18) are computed from the Boltzmann parameters
using standard belief propagation techniques (see III-C).We
compare the performance of the four algorithms for different
noise levels -σe is in the range[2, 30].

In order to explore the dependency of the recovery algo-
rithms on the Boltzmann parameters, we create different data
sets, each consisting ofN = 10, 000 signals and correspond-
ing to different values of∆W andb0. For each of the above-
mentioned algorithms we evaluate two performance criteria.
The first one is the probability of error in identifying the true
support:

1− 1

N

N∑

l=1

|s(l) ∩ ŝ(l)|
max(|s|, |ŝ|) . (24)

The second criterion is the relative recovery error, namely
the mean recovery error for the representation coefficients
normalized by their energy:

√√√√√√√√

N∑
l=1

‖x̂(l) − x(l)‖22
N∑
l=1

‖x(l)‖22
. (25)

The relative error is also evaluated for the Bayesian oracle
estimator, namely the oracle which knows the true support.
Note that for a unitary dictionary the relative error for the
representation coefficients is in fact also the relative error for
the noise-free signal, since‖Au‖22 = ‖u‖22 for any vector
u. We performed experiments for a wide range of data sets.
However, for concreteness, we show only several results in
Fig. 4. The MAP estimator of (18) is denoted in the figures
by "MAP - independency".

The results in Fig. 4 show that all three MAP estimators
outperform the OMP algorithm, both in terms of the recovered
support and the recovery error. For∆W = 0.5 the greedy
MAP and the independent-based MAP serve as excellent
approximations for the exact BM-based MAP. As we turn to
stronger interactions - the variance ofb remains the same,
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Figure 4. Probability of error in identifying the support (24) and relative recovery error (25) for a unitary DCT dictionary and a banded interaction matrix.
Top: A data set withb0 = −1.5 and∆W = 0.5, leading to an empirical average cardinality|s| = 11. Bottom: A data set withb0 = −3.5 and∆W = 2,
leading to an empirical average cardinality|s| = 13.

while ∆W is increased from0.5 to 2 - the quality of these
approximations deteriorates. In this caseb0 is decreased from
−1.5 to −3.5, so that the average cardinality remains more
or less the same as before. For "strong" interactions, the two
MAP approximations exhibit a different behavior. At low noise
levels (σe = 5 and below) the greedy algorithm serves as
a very good approximation to the exact MAP, whereas for
higher noise levels the performance gap increases rapidly.The
independent-based MAP however is a bit less accurate than the
greedy one at noise levels belowσe = 10, but it closes up the
performance gap in respect to the exact MAP as the noise
level increases.

We now provide some additional observations that were
drawn from similar sets of experiments which are not shown
here. We observed that increasing∆W without changingb0
leads to performance gap described above. However, whenb0
is increased and∆W remains unchanged, the approximations
for MAP align with the exact estimator. Note that in both
cases the average cardinality is increased. We can conclude
from these observations and from the results that appear in
Fig. 4 that the performance gap results from the increase in the
interaction level and not from the increase in the cardinalities.
As for higher noise levels, we noticed that all algorithms
exhibit saturation in their performance. In this setup the OMP
tends to choose an empty support, leading to an obvious failure
in its recovery. Another interesting observation is that the
independent-based MAP aligns with the exact MAP for high
noise levels (aboveσe = 50).

Next, we turn to the case of a redundant dictionary and

a general (non-sparse) interaction matrix. We use an over-
complete64-by-256 DCT dictionary. All the rest of model
parameters are the same as before, expect for the interaction
matrix which is no longer banded (we use the same distribution
as before for all the entries in the upper triangle). For this
setup exact MAP estimation is no longer possible and we
can use only the greedy approximation for MAP. We compare
the performance of our BM-based greedy algorithm to that of
OMP and a greedy approximation for an independent-based
MAP. In the latter we use Algorithm 1 withW = 0 and
bi = 1

2 ln (
pi/(1−pi)) , i = 1, . . . ,m, where the single node

probabilitiespi = Pr (Si = 1) are computed empirically from
the data. In this setup we evaluate the probability of error in
the support (24) and the relative recovery error in respect to
the noise-free signal:

