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ABSTRACT Here we adopt the bounded error methodology and assume that
the noise is norm-bounded lw l2 < p. The estimator we develop

We develop a nonlinear minimax estimator for the classical linear c le use is random by choosinprortionalo
regression model assuming that the true parameter vector lies in an its variance.sWe furtherisuppose thathxosiCgwhereowerfocuslon
intersection of ellipsoids. We seek an estimate that minimizes the sts Catiare ge by aninesection o e This form of
worst-case estimation error over the given parameter set. Since this Ceis qutegener and inc es evaietof sTcts amon
problem is intractable, we approximate it using semidefinite relax- them are weighted norm constraints, and interval restrictions. Since
ation, and refer to the resulting estimate as the relaxed Chebyshev our objective is to choose x to be close to x in the squared error
center (RCC). We then demonstrate through simulations that the sense, instead of minimizing the data error, we suggest minimizing
RCC can significantly improve the estimation error over the con- tewse, esimation error,-wx2oe allgesi soluti

ventionalonstrainedleast-squaes method.the worst-case estimation error Ilx-x II over all feasible solutions.
ventional consraiedeas-squAs we show in Section 2, the proposed minimax estimator has a

Index Terms- Estimation, regression, minimax. nice geometric interpretation in terms of the center of the minimum
radius ball enclosing the feasible set. Therefore, this methodology is

1. INTRODUCTION also referred to as the Chebyshev center approach [8]. In Section 4we demonstrate that this strategy can indeed reduce the estimation

A broad range of estimation problems can be written in the form of error dramatically with respect to the CLS method.
a linear regression model. In this class of problems, the goal is to Finding the Chebyshev center of a set is a difficult and typically
construct an estimate , of a deterministic parameter vector x from intractable problem. Two exceptions are when the set is polyhedral
noisy observations and the estimation error is measured by the loo norm [9], and when

y = Ax+w (1) the set is finite [10]. Recently, we considered this approach for C
given by an ellipsoid [11]. When the problem is defined over the

where A is a known matrix and w is an unknown perturbation. complex domain we showed that the Chebyshev center can be com-
The celebrated least-squares (LS) method minimizes the data er- puted exactly by relying on strong duality results [12]. In the real

ror IY- y I2 between the estimated data y = Ax and y. Although domain, we suggested an approximation based on Lagrange dual-
this approach is deterministic in nature, if the covariance of w is ity and semidefinite relaxation, referred to as the relaxed Chebyshev
known, then it can be incorporated as a weighting matrix, such that center (RCC). We then showed through numerical simulations that
the resulting weighted LS estimate minimizes the variance among the RCC estimate outperforms other estimates such as least squares
all unbiased methods. However, this does not necessarily lead to a and Tikhonov with respect to the estimation error.
small estimation error - x. Thus, many attempts have been made In this paper we generalize the RCC estimator to the intersection
to develop estimators that may be biased but closer to x in some of several ellipsoids in order to extend its applicability to a larger set
statistical sense [1-4]. of signal processing problems. Furthermore, our development of the

A popular strategy for improving the estimation error of LS is RCC estimate in this paper is different than that presented for the
to incorporate prior information on x. For example, the Tikhonov single ellipsoid case in [11]. Here we use the fact that the RCC can
estimator minimizes the data error subject to a weighted norm con- be cast as a solution to a convex-concave saddle point program.
straint [1]. In practical applications, more general restrictions on Omitted proofs, and further details on the RCC and its relation
x can be given, such as interval constraints on the individual com- to the CLS can be found in [13].
ponents of x. These type of bounds rise naturally e.g., in image The paper is organized as follows. In Section 2 we discuss the
processing where the pixel values are limited. To deal with more geometrical properties of the Chebyshev center. We then develop in
general type of restrictions, the constrained LS estimator (CLS) has Section 3 the RCC using a simpler method than that in [11]. In Sec-
been proposed, which minimizes the data error subject to the con- tion 4 we demonstrate via examples that the RCC can dramatically
straint that x lies in a convex set C [5]. However, this method does reduce the estimation error with respect to the CLS method.
not deal directly with the estimation error.

In some scenarios, the distribution of the noise may not be
known, or the noise may not be random (for example, problems re- 2. THE CHEBYSHEV CENTER
sulting from quantization). A common estimation technique in these
settings is the bounded error approach, or set-membership estima- We denote vectors by boldface lowercase letters, e.g., y, and ma-
tion [6,7]. This strategy is designed to deal with bounded noise, and trices by boldface uppercase letters e.g., A. The identity matrix is
prior information of the form x C C for some set C. denoted by I, and AT is the transpose of A. Given two matrices A
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and B, A >- B (A >- B) means that A - B is positive definite
(semidefinite).

