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ABSTRACT

Sparse signal representations have gained wide popularity in recent
years. In many applications the data can be expressed using only
a few nonzero elements in an appropriate expansion. In this pa-
per, we study a block-sparse model, in which the nonzero coeffi-
cients are arranged in blocks. To exploit this structure, we redefine
the standard (NP-hard) sparse recovery problem, based on which we
propose a convex relaxation in the form of a mixed `2/`1 program.
Isometry-based analysis is used to prove equivalence of the solution
to that of the optimal program, under certain mild conditions. We
further establish the robustness of our algorithm to mismodeling and
bounded noise. We then present theoretical arguments and numeri-
cal experiments demonstrating the improved recovery performance
of our method in comparison with sparse reconstruction that does
not incorporate a block structure. The results are then applied to two
related problems. The first is that of simultaneous sparse approxima-
tion. Our results can be used to prove isometry-based equivalence
properties for this setting. In addition, we propose an alternative
approach to acquire the measurements, that leads to performance
improvement over standard methods. Finally, we show how our re-
sults can be used to sample signals in a finite structured union of
subspaces, leading to robust and efficient recovery algorithms.

Index Terms— Block sparsity, compressed sensing, multiple
measurement vectors (MMV), restricted isometry property, sparse
approximation, union of subspaces.

1. INTRODUCTION

Recovery of sparse vectors from few measurements is of interest
in many different applications. This problem underlies the recent
framework of compressed sensing (CS) [1, 2], which treats recov-
ery of a sparse vector x from measurements y = Dx, where D is
a measurement matrix with fewer rows than columns. Many algo-
rithms have been proposed to determine x in a stable and efficient
manner [2–5]. One of the main analysis tools in this context is the re-
stricted isometry property (RIP) [2, 6]. In particular, if the measure-
ment matrix D satisfies the RIP then x can be recovered by solving
a convex `1 minimization algorithm.

The standard sparsity model assumes that x has at most k non-
zero elements, however it does not impose any further structure.
In particular, the non-zero components can appear anywhere in x.
There are many cases in which the non-zero values are aligned to
blocks, meaning they appear in regions. Examples include bursty
noise profiles, and measurements of gene expression levels [7]. We
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refer to such a model as block sparsity. Clearly any block-sparse vec-
tor is also sparse in the standard sense. However, by exploiting the
block structure, recovery may be possible under more general con-
ditions. In [7, 8] a mixed `2/`1 algorithm was proposed for block-
sparse recovery. By analyzing the null space of D, it was shown that
asymptotically in the signal length, perfect recovery is possible with
high probability. However, this result cannot be applied in the finite,
non-asymptotic case that is of interest here. Furthermore, robustness
and mismodeling issues were not addressed.

In this paper we analyze the recovery ability of the convex
`2/`1 program for finite dimensions. We also study robustness of
the method in the presence of model uncertainties and noise. Our
results rely on a new notion of block RIP, which is less stringent
than standard RIP. We prove that if D satisfies block RIP, then x
can be recovered exactly using the mixed `2/`1 program. The pro-
posed algorithm is also shown to be stable in the presence of noise
and mismodeling errors under block RIP. We then prove that ran-
dom matrices satisfy the block RIP with overwhelming probability.
Moreover, the probability to satisfy the block RIP is substantially
larger than that of satisfying standard RIP. These results establish
that a block-sparse vector x can be recovered efficiently and stably
with overwhelming probability using a random measurement matrix.
Furthermore, the recovery performance is higher when exploiting
block sparsity. Complementary results based on mutual coherence
appear in [9], where equivalence is also established for an extension
of orthogonal matching pursuit to the block-sparse case.

An interesting special case of the block-sparse model is the mul-
tiple measurement vector (MMV) problem, in which we measure a
set of vectors that share a joint sparsity pattern. MMV recovery al-
gorithms were studied in [3, 4, 10–12]. Equivalence results based on
mutual coherence for a mixed `p/`1 program were derived in [11],
which turn out to be the same as that obtained from a single mea-
surement problem. This is in contrast to the fact that in practice,
MMV methods tend to outperform algorithms that treat each of the
vectors separately. In order to develop meaningful equivalence re-
sults, we cast the MMV problem as one of block-sparse recovery.
Our mixed `2/`1 method translates into minimizing the sum of the
`2 row-norms of the matrix representing the MMV set. Our general
results lead to RIP-based equivalence conditions for this algorithm.
Furthermore, our framework suggests a different sampling method
for MMV problems which tends to increase the recovery rate. The
equivalence condition we obtain in this case is stronger than the sin-
gle measurement setting. As we show, this method leads to superior
recovery rate in comparison to alternative MMV algorithms.