√√√√√√√√

N∑
l=1

‖Ax̂(l) −Ax(l)‖22
N∑
l=1

‖Ax(l)‖22
. (26)

The results are shown in Fig. 5. We see that both greedy
approximations of MAP clearly outperform the OMP algo-
rithm and that the greedy approximation which takes into
consideration the interactions is superior over the one which
ignores them.
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Figure 5. Probability of error in identifying the support (24) and relative recovery error in respect to the noise-free signal (26) for an overcomplete64-by-256
DCT dictionary and a general (non-sparse) interaction matrix. The entries inW are drawn independently fromU [−0.1, 0.1] and the entries in the bias vector
b ∈ R

m are drawn independently fromN (−2.5, 1). This leads to an empirical average cardinality|s| = 14.5.

VIII. A DAPTIVE SPARSESIGNAL RECOVERY

In an actual problem suite we are given a set of signals{
y(l)

}N

l=1
from which we would like to estimate both the

sparse representations and the model parameters. We briefly
address this joint estimation problem in this section. For
concreteness we focus here only on the estimation of the
Boltzmann parameters. We begin by assuming that we are
given the sparse representations, namely we have a data
set of i.i.d. examplesD =

{
y(l), x(l), S(l)

}N

l=1
, from which

we would like to learn the Boltzmann parametersW, b. We
consider a maximum likelihood (ML) approach for estimating
W, b: [

Ŵ
ML

, b̂
ML

]
= argmax

W,b
L(W, b) (27)

where

L(W, b) =
1

2

N∑

l=1

[(
S(l)

)T

WS(l) + bTS(l)

]
−N ln(Z(W, b))

(28)
is the log likelihood function for the Boltzmann parameters,
namelyL(W, b) = ln (Pr (D|W, b)). We can see from (27) that
the estimation ofW, b depends only on the supports

{
S(l)

}N

l=1
.

ML estimation ofW, b is computationally intensive due to
the exponential complexity inm associated with the partition
functionZ(W, b). Therefore, we turn to approximated ML es-
timators. A widely used approach is applying Gibbs sampling
and mean-field techniques, see for example [22]. However,
these methods are usually computationally demanding. A sim-
pler approach is to replace the likelihood function by pseudo-
likelihood (PL), leading to MPL estimation. This approach was
presented in [29] and revisited in [30], where it was shown that
the MPL estimator is consistent. This means that in the limit
of infinite sampling (N → ∞), the PL function is maximized
by the true parameter values.

The basic idea in MPL estimation is to replace the BM
prior Pr(S|W, b) by the product of all the conditional dis-
tributions of each nodeSi given the rest of the nodesSiC :∏m

i=1 Pr (Si|SiC ,W, b). Each of these conditional distributions
takes on the simple form

Pr (Si|SiC ,W, b) = C exp
{
Si

(
WT

i S + bi
)}

(29)

whereWT
i is the ith row of W and C is a normalization

constant. Since this is a probability distribution for a single
binary nodeSi it follows that C = 2 cosh

(
WT

i S + bi
)
.

Consequently, we replacePr(S|W, b) by
m∏

i=1

Pr (Si|SiC ,W, b) =

m∏

i=1

exp
{
Si

(
WT

i S + bi
)}

2 cosh
(
WT

i S + bi
)

=
exp

{
ST (WS + b)

}

2m
∏m

i=1 cosh
(
WT

i S + bi
) . (30)

We define the log-PL by:

Lp(W, b) =

N∑

l=1

m∑

i=1

ln
(
Pr

(
S
(l)
i |S(l)

iC ,W, b
))

(31)

=

N∑

l=1

(
S(l)

)T (
WS(l) + b

)
− 1Tρ

(
WS(l) + b

)
−mN ln(2)

whereρ(z) = ln(cosh(z)) and the functionρ(·) operates on
a vector entry-wise. To explore the properties of the log-PL
function it is useful to place all the Boltzmann parameters
- there arep = (m2+m)/2 unknowns ((m2−m)/2 in the upper
triangle ofW andm in b) - in a column vectoru. For each ex-
ampleS(l) in the data set we can construct matricesB(l), C(l)

so thatB(l)u =
(
S(l)

)T (
WS(l) + b

)
andC(l)u = WS(l)+b.

