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ABSTRACT c that is greater than 2. Nevertheless, the number of measurements
satisfies m « n which still represents a substantial saving.

The classical problem discussed in the literature of compressed sens- saniexension ofith bsti l is whenta spar m.
ing is recovering a sparse vector from a relatively small number of X, withnonmor tha K Ca zer is sampe wit
linear non-adaptive projections. In this paper, we study the recov- X, wth no more than K non-identical zero rows, is sampled with

ery of a continuous set of sparse vectors sharing a common set of as Multiple-Measurement-Vectors (MMV), while the basic modellocations of their non-zero entries. This model includes the clas- is named Single-Measurement-Vector (SMV). Clearly, each of the
sical sparse representation problem, and also its known extensions. column vectors of X is sparse. However, in an MMV problem we
We develop a method for joint recovery of the entire set of sparse have an additional assumption that the non-zero values share com-
vectors by the solution of just one finite dimensional problem. The mon locations in all the columns of X. Theoretical results for MMV
proposed strategy is exact and does not use heuristics or discretiza-
tion methods. We then apply our method to two applications: The so t in someasX ca nbe Inedifrom usingl tha

firt i spctrm-bindrecnstucton f mltiban anlogsigals m =2K measurements per column [5]. In addition, practical tech-first iS spectrum-blind reconstruction of multi-band analog signals nqe o M edt eoe rmm=c esrmns
from point-wise samples at a sub-Nyquist rate. The second appli- nqer MMVtend to rover X fo M cK mesueens
cation is to the well studied multiple-measurement-vectors problem we the vale we tha in theSMV casd[][6].
which addresses the recovery of a finite set of sparse vectors. In this paper, we study a general model that includes both the

SMV and MMV formulations. In our model, a continuous set of
Index Terms- Joint sparsity prior, multiband sampling, sparse vectors sharing a common non-zero locations set is sampled

multiple-measurement vector (MMV), nonuniform periodic sam- by a matrix A, producing a corresponding continuous set of mea-
pling, sparse representation. surement vectors. We show that theoretical results of MMV are eas-

ily generalized to this scenario. However, treating the continuous

1. INTRODUCTION case is inherently more complicated as the dimension of the prob-
lem is infinite.

Digital applications have developed rapidly over the last few Our main contribution is the development of an exact method
decades. This on-going development lead to increased data rates to transform the continuous problem into a finite dimensional one
entering the signal processing units resulting in the need for constant using the prior knowledge of joint sparsity. Our strategy does not
speedup in the operating rates of all digital hardware components. involve heuristics or discretization methods. Theoretically, this ap-
Indeed, the core frequency of DSP processors as well as other pe- proach allows for the exact recovery of the continuous set of vectors
ripheral devices has been greatly accelerated. However, the essential by solving a finite dimensional problem. Moreover, we show that
stage of the analog-to-digital (A2D) conversion, which is part of the casted problem is always an MMV, and thus known practical CS
the front-end of every typical digital application, remains a major techniques can be employed to solve it.
bottleneck. This is partially due to technical limitations, but mostly To demonstrate our approach, we present an application to
because of a traditional assumption that the sampling stage must spectrum-blind reconstruction of multi-band analog signals from
acquire the data at the Nyquist rate. When prior knowledge on the sub-Nyquist samples. Specifically, we consider the problem of
signal structure exists, this assumption is often quite restrictive. sampling and reconstruction a multi-band signal when the band

The literature of compressed sensing (CS) addresses this prob- locations are unknown. To-date, reconstruction methods for this
lem from a discrete point of view [1],[2]. This theory suggests that class of signals are non-blind as the spectral structure of the signal
a sparse vector x C R', with no more than K << n non-zero is required in the design of the reconstruction stage. We show that
entries, can be recovered from a relatively small number of linear the spectrum-blind reconstruction problem can be reformulated and
non-adaptive measurements y C R'. The vector y is produced by a solved using the continuous framework developed in this paper. The
linear transformation y = Ax. The matrix A is usually thought sampling rate required to allow perfect reconstruction is shown to be
of as the sampling operator, although both x and y are discrete. dramatically less than the Nyquist rate. Evidently, this application
Clearly, m must be at least twice the number of non-zero values introduces a solution to the A2D conversion bottleneck in the form
in x, namely m > 2K, since the number of unknowns is 2K: the of a truly analog compressed sensing technique.
non-zero values and their locations. Recovery of a sparse solution Finally, we discuss the computational advantages of our method
x from measurements y is known to be NP-hard. Instead, CS ideas for the solution of a redundant MMV, namely a solution matrix X
suggest tractable techniques [3],[4] for the recovery of x from y, with non-full column rank. As we show, our approach leads to a new
where m =cK measurements are required with a typical value of reconstruction strategy for this problem that reduces the dimension
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of the original MMV and the computational efforts in finding X. 2.2.3. Joint sparsity prior
This paper is organized as follows. In Section 2 the problem is Both previous priors are local since there is no relation between the