Finally, we show how the block sparsity model can be used in
order to treat the problem of sampling signals over a union of sub-
spaces. Traditional sampling theories consider the problem of re-
constructing an unknown signal x in an arbitrary Hilbert space, from
a series of samples. A prevalent assumption which often guaran-



tees a unique signal consistent with the given measurements is that
x lies in a known subspace. Recently, there has been growing inter-
est in nonlinear but structured signal models, in which x is assumed
to lie in a union of subspaces [12–18]. In order to ensure stable
and efficient recovery from the samples, some underlying structure
is needed. Here we focus on the case in which x lies in a finite union
of finite-dimensional spaces and the samples are modeled as inner
products with an arbitrary set of sampling functions. Specifically, we
consider the case in which x resides in a sum of k subspaces, chosen
from a given set of m subspaces Aj , 1 ≤ j ≤ m. However, which
subspaces comprise the sum is unknown. This setting is a special
case of the more general union model considered in [15, 16]. Con-
ditions under which unique and stable sampling are possible were
developed in [15,16]. However, no concrete algorithm was provided
to recover such a signal from a given set of samples in a stable and
efficient manner. Here we show that this problem can be formulated
as one of recovering a block-sparse vector. Relying on our previous
results leads to an efficient convex algorithm that often recovers the
original signal from the given samples. In addition, this method is
stable and robust in the sense that the reconstruction error is bounded
when x does not lie in the union, and in the presence of noise.

The remaining of the paper is organized as follows. The block-
sparse model is described in Section 2. In this section, we also in-
troduce the block RIP and present an algorithm with combinatorial
complexity whose solution is the true unknown x. A convex re-
laxation of this algorithm is proposed in Section 3. We then derive
equivalence conditions based on the notion of block RIP. We also
prove that our method is robust and stable in the presence of noise
and modeling errors. This approach is specialized to MMV sampling
in Section 4. In Section 5 we prove that random ensembles tend to
satisfy the block RIP with high probability. Finally, we apply the
results to sampling over a union of subspaces in Section 6.

2. BLOCK SPARSITY AND BLOCK RIP

2.1. Block Sparsity

We consider the problem of recovering a vector x ∈ RN from mea-
surement y ∈ RL given by

y = Dx (1)

where D is a measurement matrix of size L ×N with L < N . We
treat x as consisting of blocks with given lengths d`, 1 ≤ ` ≤ M .
Denoting by x[`] the `th sub-block of length d` we can write x as

xT = [x1 . . . xd1︸ ︷︷ ︸
x[1]

. . . xN−dM+1 . . . xN︸ ︷︷ ︸
x[M ]

]T . (2)

A vector x ∈ RN is block k-sparse over I = {d1, . . . , dM} with
N =

∑
` d` if x[`] has nonzero norm for at most k indices `. When

d` = 1, block-sparsity reduces to conventional sparsity. Denoting

‖x‖0,I =

M∑

`=1

I(‖x[`]‖2 > 0), (3)

where I(‖x[`]‖2 > 0) is an indicator function that obtains the value
1 if ‖x[`]‖2 > 0 and 0 otherwise, a block k-sparse vector x can
be defined by ‖x‖0,I ≤ k. Here ‖x‖2 =

√
xT x is the standard

Euclidean norm. An example of a block-sparse vector with k = 2 is
depicted in Fig. 1.

Our goal is to provide conditions on D ensuring that the block-
sparse vector x can be reconstructed from measurements of the form

x
T

=

Fig. 1. A block-sparse vector x over I = {d1 = 3, d2 = 4, d3 =
2, d4 = 6, d5 = 1}. The gray areas represent 10 non-zero entries
which occupy two blocks.

(1) through computationally efficient algorithms. We begin by stat-
ing a condition under which there is a unique block-sparse x consis-
tent with the measurements y [19].

Proposition 1 The representation (1) is unique if and only if Dc 6=
0 for every c 6= 0 that is block 2k-sparse.

Similarly to (2), we can represent D as a concatenation of
column-blocks D[`] of size L× d`:

D = [d1 . . . dd1︸ ︷︷ ︸
D[1]

. . . dN−dM+1 . . . dN︸ ︷︷ ︸
D[M ]

]. (4)

Using these sub-blocks we can write y = Dx as

y =

M∑

`=1

D[`]x[`]. (5)

From Proposition 1 it follows that the columns of D[`] are linearly
independent for all `.