Using these notations the log-PL function of (31) can be
re-formulated as:

Lp(u) =

N∑

l=1

[
B(l)u− 1Tρ

(
C(l)u

)]
−mN ln(2). (32)

The gradient and the hessian ofLp(u) are given by:

∇Lp(u) =

N∑

l=1

[(
B(l)

)T

−
(
C(l)

)T

ρ′
(
C(l)u

)]
(33)

∇2Lp(u) =−
N∑

l=1

[(
C(l)

)T

diag
(
ρ′′

(
C(l)u

))
C(l)

]
, (34)

where ρ′(z) = tanh(z) and ρ′′(z) = 1 − tanh2(z). Since
ρ(z) is a convex function, it follows that the log-PL function
is concave inu. Therefore, as an unconstrained convex opti-
mization, we have many reliable algorithms that could be of
use.
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In [30] MPL estimation is treated by means of gradient
ascent (GA) methods. These methods are very simple, but it is
well-known that they suffer from a slow convergence rate [31].
Another optimization algorithm which converges more quickly
is Newton [31]. Note however that the problem dimensions
here can be very large. For example, whenm = 64 as in an
8-by-8 image patch, we havep = 2080 unknown parameters.
Since Newton iterations requires inverting the Hessian matrix,
it becomes computationally demanding. Instead we would
like to use an efficient algorithm that can treat large-scale
problems. To this end we suggest the sequential subspace
optimization (SESOP) method [32], which is known to lead
to a significant speedup in respect to gradient descent.

The basic idea in SESOP is to use the following update rule
for the parameter vector in each iteration:

uj+1 = uj +Qjvj , (35)

where Qj is a matrix consisting of various (normalized)
direction vectors in its columns andvj is a vector containing
the step size in each direction. In our setting we use only the
current gradientgj = ∇Lp(u

j) andM recent stepspi = ui−
ui−1, i = j−M, . . . , j− 1. We use the abbreviation SESOP-
M for this mode of the algorithm. The vectorvk is determined
in each iteration by an inner optimization stage. Since we
use a small number of directions, the optimization problem in
respect tovj is a small-scale one and we can apply Newton it-
erations to solve it, using∇vjLp(u

j+1) =
(
Qj

)T ∇Lp(u
j+1)

and∇2
vjLp(u

j+1) =
(
Qj

)T ∇2Lp(u
j+1)Qj .

To initialize the algorithm we set the interaction matrix to
zero, namely we allow no interactions. We then perform a
separate MPL estimation ofb whereW is fixed to zero, which
results in

b̂0i = atanh

[
1

N

N∑

l=1

S
(l)
i

]
, (36)

for all i. We stop the algorithm either when the norm of
the gradient vector∇Lp(u) decreases below a pre-determined
thresholdǫ, or after a fixed number of iterationsJ . A pseudo-
code that summarizes the learning algorithm for the Boltzmann
parameters is provided in Algorithm 3.

To demonstrate the effectiveness of MPL estimation via
SESOP, we now show some results of synthetic simulations.
We focus on a9th order banded interaction matrix of size
64-by-64 and follow the same setup we used in Section VII
for the simulations on the unitary dictionary, with parameters
∆W = 0.5, b0 = −1.5 and a data set of sizeN = 16, 000. We
use the true support vectors, produced by the Gibbs sampler,as
an input for the learning algorithm and apply50 iterations of
both GA and SESOP-2 to estimate the Boltzmann parameters.
The results are shown in Fig. 6. We can see on the top that
SESOP outperforms GA both in terms of convergence rate of
the PL objective and recovery error for the interaction matrix.
This is also demonstrated visually on the middle and bottom,
where we can see that for the same number of iterations
SESOP reveals much more interactions than GA. In fact, if
we set to zero the entries in the trueW that correspond to
rarely used atoms (i.e. if the appearance frequency of atomsi
or j is very low then we setWij = 0), we can see that SESOP

Algorithm 3 A SESOP-M algorithm for obtaining the MPL
estimator of the Boltzmann parameters

Input: A data set of supports
{
S(l)

}N

l=1
.