formulated and we discuss several relevant priors. Transformation of constraints imposed on .(A) for different values of A. In contrast,
the continuous problem into a finite dimensional MMV is described the jointspasit or is for common propes isAssciat,

in Sctin 3.Appicaionsto ultiban sinalsandMMV re is- the Joint sparsity prior iS global: a common property iS associated
with all the vectors of the solution set x(A). Specifically, it is as-cussed in Sections 4 and 5, respectively. sumed that there exists some set S of size no more than K, such that
each x(A) is sparse and that the set of locations corresponding to

2. CONTINUOUS JOINT SPARSITY MODEL non-zero values is a subset of S. Note that as in the vector sparsity
prior, the exact knowledge of S is not assumed, only its size.

2.1. Problem formulation Formally, define the index set

Consider the following parametric linear system: I(x(A)) = {k Xk(A) °}' (2)

y(A) = Ax(A), A c A, that contains the locations of the non-zero values of x(A). The set
I(x(A)) is finite and depends on A, since the locations of the non-

in which A is a known m x n matrix with m < n. For every A C A, zero values in X(A) varies with A. Next, define the union
the vector y(A) is given while x(A) is unknown. The parameter A S I(=-(A)) U I(-(A)). (3)
belongs to some known set A. We denote x(A) as the set of vectors -EA
{x(A)}AME and assume that there exists a solution setx(A) for (1).
Our goal is to determine x(A) from the data y(A) and the knowledge The joint sparsity prior assumes that SI < K, where SI denotes
of A. the size of S. In this case, x(A) is called a K-sparse solution set.

For every A, the linear system of (1) has fewer equations than We emphasize that the joint sparsity prior implies vector sparsity but
unknowns. Thus, the solution set x(A) is not uniquely determined the converse is not true.
unless some prior is used. In what follows, we introduce different Observe that if A is a single element set then the joint sparsity
priors that can be utilized in order to determine x(A) from (1). prior coincides with the vector sparsity prior. The system (1) then

represents the classical CS problem of recovering a single sparse

2.2. Uniqueness priors
vector from an undetermined system (SMV). If A {Ai} is a finite
set then (1) can be written as

2.2.1. Null orthogonality prior Y = AX, (4)

Suppose x(A) belongs to the orthogonal of the null space of A. In
this case, multiplying (1) from both sides by the pseudo-inverse At
of A recovers x(A) exactly. If this prior holds for every A C A then form a solution set x(A). In this case, the joint sparsity prior on X
(1) determines \(A). implies that the values in X are restricted to some unknown set S of

K rows. This is the standard MMV problem.
Clearly, a global prior results in a dependency between x(A) for

2.2.2. Vector sparsity prior different values of A. In particular, the joint sparsity prior is more
restrictive than vector sparsity. Thus, it is expected that uniqueness

An alternative prior is that x(A) is K-sparse, which means that it of x(A) can be proved for S whose size is larger than the threshold
contains no more than K non-zero values. This prior is widely as- of o-(A)/2. Indeed, an improved uniqueness threshold for MMV is
sumed in the CS literature. The following definition [7] and theorem given in [5]. Their arguments can be directly adopted to the case of
provide a sufficient uniqueness condition for this prior: a continuous set A, resulting in the following proposition.