2.2. Block RIP

Invertibility and stability are intimately related to RIP, which we gen-
eralize here to the block-sparse setting. A matrix D of size L×N is
said to have the RIP [2, 6] if there exists a constant δk ∈ [0, 1) such
that for every k-sparse x ∈ RN ,

(1− δk)‖x‖22 ≤ ‖Dx‖22 ≤ (1 + δk)‖x‖22. (6)

Extending this property to block-sparse vectors leads to the follow-
ing definition:

Definition 1 Let D : RN → RL be a given matrix. Then D has the
block RIP over I = {d1, . . . , dM} with parameter δk|I if for every
x ∈ RN that is block k-sparse over I we have that

(1− δk|I)‖x‖22 ≤ ‖Dx‖22 ≤ (1 + δk|I)‖x‖22. (7)

By abuse of notation, we use δk for the block-RIP constant δk|I
when it is clear from the context that we refer to blocks. Block-RIP
is a special case of the A-restricted isometry defined in [16].

Note that a block k-sparse vector over I is m-sparse in the con-
ventional sense where m is the sum of the k largest values in I, since
it has at most m nonzero elements. If we require D to satisfy RIP
for all m-sparse vectors, then (7) must hold for all 2m-sparse vec-
tors x. Since we only require RIP for block sparse signals, (7) has to
be satisfied for a certain subset of 2m-sparse signals, namely those
that have block sparsity. As a result, the block-RIP constant δk|I is
typically smaller than δm.

From our previous discussion it follows that if D satisfies the
block RIP (7) with δ2k|I < 1, then there is a unique value of x
consistent with (1). The question is how to find x in practice. Below
we present an algorithm that will in principle find the unique x from
the samples y. Unfortunately, though, it has exponential complexity.



In the next section we show that under a stronger condition on δ2k

we can recover x in a stable and efficient manner.
Our first claim is that x can be uniquely recovered by solving

min
x

‖x‖0,I

s. t. y = Dx. (8)

To show that (8) will indeed recover the true value of x, suppose that
there exists a x′ such that Dx′ = y and ‖x′‖0,I ≤ ‖x‖0,I ≤ k.
Since both x,x′ are consistent with the measurements,

0 = D(x− x′) = Dc, (9)

where ‖c‖0,I ≤ 2k so that c is a block 2k-sparse vector. Since D
satisfies (7) with δ2k < 1, we must have that d = 0 or x = x′.

3. CONVEX RECOVERY ALGORITHM

3.1. Noise-Free Recovery

We now develop a convex optimization problem instead of (8) to
approximate x. Our approach is to minimize the sum of the energy
in the blocks x[`]. To write down the problem explicitly, define the
mixed `2/`1 norm over the index set I = {d1, . . . , dM} as

‖x‖2,I =

M∑

`=1

‖x[`]‖2. (10)

Our proposed reconstruction algorithm is

min
x

‖x‖2,I

s. t. y = Dx. (11)

Problem (11) is a second order cone program (SOCP) and can there-
fore be solved efficiently using standard software packages [19]. The
next theorem establishes that the solution to (11) is the true x as long
as δ2k is small enough. The proof can be found in [19].

Theorem 1 Let y = Dx0 be measurements of a block k-sparse
vector x0. If D satisfies the block RIP (7) with δ2k <

√
2− 1 then

1. there is a unique block k- sparse vector x consistent with y;

2. the SOCP (11) has a unique solution;

3. the solution to the SOCP is equal to x0.

Theorem 1 provides a gain over standard CS. Specifically, it is
shown in [6] that if x is k-sparse and the measurement matrix D sat-
isfies the standard RIP with δ2k <

√
2− 1, then x can be recovered

exactly from y = Dx via the linear program:

min
x

‖x‖1
s. t. y = Dx, (12)

where ‖x‖1 =
∑

` |x(`)| is the `1 norm, and x(`) denotes the `th
element of x. Since any block k-sparse vector is also m-sparse with
m equal to the sum of the k largest values of d`, we can find x0 of
Theorem 1 by solving (12) if δ2m is small enough. However, this
approach does not exploit the fact that the non-zero values appear in
blocks. On the other hand, (11) explicitly takes the block structure
of x0 into account. Therefore, the condition of Theorem 1 is not as
stringent as that obtained by using equivalence results with respect
to (12). Indeed, the block RIP (7) bounds the norm of ‖Dx‖ over
block-sparse vectors x, while standard RIP considers all choices of

x, also those that are not block 2k-sparse. Therefore, the value of
δ2k|I in (7) can be lower than δk, obtained from (6) with k = 2m.