We treat the problem of estimating a deterministic parameter I 41.

vector x C 'm from observations y C Ri' which are related 2.5 minimum enclosing circle
through the linear model (1). Here A is a known n x m model

2-
matrix, w is a perturbation vector with bounded norm IIW 12 < P, % " Chebyshev center
and x lies in the set C defined by the intersection of k ellipsoids: 1.5

C-{x: f(x) -xTQix 2gTx+ di< O1< i <k} (2)
0.5

where Qi >- 0, gi R7J7 and di c R. To simplify notation, we 0
present the results for the real case, however all the derivations hold -

-0.5
true for complex-valued data as well. Combining the restrictions on ___
x and w, the feasible parameter set, which is the set of all possible -1
values of x, is given by

Q {X X C C, Ily-Axll2 < P}. (3) 3 -2 1 0 1

In order to obtain strictly feasible optimization problems, we assume
throughout that there is at least one point in the interior of Q. In Fig. 1. The Chebyshev center of the intersection of three ellipsoids.
addition, we require that Q is compact. To this end it is sufficient to
assume that ATA is invertible.

Given the prior knowledge x C C, a popular estimation strategy
is the CLS approach, in which the estimate is chosen to minimize pixel values which are limited to a fixed interval (e.g., [0,255]). A
the data error over the set C. Thus, the CLS estimate, denoted XCLS, bound of the form ( < x1 <u- can be represented by the ellipsoid
is the solution to (xi -i) (xi- ui) < 0. Another popular constraint is Lx1< i for

minly - Axl 2 (4) some i] > 0 where L is the discretization of a differential operator
xEC that accounts for smoothness properties of x [14].

Note that the fact that XCLS minimizes the data error over C does not
mean that it leads to a small estimation error - x I. In fact, the 3. THE RELAXED CHEBYSHEV CENTER
simulations in Section 4 demonstrate that the resulting error can be
quite large. The RCC estimator, denoted XRCC, is obtained by replacing the non-

To design an estimator with small estimation error, we suggest convex inner maximization in (5) by its semidefinite relaxation, and
minimizing the worst-case error over all feasible vectors. This is then solving the resulting convex-concave minimax problem.
equivalent to finding the Chebyshev center of Q: To develop XRCC, consider the inner maximization in (5):

minmax Xx 12. (5) max{ -x x12: fi(x) < 0, O < i < k}, (7)

The minimax problem of (5) can be written equivalently as where fi (x), 1 < i < k are defined by (2), and fo (x) is defined

2 similarly with Qo = ATA, go =-ATy, do = IIYI12-p so that
min{r |k|X-X ll < r for all x C Q}. (6) fo(x) = Iy-Ax 112 - p. Thus, the set Q can be written as
xk, r

For a given r, the set of vectors x satisfying |X- x112 < r defines a Q {x : f1(x) < 0 0 < i < k}. (8)
ball with radius r and center x. Thus, the constraint in (6) is equiv- T
alent to the requirement that the ball defined by r and x encloses the '
set Q. Therefore, the Chebyshev center is the center of the minimum max { l 2-2kTx + Tr(A)}, (9)
radius ball enclosing Q and the squared radius of the ball is the opti- (A,x)Eg
mal minimax value of (5). This is illustrated in Fig. 1 with the filled where
area being the intersection of three ellipsoids. The dotted circle is
the minimum inscribing circle of the intersection of the ellipsoids. g {(A, x) fi (A, x) < 0, 0 < i < k, A = xxT}, (10)

Computing the Chebyshev center (5) is a hard optimization
problem. To better understand the intrinsic difficulty, note that the and we defined
inner maximization is a non-convex quadratic optimization prob-
lem. Relying on strong duality results derived in the context of f/(A, x) = Tr(QiA) + 2g[x + di, 0 < i < k. (I1)
quadratic optimization [12], it was recently shown that despite the The objective in (9) is concave (linear) in (A, x), but the set g is
non-convexity of the problem, it can be solved efficiently over the
complex domain when Q is the intersection of 2 ellipsoids. The convex tconvex set
same approach was then used over the reals to develop an approx-
imation of the Chebyshev center. Here we extend these ideas to a T {(A, x) fi (A, x) < 0, 0 < i < k, A >- xxT}. (12)
more general quadratic constraint set. The importance of this ex-
tension is that in many practical applications there are more than The RCC is the solution to the resulting minimax problem:
2 constraints. For example, interval restrictions are popular in im- 21T
ageprocessing in which the components of x represent individual minl(zmaxm{a -2* +Tr(A)}. (13)
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The objective in (13) is concave (linear) in A and x and convex True Signal Observation
in x. Furthermore, the set fT is bounded. Therefore, we can replace 0°09
the order of the minimization and maximization [15], resulting in the 09 008 -A'

equivalent problem 0800

max min{f 22xTx+Tr(A)}. (14) .04

(A,x)ET 0x 00

The inner minimization is a simple quadratic problem, whose opti- 0.2 O.O1
mal value is x x. Thus, (14) reduces to O.t_1_ - O . O t _;