Definition 1 The Kruskal-rank of A, denoted as ((A), is the max- Proposition 1 Let x(A) be a K-sparse solution set of (1). If
imal number q such that every set of q columns of A is linearly
independent. K < 2 (5)

Theorem 1 If the vector x is a K-sparse solution ofy = Ax, with then x(A) is the unique sparsest solution set of (1).
ov(A) > 2K, then it is the unique sparsest solution of the system. Here rank(y(A)) denotes the maximal dimension of any subspace

spanned by a finite collection of vectors from y(A).
Theorem 1 and its proof are given in [5],[8] with a slightly different propositi notabecdra the p kolgo
notation of Spark(A) instead of the Kruskal-rank of A. A direct K rsposicien thse t numbledra measure m,osince (5

corolar ofTherem istha ifX-(A isK-sars forevey AC A K iS not sufficient to set the number of measurements m, since (5)corollary of Theorem 1 is that if x(A) is K-sparse for every A C A relates the design of A to the specific data set y(A). Therefore, if
and cT(A)> 2K then ~ is the unique solution set of (1). Note uniqueness must be assured for every K-sparse solution set, includ-

that the null orthogonality prior implies that x(A) belongs to some ing ones with' rank(y(A)) 1, then (5) reduces to the condition
subspace of Rn. Thus, it implies a strict linear relationship between I(A) > 2K of Theorem 1.
all the entries of x(A), which typically results in a non-sparse vector. As pointed out, recovery of the sparsest solution set iS known to
In contrast, the vector sparsity prior imposes a weaker constraint, be NP-hard. Several efficient sub-optimal techniques were proposed
since only the number of non-zero values in x(A) is restricted. In ____________
particular, this prior does not impose any limitation on the exact lo- 1The degenerate case rank(y(At)) 0 implies the sparsest solution set
cations of these non-zero entries nor on their specific values. x(At) 0.

126
Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on October 31, 2009 at 06:37 from IEEE Xplore.  Restrictions apply. 



in the CS literature for both SMV and MMV. These approaches in- 4. APPLICATION: MULTI-BAND SIGNALS
volve matrix operations (e.g. inverse, projection, etc) that cannot be
directly extended to the continuous case. A straightforward strat- We first study an application of Theorem 2 to spectrum-blind recon-
egy would be to solve (1) on a finite dense grid {Ai C A}, and struction of analog multi-band signals. A detailed account of these
then construct the solution set x(A) by some interpolation technique. results can be found in [12].
However, this method cannot guarantee an exact recovery of x(A).
Moreover, the accuracy of such a solution depends on the density of 4.1. Formulation
the grid, which directly impacts the computational complexity.

In the next section, we present an exact method for the continu- Let X(t)be anaaog ted signal, sothat its Fourier trans-
ous case, in which the continuous joint sparsity prior is exploited in form f orxte on si[0,l1/T] Ev detl,/Ti the
order to formulate a finite dimensional problem. This enables exact Nyquist rate fori(t). A multi-band signal has an additional prop-
recovery of x(A) since no heuristics or discretization techniques are erty that X(f) is also restricted to several disjoint intervals (called
used. bands) in .f, which means X(f) 0 outside the bands.

Consider the setM of multi-band signals consisting of no more
than N bands, where each of the band widths is not greater than B.

3. CONTINUOUS TO FINITE TRANSFORMATION We wish to construct a system that enables perfect reconstruction of
x(t) C M from its samples at a low sampling rate. In addition, both
sampling and reconstruction should be blind, so that neither can use

I H information about the band locations.
Q y3T(A)y (A)dA, (6) In [9],[10] the authors describe a half-blind system: A blindEAGA multi-coset strategy is used for sampling, while a non-blind scheme

where yH(A) denotes the conjugate transpose of y(A). We assume is proposed for the reconstruction. Here we use the blind sampling
that the integrand in (6) is integrable over the continuous set A. Since strategy of [9] and develop a spectrum-blind reconstruction scheme
Q is positive semi-definite, it can be decomposed as using the joint sparsity prior discussed earlier. We also derive an

Q VVH (7) expression for the sampling rate that is sufficient for perfect recon-

VVH struction. This sampling rate is typically far less than the Nyquist
with V having r orthogonal columns, where r = rank(Q). Next, rate.
define the finite dimensional linear system

4.2. Spectrum-blind sampling
V =AU. (8)

Multi-coset sampling is a periodic non-uniform sampling on the
The following theorem relates the sparsest solution of (8) with X(A)- Nyquist grid x(t = nT). The grid is divided into blocks of L