Output: A recoveryŴ , b̂ for the Boltzmann parameters.
Initialization: SetŴ to zero and̂b0 according to (36), and
construct from them a column vectorû0.
j = 0
repeat

Step 1: EvaluateLp(û
j) and∇Lp(û

j) using (32)-(33).
Step 2: Set the matrixQj using the current gradient
∇Lp(û

j) andM previous steps
{
ûi − ûi−1

}j−1

i=j−M
.

Step 3: Determine the step sizesvj by Newton iterations.

Step 4: ûj+1 = ûj +Qjvj .
j = j + 1

until ∇Lp(û
j) < ǫ or j ≥ J

Return: Ŵ , b̂ extracted out of̂uj.

was able to learn most of the significant interactions.
So far we focused on estimatingW, b. However, given the

data set, we often need to evaluateall the model parame-
ters, including the dictionaryA and the variances

{
σ2
xi

}m

i=1
.

Furthermore, in practice the sparse representations are also
unknown. We suggest using a block-coordinate optimization
approach for approximating the solution of the joint estimation
problem, which results in an iterative scheme for adaptive
sparse signal recovery. Each iteration in this scheme consists
of two stages: sparse coding where we apply a MAP estimator
for the sparse representations when the model parameters are
fixed, and model update based on the current estimate of the
sparse representations. First steps towards this goal are taken
in [33], where we demonstrate the effectiveness of the adaptive
model-based approach on image patches. We intend to explore
this further in our future work.

IX. RELATION TO PAST WORKS

In this section we briefly relate to two recent works [22],
[23] that used the BM as a prior on the support of the
representation vector. We discuss their main contributions and
drawbacks, and emphasize the differences in our work with
respect to them. In recent years capturing and exploiting
dependencies between dictionary atoms has become a hot
topic in the model-based sparse recovery field. In contrast
to previous works like [3], [7], [20], [21] which considered
dependencies in the form of tree structures, [22] was the
first to propose a general and adaptive model for capturing
these dependencies. The main contribution of this work is the
proposal of a new sparse coding model, which is represented
by a graphical model. The model is based on the celebrated
BM prior, and is provided with a biological motivation through
the architecture of the visual cortex. Note that we used exactly
the same graphical model in our work (see Section IV).

In [22] MAP estimation of the sparse representation and
learning of the Boltzmann parameters are handled by means of
general-purpose optimization techniques. For MAP estimation
[22] proposes Gibbs sampling and simulated annealing, and
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Figure 6. Top - results of MPL estimation via GA and SESOP: Thevalue of the log-PL objective and the average recovery errorfor the interaction matrix
per entry as functions of the number of iterations. Middle (from left to right): The true interaction matrixW and MPL estimate via GAŴGA. Bottom (from
left to right): MPL estimate via SESOP̂WSESOP , a banded version of it and a matrix consisting of the interactions in W which are more likely to be
revealed using the given data set. We can see that the latter two are very close.

for learning the Boltzmann parameters they suggest Gibbs
sampling and mean-field approximations. Note that these
techniques require a high computational effort and suffer from
a slow convergence rate. In fact, as the main purpose of [22]
is to introduce the concept of interactions in a sparse coding
model, little effort was invested into algorithmic design.In
this sense, our work serves as a natural extension to [22]. We
develop specialized algorithms for both MAP estimation and
learning of the Boltzmann parameters, which are efficient and
reliable and at the same time still quite simple.