0 0 20 30 40 50 60 70 80 90 0 0 20 30 40 50 60 70 80 90

max {-lx 2+Tr(A)}, (15)
(A,x)ET a 2 a 10

which is a convex optimization problem with a concave objective
5 4.5

and linear matrix inequality constraints. The RCC estimate is the 3.5

x-part of the solution to (15).
In Theorem 3.1 below we present an explicit representation of

the RCC. The proof can be found in [13]. 1.5

Theorem 3.1. The RCC estimate, *RCc which is the solution to 05
(15), is given by

-0.5 -0.5
0tO20 30 40 50 60 70 80 90 0 O 20 30 40 50 60 708090

XRCC - (Ek aiQi) (Ek a1g1) (16)
Fig. 2. Comparison between the RCC and CLS estimates.

where (a1..., ak) is an optimal solution of the following convex
optimization problem in k + 1 variables:

minCi {(Zk=0ajgk)T(Ek 0aiQi)1(Ek ajg1) To compute the RCC, we chose the set Q as

k-o diei} (17) I{lAx-Y12 < p,x C C}
s.t. Ei=o aiQ, t I, with p = w 2 for some constant a, and , = a(Z90i xi). We

a1 70, 0 K i K k. then used the following quadratic representation of C:
For k = 1, the expression for the RCC reduces to the one ob- {X C R90: X (X -_ ) < 0, (xTe)2 < 7 i =1,.. , 90}.

tained in [11]. We note that our derivation in Theorem 3.1 for an
arbitrary k is significantly simpler than the derivation in [11] for For comparison, we computed the CLS estimate which is the solu-
the special case k = 1. The main difference is that here we re- tion to min{IAx -Y12 X C}.
place the inner maximization with its semidefinite relaxation, while The results of the RCC and CLS estimates for a = 2 and a
in [11], this maximization was replaced by its Lagrangian dual. 10 are shown at the bottom of Fig. 4.1. Evidently, the RCC approach
These derivations are equivalent since the dual problem of the inner leads to the best performance. The squared error of the RCC image
maximization problem is also the dual of the (convex) semidefinite IXRCC - X12 was 196 and 55 times smaller than that of the CLS
relaxation [16]. solution for a = 2 and a = 10 respectively.

The performance of both methods is better when a = 2, as

4. EXAMPLES expected. However, it is interesting to note that even when a = 10,
so that very loose prior information is used, the RCC results in very

To illustrate the effectiveness of the RCC approach in comparison good performance.
with the CLS method, we consider two examples from the "Regular-
ization Tools" [17]. 4.2. Image Deblurring

As a second example, we consider a small image deblurring prob-
4.1. Heat Equation lem, again from the regularization tools.

The first example is a discretization of the heat integral equation In this problem the true value of x is of length 256 and is ob-
implemented in the function heat(90, 1). In this case, Ax = g tained by stacking the columns of the 16 x 16 image. The matrix A is
where A C R290x90 and x, g C 790. The matrix A in this problem of size 256 x 256 and represents an atmospheric turbulence blur orig-
is extremely ill-conditioned. The true vector xis shown in Fig. 4.1 inating from [18]; it is implemented in the function blur(1 6,4,0.8)
(True Signal) and resides in the set (4 is the half bandwidth and 0.8 is the standard deviation associated

with the corresponding point spread function). The image corre-
C = {x C R90: x > 07 xTe < i7}, (18) sponding to x is shown at the top left corner of Fig. 3. The image

is scaled so that each pixel is bounded below and above by 0 and 4
where e is the vector of all ones. The observed vector is given by respectively.
y = g + w where the elements of w are zero-mean, independent The observed vector was generated by Ax+w where each com-
Gaussian random variables with standard deviation 0.001. Both g ponent of w C R256 was independently generated from a normal
and y are shown in Fig. 4.1 (Observation), distribution with zero mean and standard deviation 0.05. The noisy
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image is shown in Fig. 3 (Observation). To estimate x we considered
several approaches: True Image Observationseveral approaches:

* LS. The LS estimator given by xLS (ATA-'ATy. As 2
can be seen in Fig. 3, the resulting image is very poor. 4 4

* RLS. The regularized LS solution which is the CLS corre- 6-6

sponding to the norm constraint x 12 P. In our experi- 8
ments p was chosen to be 1.1II x 2 .As can be seen from Fig. 10- 0

3, the RLS method also generates a poor image. 12 12
14 14

* CLS. Here we consider the CLS estimator when the boundoun616
on the pixels are taken into account. That is, the CLS image 5 10 15 5 10 15
is the solution to the minimization problem LS RLS

min{ IAx - y 12 xi(i-4) < 0,1I. i . 256}.
m

The image resulting from the CLS approach is much clearer 4 4

than those resulting from the LS and RLS strategies. 66

* RCC. Finally, we compare the previous results with the RCC RCC
estimate corresponding to the set

01

the best image quality. The squared error of the RCC imagej Fr Fj j, ,l12

TheRCC-xlupp was 33% smaller than the squared error of the 2vwasIICC 112 wAs 33, smle thntesurderro1h
CLS image 1XCLS - X 2- 4
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