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Abstract—This paper considers recovery of jointly sparse
multichannel signals from incomplete measurements. Several
approaches have been developed to recover the unknown sparse
vectors from the given observations, including thresholding,
simultaneous orthogonal matching pursuit (SOMP), and convex
relaxation based on a mixed matrix norm. Typically, worst case
analysis is carried out in order to analyze conditions under which
the algorithms are able to recover any jointly sparse set of vectors.
However, such an approach is not able to provide insights into
why joint sparse recovery is superior to applying standard sparse
reconstruction methods to each channel individually. Previous
work considered an average case analysis of thresholding and
SOMP by imposing a probability model on the measured signals.
Here, the main focus is on analysis of convex relaxation techniques.
In particular, the mixed ���� approach to multichannel recovery
is investigated. Under a very mild condition on the sparsity and
on the dictionary characteristics, measured for example by the
coherence, it is shown that the probability of recovery failure de-
cays exponentially in the number of channels. This demonstrates
that most of the time, multichannel sparse recovery is indeed
superior to single channel methods. The probability bounds are
valid and meaningful even for a small number of signals. Using
the tools developed to analyze the convex relaxation technique,
also previous bounds for thresholding and SOMP recovery are
tightened.

Index Terms—Average performance, mixed-norm optimization,
multichannel sparse recovery, simultaneous orthogonal matching
pursuit, thresholding.

I. INTRODUCTION

R ECOVERY of sparse signals from a small number
of measurements is a fundamental problem in many

different signal processing tasks such as image denoising
[8], analog-to-digital conversion [19], [31], [32], radar, com-
pression, inpainting, and many more. The recent framework of
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compressed sensing (CS), founded in the works of Donoho [15],
Candès, Romberg, and Tao [8], studies acquisition methods
as well as efficient computational algorithms that allow re-
construction of a sparse vector from linear measurements

, where is referred to as the measurement
matrix. The key observation is that can be relatively short, so
that , and still contain enough information to recover .

Finding the sparsest vector consistent with the data
is generally an NP-hard problem [14]. To determine in prac-
tice, a multitude of efficient algorithms have been proposed,
[7], [9], [14], [18], [43], which achieve high recovery rates.
The basis pursuit (BP), or -minimization approach, is the
most extensively studied recovery method [8], [12], [15], [34].
The use of general purpose or specialized convex optimization
techniques [18], [26] allows for efficient reconstruction using
this strategy. Although greedy methods, such as simple thresh-
olding or orthogonal matching pursuit (OMP), are faster in
practice, BP provides significantly better recovery guarantees.
In particular, there exist measurement matrices
that allow for stable recovery of all -sparse vectors as long as

where is a constant. In contrast, uniform
recovery is not possible for simple thresholding or OMP [16],
[35]. (We note, however, that the recent greedy algorithms
CoSaMP [42] and ROMP [33] are able to provide such uniform
guarantees.) In practice, the recovery rate of BP when averaged
over all random sparse vectors is typically better than that
predicted by the theory. This is due to the fact that existing
analysis considers the ability of BP to recover all vectors .
On the other hand, in random simulations, the worst case
instance of typically does not occur. Therefore, considering
the behavior of various recovery methods over random often
leads to more characteristic behavior.

The BP principle as well as greedy approaches have been
extended to the multichannel setup where the signal con-
sists of several channels with joint sparsity support [11], [13],
[20]–[22], [30], [45], [47], [48]. In [2], the buzzword distributed
compressed sensing was coined for this setup. An alternative
approach is to first reduce the problem to a single-channel
problem that preserves the sparsity pattern, and recover the
signal support set; given the support, the measurements can
be inverted to recover the input [30]. A variety of different
recovery results have been established that provide conditions
ensuring that the output of the proposed efficient algorithms
coincides with the true signals. In [11], a recovery result was
derived for a mixed program in which the objective is to
minimize the sum of the -norms of the rows of the estimated
matrix whose columns are the unknown vectors. Recovery
results for the more general problem of block-sparsity were
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developed in [21] based on the block restricted isometry prop-
erty (RIP), and in [20] based on mutual coherence. In practice,
multichannel reconstruction techniques perform much better
than recovering each channel individually. However, the the-
oretical equivalence results predict no performance gain. The
reason is that these results apply to all possible input signals,
and are therefore worst case measures. Clearly, if we input the
same signal to each channel, then no additional information
on the joint support is provided from multiple measurements.
Therefore, in this worst case scenario there is no advantage for
multiple channels.