Next, we turn to [23]. This work adapts a signal model like
the one presented in [22], with several modifications. First,
it is assumed that all the weights in the interaction matrix
W are nonnegative. Second, the Gaussian distributions for the
nonzero representation coefficients are replaced by parametric
utility functions. The main contribution of [23] is using the BM
generative model for extending the CoSaMP algorithm, a well
known greedy method. The extended algorithm, referred as
LaMP, differs from CoSaMP in the stage of the support update
in each iteration, which becomes more accurate. This stage is
now based on graph cuts and this calls to the nonnegativity
constraint on the entries ofW . The rest of the iterative scheme
however remains unchanged and is still based on "residuals":
in each iteration we compute the residual with respect to the
signal and the algorithm stops when the residual error falls
below a pre-determined threshold. Note that LaMP requires
the desired sparsity level as an input, just like CoSaMP.

In our work we take a different greedy approach and use
the Bayesian framework to its full extent. The BM-based
generative model is incorporated into all of the stages of

the greedy algorithm, including its stopping rule. Our greedy
algorithm works for an arbitrary interaction matrix and in this
sense it is more general than LaMP. Note also that there is
no need to provide our algorithm with the desired sparsity
level. Due to the inherent differences between the setups that
are addressed by each of the greedy algorithms, we did not
compare their denoising performance. Further work is required
in order to integrate our Bayesian setting into a CoSaMP-like
algorithm and then a more meaningful test could be performed.

X. CONCLUSIONS

In this work we have developed a scheme for adaptive
model-based recovery of sparse representations. We adapted
a Bayesian model for signal synthesis, which is based on a
Boltzmann machine, and designed specialized optimization
methods for the estimation problems that arise from this
model. This includes MAP estimation of the sparse repre-
sentation and learning of the model parameters. The main
contributions of this work include the exploration of settings
where exact MAP estimation is possible and the development
of an efficient message-passing algorithm for signal recovery
in this setup. We also suggested a greedy algorithm for signal
recovery which approximates the MAP estimator and uses
the Bayesian framework to its full extent. After developing
the recovery algorithms, we addressed learning issues and
designed an efficient estimator for the parameters of the graph-
ical model. Finally, we provided a comprehensive comparison
between the suggested methods, along with standard sparse
recovery algorithms. We demonstrated the effectiveness ofour
approach through synthetic experiments.
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APPENDIX A
PROOF OFTHEOREM 1

We show how the assumption that the dictionary is unitary
can be used to simplify the expression forPr(S|y). For
a unitary dictionary we haveAT

s As = I for any support
s. Consequently, for a support of cardinalityk the matrix
D = AT

s As + σ2
eΣ

−1
s is a diagonal matrix of sizek-by-

k with entries di = 1 + σ2
e/σ2

x,i, i = s1, . . . , sk on its
main diagonal. Straight forward computations show that the
following relations hold:

yTAsD
−1AT

s y =
∑

i∈s

di(y
Tai)

2,

ln ((det(D))) =
∑

i∈s

ln (di) (37)

Using the definition ofS (Si = 1 implies that i is in the
support andSi = −1 implies otherwise), we can replace
each sum over the entries in the support

∑
i∈s vi by a sum

over all possible entries
∑m

i=1
1
2 (Si + 1) vi. Consequently, the

relations in (37) can be re-written as:

yTAsD
−1AT

s y =
1

2

m∑

i=1

(Si + 1) di(y
Tai)

2 = C1 +
1

2
fTS

ln ((det(D))) =
1

2

m∑

i=1

(Si + 1) ln (di) = C2 +
1

2
gTS (38)

whereC1, C2 are constants andf, g are vector with entries
fi = di(y

Tai)
2, gi = ln (di) for i = 1, . . . ,m. Using

the definition ofD we place the relations of (38) into the
appropriate terms in (10) and get:

ln (Pr(S|y)) = C3 +

(
b+

f

4σ2
e

− v

4
− g

4

)T

S +
1

2
STWS

(39)
whereC3 is a constant. It is now easy to verify that the pos-
terior distributionPr(S|y) corresponds to a BM distribution
with the same interaction matrixW and a modified bias vector
which we denote byq = b+ f

4σ2
e
− v

4 − g
4 :

Pr(S|y) = 1

Z̃
exp

(
qTS +

1

2
STWS

)
(40)

where Z̃ is a partition function of the BM parametersW, q
which normalizes the distribution. Using the definitions off ,
g andv we get that (15) holds.
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