To emphasize the advantage of block RIP, consider the following
matrix, separated into three blocks of two columns each:

D =




−1 1 0 0 0 1
0 2 −1 0 0 3
0 3 0 −1 0 1
0 1 0 0 −1 1


 ·B, (13)

where B is a diagonal matrix that results in unit-norm columns of
D, i.e., B = diag (1, 15, 1, 1, 1, 12)−1/2. In this example M = 3
and I = {d1 = 2, d2 = 2, d3 = 2}. Suppose that x is block
1-sparse, which corresponds to at most two non-zero values. Brute-
force calculations show that the smallest value of δ2 satisfying the
standard RIP (6) is δ2 = 0.866. On the other hand, the block-RIP
(7) corresponding to the case in which the two-non zero elements
are restricted to one block is satisfied with δ1|I = 0.289. Increasing
the number of non-zero elements to k = 4, the standard RIP (6)
does not hold for any δ4 ∈ [0, 1). This implies that there can be
two 4-sparse vectors that result in the same measurements y = Dx.
In contrast, δ2|I = 0.966 satisfies the lower bound in (7), which
allows 4 non-zero values grouped into two blocks. Consequently, y
uniquely specifies x when the non-zeros are restricted to blocks.

3.2. Robust Recovery

Using ideas similar to [6] we can show that even when x is not ex-
actly block k-sparse, and there is noise in the measurements, the re-
covery algorithm (11) can approximate the best block k-sparse vec-
tor. Specifically, given x ∈ RN , we denote by xk the best block
k-sparse approximation of x over I. Thus,

xk = arg min
‖d‖0,I≤k

‖x− d‖2,I , (14)

over all block k-sparse vectors d. The measurements (1) are cor-
rupted by bounded noise so that

y = Dx + z, (15)

where ‖z‖2 ≤ ε. In order to recover x we use the modified SOCP:

min
x

‖x‖2,I

s. t. ‖y −Dx‖2 ≤ ε. (16)

Theorem 2, proven in [19], shows that even when x is not block k-
sparse and the measurements are noisy, the best k approximation can
be well approximated using (16).

Theorem 2 Let y = Dx0 + z be noisy measurements of a vector
x0. Let xk denote the best block k-sparse approximation of x0, and
let x′ be a solution to (16). If D satisfies the block RIP (7) with
δ2k <

√
2− 1 then

‖x0 − x′‖2 ≤ 2(1− δ2k)

1− (1 +
√

2)δ2k

k−1/2‖x0 − xk‖2,I

+
4
√

1 + δ2k

1− (1 +
√

2)δ2k

ε. (17)

Note that the first term in (17) is a result of the fact that x0 is not ex-
actly block k-sparse. The second expression quantifies the recovery
error due to the noise.



In summary, as long as D satisfies block-RIP (7) with a suit-
able constant, any block k-sparse vector x can be perfectly recovered
from its samples y = Dx using (11). This algorithm is stable in the
sense that by slightly modifying it as in (16) it can tolerate noise in
a way that ensures that the norm of the recovery error is bounded by
the noise level. Furthermore, if x is not exactly block k-sparse, then
its best block k-sparse approximation can be approached.

3.3. Advantage of Block Sparsity

To demonstrate the advantage of our algorithm over (12), consider
the matrix D of (13). In Section 3 it was shown that the block RIP
constants are smaller than the standard block RIP constants for this
choice of D. This suggests that there are vectors x for which (11)
will be able to recover them exactly from measurements y = Dx
while standard `1 minimization will fail. To illustrate this behavior,
let x = [0, 0, 1,−1,−1, 0.1]T be a 4-sparse vector, in which the
non-zero elements are known to appear in blocks of length 2. The
prior knowledge that x is 4-sparse is not sufficient to determine x
from y. In contrast, there is a unique block-sparse vector consistent
with y. Furthermore, our algorithm which is a relaxed version of (8),
finds the correct x while standard `1 minimization fails in this case.

We further compare the recovery performance of `1 minimiza-
tion (12) and our algorithm (11) for an extensive set of random sig-
nals. In the experiment, we draw a matrix D of size 25 × 50 from
the Gaussian ensemble. The input vector x is also randomly gen-
erated as a block-sparse vector with blocks of length 5. We draw
1 ≤ k ≤ 25 non-zero entries from a zero-mean unit variance normal
distribution and divide them into blocks which are chosen uniformly
at random within x. Each of the algorithms is executed based on the
measurements y = Dx. In Fig. 2 we plot the fraction of successful
reconstructions for each k over 500 experiments. The results illus-
trate the advantage of incorporating the block-sparsity structure into
the optimization program. An interesting feature of the graph is that
when using the block-sparse recovery approach, the performance is
roughly constant over the block-length (5 in this example). This ex-
plains the performance advantage over standard sparse recovery.
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Fig. 2. Recovery rate of block-sparse signals using standard `1 min-
imization (basis pursuit) and the mixed `2/`1 algorithm.