Theorem 2 Suppose -(A) is a K-sparse solution set of (1). If samples, in which p are kept and the rest are ignored. A samplingTheorem~ ~ ~~ ~ ~ ~ ~~ ~ ~~ ~patr C =ups x(A cSa K-pas
describes the loafon of) the sape thaov(A) > 2K then the finite linear system of (8) represents an MMV pattern C = {ci}i= describes the locatons of the p samples that

with a unique sparsest solution matrix U having 1(U) I(~(A)). are kept in each block. This sampling strategy results in p uniformwith a unique sparsest solution matrix u having 1 u ) = 1(X A)). sequences

The advantage of Theorem 2 is the ability to recover a continu- f x(t = nT) n = mL + ci, for some m C Z
ous solution set x((A) by solving only one finite dimensional prob- x: [n] = otherwise. (12)
lem. Essentially, the set S = I(U) is the key information needed for
exact recovery of x(A). To see this, observe that (1) can be written Direct calculations show that [9]
as 1 L-1 2\

y(A) = As xs(A), A C A, (9) X=p(L p L- i) X (I+ L' 13)
where As is the sub-matrix of A containing only the columns whose r=O
indices belong to S. Similarly, xs (A) is a vector of length S that Vf C 1Fo = [, I < i . P,
consists of the entries of x(A) in the locations described by S. It ['LTJ
can be proved that under the conditions of Theorem 2, the pseudo- w e (2 fT
inverse~~~ofA aife A)tAs = 1whc reut1i* where X, c(e2f) is the discrete-timeFouriertransform of x, [n].inverse of As satisfies A)tAs 5as=, which results in

To conform with the formulation of (1) we express (13) in matrix
xs(A>)= (As)ty(A), VA C A. (10) form

y(f) =AX(f), Vf C fT' (14)
In addition, from (3) where X,i (e 2fT ) is the ith entry of the vector y(f), and x(f)

xi(A) = 0, VA C A, i C S. (11) contains L unknowns for each f

Thus, once the sparsest solution matrix U is found, the solution set xi(f) = X (f +-), 0 < i < L -1, f C Fo. (15)
x(A) is obtained by (10)-(11). Note that Theorem 2 is valid for any LT
selection of V in (7) as the decomposition is not unique. The matrix A depends on the parameters L, p and the set C but not

The result of Theorem 2 is achieved due to the global nature on x(t) and is defined by
of the joint sparsity prior. In the next sections, we demonstrate thei
usage of Theorem 2 in two applications. One corresponds to a con- Aik L

= exp (i.iX (16)
tinuous set A, while the other has finite A. Obviously, the flow of L
(6)-(8) is also valid for the latter application, in which (1) is already In the next section, we present a spectrum-blind reconstruction
an MMV and there are known techniques to solve it. Nevertheless, scheme for xQfo) from the data y(f), which is equivalent to recov-
we show that our method has a potential for computational savings. ery of x(t) from the sampling sequences xCi [n].

127
Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on October 31, 2009 at 06:37 from IEEE Xplore.  Restrictions apply. 



4.3. Spectrum-Blind Reconstruction 6. CONCLUSIONS

The following theorem shows that a specific parameter selection of In this paper, we presented the joint sparsity prior for parametric
L, p, C implies the continuous joint sparsity prior. In turn, this al- undetermined linear systems. It was shown that this formulation
lows for the use of Theorem 2, which enables perfect reconstruction covers known problems in the CS literature. However, a special
of the signal using only one finite dimensional MMV. This selection treatment is needed when the linear system depends on a continu-
of L, p, C is also blind as it does not require knowledge of the band ous parameter, since the dimension of the solution is infinite and
locations [12]. applying discretization cannot allow for an exact recovery. We in-

troduced a method to transform the continuous problem into a finite
Theorem 3 Let xc(t) C M be a multi-band signal. If: dimensional one, and demonstrated the use of this approach in two

1. L < 1/(BT), applications. Evidently, the essential contribution of the proposed
2. p > 4N, method is for the continuous scenario, while for the finite case it wasshown that some computational efforts can be saved.
3. C is a universal pattern, which means A is offull Kruskal-
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