4. APPLICATION TO MMV MODELS

We now specialize our algorithm and equivalence results to the
MMV problem. This leads to two contributions which we discuss
in this section: The first is an equivalence result based on RIP for

a mixed-norm MMV algorithm. The second is a new measurement
strategy in MMV problems that leads to improved performance over
conventional MMV methods, both in simulations and as measured
by the RIP-based equivalence condition. In contrast to previous
equivalence results, for this strategy we show that even in the worst
case, improved performance over the single measurement setting
can be guaranteed.

4.1. Equivalence Results

In an MMV setting we are given a matrix of measurements Y that
is obtained by measuring a set of k-sparse vectors x` which are the
columns of a matrix X. The distinguishing feature of the MMV
setting is that the non-zero elements of x` are assumed to share a
joint sparsity pattern. Thus,

Y = MX, (18)

where X has at most k non-zero rows, and M is a given sampling
matrix. This problem can be transformed into that of recovering a
block k-sparse signal by noting that if we define x = vec(XT ) as
the vector obtained by stacking the rows of X, then x is block k-
sparse where each block has length d. From (18) we have that

vec(YT ) = (M⊗ I) vec(XT ), (19)

where A⊗B is the Kronecker product between matrices A and B.
Denoting by y = vec(YT ) and D = M ⊗ I, the measurements
can be expressed as y = Dx where x is a block-sparse vector with
blocks of length d. Therefore, the uniqueness conditions and the
results of Theorems 1 and 2 can be specified to this problem.

Recovery algorithms for MMV using convex optimization pro-
grams were studied in [4, 11] and several greedy algorithms were
proposed in [3, 10]. Specifically, in [3, 4, 10, 11] the authors study a
class of optimization programs, which we refer to as M-BP:

M-BP(`q): min

L∑
i=1

‖Xi‖p
q s. t. Y = MX, (20)

where Xi is the ith row of X. The choice p = 1, q = ∞ was con-
sidered in [4], while [11] treated the case of p = 1 and arbitrary q.
Using p ≤ 1 and q = 2 was suggested in [10], leading to the iter-
ative algorithm M-FOCUSS. For p = 1, q = 2, the program (20)
has a global minimum which M-FOCUSS is proven to find. A nice
comparison between these methods can be found in [4]. Equivalence
for MMV algorithms based on RIP analysis does not appear in pre-
vious papers. The most detailed theoretical analysis can be found
in [11] which establishes equivalence results based on mutual co-
herence. The results imply equivalence for (20) with p = 1 under
conditions equal to those obtained for the single measurement case.
Note that RIP analysis typically leads to tighter equivalence bounds
than mutual coherence analysis.

Since we can cast the MMV problem as one of block-sparse
recovery, we may apply our equivalence results of Theorem 1 to this
setting leading to RIP-based equivalence. To this end we first note
that applying the SOCP (11) to the effective measurement vector y
is the same as solving (20) with p = 1, q = 2. Thus the equivalence
conditions we develop below relate to this program. Next, if z =
Dx where x is a block 2k-sparse vector and D = M ⊗ Id, then
taking the structure of D into account, Z = MX where X is a size
L×d matrix whose ith row is equal to x[i], and similarly for Z. The
block sparsity of x implies that X has at most 2k non-zero rows.



The squared `2 norm ‖z‖22 is equal to the squared `2 norm of the
rows of Z which can be written as

‖z‖22 = ‖Z‖2F = Tr(ZT Z), (21)

where ‖Z‖F denotes the Frobenius norm. Since ‖x‖22 = ‖X‖2F the
RIP condition becomes

(1− δ2k)Tr(XT X) ≤ Tr(XT MT MX) ≤ (1 + δ2k)Tr(XT X),
(22)

for any L× d matrix X with at most 2k non-zero rows.
It is straightforward to show (see [19]) that (22) is equivalent to

the standard RIP condition

(1− δ2k)‖x‖22 ≤ ‖Mx‖22 ≤ (1 + δ2k)‖x‖22, (23)

for any length L vector x that is 2k-sparse. Therefore, we conclude
that if M satisfies the conventional RIP condition (23), then the al-
gorithm (20) with p = 1, q = 2 will recover the true unknown X.
This requirement reduces to that we would obtain if we tried to re-
cover each column of X separately, using the standard `1 approach
(12). As we already noted, previous equivalence results for MMV
algorithms also share this feature. Although this condition guaran-
tees that processing the vectors jointly does not harm the recovery
ability, in practice exploiting the joint sparsity pattern of X via (20)
leads to improved results. Unfortunately, this behavior is not cap-
tured by any of the known equivalence conditions. This is due to the
special structure of D = M⊗ I. Since each measurement vector yi

is affected only by the corresponding vector xi, it is clear that in the
worst-case we can choose xi = x for some vector x. In this case,
all the yis are equal so that adding measurement vectors will not im-
prove our recovery ability. Consequently, worst-case analysis based
on the standard measurement model for MMV problems cannot lead
to improved performance over the single measurement case.

4.2. Improved MMV Recovery

We now introduce an alternative measurement technique for MMV
problems that can lead to improved worst-case behavior, as mea-
sured by RIP, over the single channel case. To enhance the perfor-
mance of MMV recovery, we note that when we allow for an arbi-
trary (unstructured) D, the RIP condition of Theorem 1 is weaker
than the standard RIP requirement for recovering k-sparse vectors.
This suggests that we can improve the performance of MMV meth-
ods by converting the problem into a general block sparsity problem,
and then sampling with an arbitrary unstructured matrix D rather
than the choice D = MT ⊗ Id. The tradeoff introduced is increased
computational complexity since each measurement is based on all
input vectors. The theoretical conditions will now be looser, since
block-RIP is weaker than standard RIP. Furthermore, in practice,
this approach often improves the performance over separable MMV
measurement techniques as we illustrate in the following example.

In the example, we compare the performance of several MMV
algorithms for recovering X in the model Y = MX, with our
method based on block sparsity in which the measurements y are
obtained via y = Dx where x = vec(XT ) and D is a dense ma-
trix. Choosing D as a block diagonal matrix with blocks equal to
M results in the standard MMV measurement model. The effective
matrices D have the same size in the case in which it is block diag-
onal and when it is dense. To compare the performance of (11) with
a dense D to that of (20) with a block diagonal D, we compute the
empirical recovery rate of the methods in the same way performed
in [12]. The matrices M and D are drawn randomly from a Gaus-
sian ensemble. In our example, we choose ` = 20, L = 30, d = 5

where ` is the number of rows in Y. The matrix X is generated ran-
domly by first selecting the k non-zero rows uniformly at random,
and then drawing the elements in these rows from a normal distri-
bution. The empirical recovery rates using the methods of (20) for
different choices of q and p, ReMBO [12] and our algorithm (11)
with dense D are depicted in Fig. 3. When the index p is omitted
it is equal to 1. Evidently, our algorithm performs better than most
popular optimization techniques for MMV systems. We stress that
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Fig. 3. Recovery rate for different number k of non-zero rows in X.
Each point represents an average recovery rate over 500 simulations.

the performance advantage is due to the joint measurement process
rather than a new recovery algorithm.

5. RANDOM MATRICES

Theorems 1 and 2 establish that a sufficiently small block RIP con-
stant δ2k|I ensures exact recovery of the coefficient vector x. We
now prove that random matrices are likely to satisfy this require-
ment. Specifically, we show that the probability that δk|I exceeds a
certain threshold decays exponentially in the length of x. Our ap-
proach relies on results of [5] developed for standard RIP, however,
exploiting the block structure of x leads to a much faster decay rate.

Proposition 2 Suppose D is an n × N matrix from the Gaussian
ensemble, namely [D]ik ∼ N (0, 1

n
). Let δk|I be the smallest value

satisfying the block RIP (7) over I = {d1 = d, . . . , dM = d},
assuming N = md for some integer m. Then, for every ε > 0 the
block RIP constant δk|I obeys (for n, N large enough, and fixed d)

Prob
(√

1 + δk|I > 1 + (1 + ε)f(r)
)

≤ 2e−NH(r)ε · e−m(d−1)H(r). (24)

Here, the ratio r = kd/N is fixed, f(r) =
√

N
n

(√
r +

√
2H(r)

)
,

and H(q) = −q log q − (1 − q) log(1 − q) is the entropy function
defined for 0 < q < 1.

Proposition 2 reduces to the result of [5] when d = 1. However,
since f(r) is independent of d, it follows that for d > 1 and fixed
problem dimensions n, N, r, block-RIP constants are smaller than
the standard RIP constant. The second exponent in the right-hand-
side of (24) is responsible for this behavior.

The following corollary allows us to emphasize the asymptotic
behavior of block-RIP constants per given number of samples.



Corollary 3 Consider the setting of Proposition 2, and define

g(r) =
√

N
n

(√
r +

√
2H(r)d−1

)
. Then:

Prob
(√

1 + δk|I > 1 + (1 + ε)g(r)
)
≤ 2e−mH(r)ε. (25)

To evaluate the asymptotic behavior of block-RIP we note that
for every ε > 0 the right-hand-side of (25) goes to zero when N =
md →∞. Consequently, this means that for fixed d

δk|I < ρ(r)
4
=− 1 + [1 + g(r)]2, (26)

with overwhelming probability. In Fig. 4 we compute ρ(r) for sev-
eral problem dimensions and compare it with standard-RIP which is
obtained when d = 1. Evidently, as the non-zero entries are forced
to block structure, a wider range of sparsity ratios r satisfy the con-
dition of Theorem 1.
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Fig. 4. The upper bound on δk|I as a function of the sparsity ratio
r, for three sampling rates n/N , and three block structures d =

1, 5, 20. The horizontal threshold is fixed on ρ∗ =
√

2− 1.

Although Fig. 4 shows advantage for block-RIP, the absolute
sparsity ratios predicted by the theory are pessimistic as also noted
in [5] for the case d = 1. To offer a more optimistic viewpoint, the
RIP and block-RIP constants were computed brute-force for several
instances of D from the Gaussian ensemble. Fig. 5 plot the results
and qualitatively affirm that block-RIP constants are more ”likely”
to be smaller than their standard RIP counterparts, even when the
dimensions n, N are relatively small.

An important question is how many samples are needed roughly
in order to guarantee stable recovery. This question is addressed in
the following proposition, which quotes a result from [20].

Proposition 3 ( [20, Theorem 3.3]) Consider the setting of Propo-
sition 2, namely a random Gaussian matrix D of size n × N and
block sparse signals over I = {d1 = d, . . . , dm = d}, where
N = md for some integer m. Let t > 0 and 0 < δ < 1 be constant
numbers. If

n ≥ 36

7δ

(
ln(2L) + kd ln

(
12

δ

)
+ t

)
, (27)

where L =
(

m
k

)
, then D satisfies the block-RIP (7) with restricted

isometry constant δk|I = δ, with probability at least 1− e−t.

As observed in [20], the first term in (27) has the dominant
impact on the required number of measurements in an asymptotic
sense. Specifically, for block sparse signals

(m/k)k ≤ L =

(
m

k

)
≤ (e m/k)k. (28)

Thus, for a given fraction of nonzeros r = kd/N , roughly n ≈
k log(m/k) = −k log(r) measurements are needed. For compari-
son, to satisfy the standard RIP a larger number n ≈ −kd log(r) is
required.

6. UNION OF SUBSPACES

We now show how the concept of block sparsity can be used in or-
der to develop algorithms for recovering a signal from a union of
subspaces in a stable and efficient manner.

6.1. Sampling Over a Union

Traditional sampling theory deals with the problem of recovering an
unknown signal x ∈ H from a set of n samples. The signal x can be
a function of time x = x(t), or can represent a finite-length vector
x = x. Typically it is assumed that x lies in a given subspace A of
H [21–23]. The most common type of sampling is linear sampling
in which

y` = 〈s`, x〉, 1 ≤ ` ≤ n, (29)

for a set of functions s` ∈ H [21, 24–28]. Here 〈x, y〉 denotes the
standard inner product on H. Nonlinear sampling is treated in [29].
However, here our focus will be on the linear case.

When H = RN the unknown x = x as well as the sampling
functions s` = s` are vectors in RN . Therefore, the samples can
be written conveniently in matrix form as y = ST x, where S is the
matrix with columns s`. In the more general case in which H = L2

or any other abstract Hilbert space, we can use the set transforma-
tion notation in order to conveniently represent the samples. A set
transformation S : Rn → H corresponding to sampling vectors
{s` ∈ H, 1 ≤ ` ≤ n} is defined by

Sx =

n∑

`=1

x(`)s` (30)

for all x ∈ Rn. From the definition of the adjoint, if x = S∗x, then
x(`) = 〈s`, x〉. Note that when H = RN , S = S and S∗ = ST .
Using this notation, we can always express the samples as

y = S∗x, (31)

where S is a set transformation for arbitrary H, and an appropriate
matrix when H = RN .

Our goal is to recover x from the samples y ∈ Rn. If the vec-
tors s` do not span the entire space H, then there are many possible
signals x consistent with the measurements y. More specifically, if
we define by S the sampling space spanned by the vectors s`, then
clearly S∗v = 0 for any v ∈ S⊥. Therefore, if S⊥ is not the trivial
space then adding such a vector v to any solution x of (31) will result
in the same samples y. A prior very often assumed is that x lies in a
given subspace A of H [21–23,30]. If A and S have the same finite
dimension, and S⊥ and A intersect only at the 0 vector, then x can
be perfectly recovered from the samples y [22, 23].

Evidently, when subspace information is available, perfect re-
construction can often be guaranteed. Furthermore, in all of the cases
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Fig. 5. The standard and block-RIP constants δk|I for three different dimensions n, N . Each graph represent an average over 10 instances of
random matrix D.

above, recovery can be implemented by a simple linear transforma-
tion of the given samples (31). However, there are many practical
scenarios in which x does not necessarily lie in a subspace. Never-
theless, x can often be described as lying in a union of subspaces

U =
⋃

`

V`, (32)

where each V` is a subspace. Thus, x belongs to one of the V`,
but we do not know a priori to which one [15, 16]. Our goal is to
recover a vector x lying in a union of subspaces, from a given set
of samples. In principle, if we knew which subspace x belonged to,
then reconstruction can be obtained using standard sampling results.
However, here the problem is more involved because conceptually
we first need to identify the correct subspace and only then can we
recover the signal within the space.

Previous work on sampling over a union focused on invertibility
and stability results [15, 16]. In contrast, here, our main interest is
in developing concrete recovery algorithms that are provably robust.
To achieve this goal, we limit our attention to a subclass of (32) for
which stable recovery algorithms can be developed and analyzed.
Specifically, we treat the case in which each Vi has the additional
structure

Vi =
⊕

`=k

A`, (33)

where {A`, 1 ≤ ` ≤ M} are a given set of disjoint subspaces, and
|`| = k denotes a sum over k indices. Thus, each subspace Vi cor-
responds to a different choice of k subspaces A` that comprise the
sum. We assume that M and the dimensions d` = dim(A`) of the
subspaces A` are finite. Given n samples (31) and the knowledge
that x lies in exactly one of the subspaces Vi, we would like to re-
cover the unknown signal x. In this setting, there are

(
M
k

)
possible

subspaces comprising the union.

6.2. Connection with Block Sparsity

To solve the recovery problem, we show that x can be represented in
terms of a block k-sparse vector. Our problem can then be reduced to
that of recovering a block-sparse vector from a given set of samples.

To this end, we choose a basis for each A`. Denoting by A` :
Rd` → H a set transformation corresponding to a basis for A`, any
x in the union can be written as

x =
∑

|`|=k

A`c`, (34)

where c` ∈ Rd` are the representation coefficients in A`, and here
|`| = k denotes a sum over a set of k indices. Our goal is to recover
any x of the form (34) from the samples (31).

Define A : RN → H as the set transformation that is a result of
concatenating the different A`, with N =

∑
` d`. Then

Ac =

M∑

`=1

A`c[`]. (35)

When H = RN for some N , A` = A` is a matrix and A = A
is the matrix obtained by column-wise concatenating A`. If the jth
subspace Aj does not appear in the union, then c[j] = 0. Thus, x
can be written as x = Ac where there are at most k non-zero blocks
c[`]. The measurements y = S∗x can be expressed in terms of c as

y = S∗Ac. (36)

Since c is block k-sparse, we have shown that our problem is equiv-
alent to that of recovering a block-sparse vector with D = S∗A.
Therefore, the results we developed can be applied to this setting.

Specifically, we first determine c from y by solving the SOCP
(16) in the presence of noise with D = S∗A. Once c is found, we
can construct the original signal x via (34).

6.3. Relation to Previous Results

Previous treatments of the union model have considered invertibility
and stability conditions. In contrast, here we provide concrete recov-
ery algorithms for a signal over a structured union. We also show that
the recovery is robust with respect to noise and mismodeling errors.

In our model, we assumed a finite union of subspaces as well
as finite dimension of the underlying spaces. An interesting future
direction to explore is the extension of the ideas developed herein to
the more challenging problem of recovering x in a possibly infinite
union of subspaces, which are not necessarily finite-dimensional. In
some of our previous work, we have shown that a signal lying in a
union of shift-invariant subspaces can be recovered efficiently from
certain sets of sampling functions [12–14,17,18]. In our future work,
we intend to combine these results with those in the current paper in
order to develop a more general theory for recovery from a union of
subspaces.

A recent preprint [31] proposes a new framework called model-
based compressive sensing (MCS). The MCS approach assumes a
signal model in which only certain predefined sparsity patterns may



appear. In general, obtaining efficient recovery algorithms in such
scenarios is difficult, unless further structure is imposed on the spar-
sity patterns. Therefore, the authors consider two types of sparse
vectors: block sparsity as treated here, and a wavelet tree model.
For these settings, they generalize two known greedy algorithms:
CoSaMP [32] and iterative hard thresholding (IHT) [20]. The union
model developed here is broader than the block-sparse setting treated
in [31] in the sense that it allows to model linear dependencies be-
tween the nonzero values rather than only between their locations,
by appropriate choice of subspaces in (32), (33). In addition, we aim
at optimization-based recovery algorithms which require selecting
the objective in order to promote the model properties.
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