In order to capture more closely the true underlying behavior
of existing algorithms and observe a performance gain when
using several channels, we consider an average-case analysis. In
this setting, the sparse input signals are considered to be random
vectors. The idea is to develop conditions on the measurement
matrix such that the inputs can be recovered with high proba-
bility given a certain input distribution; in other words, we give
conditions that ensure recovery of most signals rather than all
signals.

Recently, there have been several papers that consider sparse
recovery with random ensembles. In [46], random sub-dictio-
naries of are considered and analyzed. This allows to obtain
average results for BP with a single-input channel. In [39],
average-case performance of single-channel thresholding was
studied. In [24], [25] extensions to two multichannel recovery
algorithms were developed: thresholding and simultaneous
OMP (SOMP) [24], [25]. Under a mild condition on the spar-
sity and on the matrix , the probability of reconstruction
failure decays exponentially with the number of channels. In
the present paper, we contribute to this line of research by an-
alyzing the average-case performance of multichannel BP, i.e.,
mixed -minimization [20]–[22], [45]. The tools we derive
in this context are then also used to slightly improve previous
bounds on average performance of multichannel thresholding
and SOMP.

The theoretical average-case results we develop for multi-
channel BP are superior to the average bounds developed on
thresholding and SOMP. For an equally mild or even milder
condition on the sparsity and on the matrix , we obtain faster
exponential decay of the failure probability with respect to the
number of channels. Thus, in this sense, the extension of BP to
the multichannel case is superior to existing greedy algorithms,
just as in the single-channel setting. Moreover, our recovery re-
sults are applicable also in the single-channel case whereas pre-
vious results [25] require a large number of channels to yield
meaningful (i.e., positive) probability bounds (although our new
bound for thresholding generalizing the one in [39] does not
suffer from this drawback). Note, however, that in simulations
SOMP often exhibits the best performance. This may be ex-
plained by the fact that the bounds are not tight (at least for
SOMP).

To develop our probability bounds, we rely on a new suffi-
cient condition that ensures recovery of the exact signal set via

-minimization. This condition generalizes a result of [23],
[44] to the multichannel setting, and is weaker than existing
multichannel recovery conditions. Our average-case analysis is
then carried out assuming that the elements of the input signal

are drawn at random. We prove that under a certain restriction
on and the sparsity set , the sufficient condition we develop
is satisfied with high probability. The restriction we impose is
that the -norm of over all not in the set is bounded,
where is the th column of , and is the pseudoinverse
of the restriction of to the columns in . This is an improve-
ment over known worst case recovery conditions which require
a bound on the -norm [11], [20], and are therefore stronger
(namely, easier to satisfy). Loosely speaking, we will show that
while worst case results based on the coherence limit the spar-
sity level to order , average-case analysis shows that spar-
sity up to order may enable recovery with high probability. In
terms of RIP, instead of bounding the restricted isometry con-
stant for sparsity sets of size , we will only need to consider
sets of size .

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce our problem and briefly summarize known
equivalence results between the approach for multichannel
recovery and NP-hard combinatorial optimization that recovers
the true signals. A new recovery condition is derived in Sec-
tion III, which is weaker than previous results, and will be instru-
mental in developing our average-case analysis in Section IV.
Since the probability bounds we develop depend on the -norm
of , in Section V we derive several upper bounds on this
norm. In Section VI, we use the tools developed in the previous
section to derive new bounds on the average performance of
thresholding and SOMP, that are tighter than the existing re-
sults and are also applicable to a broader set of problems. We
then compare our bounds on multichannel BP to these results.
Finally, in Section VII, we present several simulations demon-
strating the behavior of the different methods.

Throughout the paper, we denote by the submatrix of
consisting of the columns indexed by , while

is the submatrix of consisting of the rows of indexed
by . The th column of is denoted by or . For a ma-
trix , is the spectral norm of , i.e., the largest singular
value, and is its conjugate transpose. The unit sphere in
is defined by ; the complex coun-
terpart is denoted .

II. MULTICHANNEL -MINIMIZATION

A. Problem Formulation

We consider multichannel signal recovery where our goal is
to recover a jointly sparse matrix from linear
measurements per channel. Here denotes the signal length
and the number of channels, i.e., the number of signals. We
assume that is jointly -sparse, meaning that there are at most

rows in the matrix that are not identically zero. More for-
mally, we define the support of the matrix as

(1)

where the support of the th column is

(2)
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Our assumption is that . The observa-
tions are given by

(3)

where is a known measurement matrix. Each vector
corresponds to a measurement of the corresponding

signal .
The natural approach to determine given is to solve the
-minimization problem

s.t. (4)

However, (4) is NP-hard in general [14]. Several alternative
methods have been proposed, that have polynomial complexity
[11], [13], [20]–[22], [30], [45], [47]. A variety of different
equivalence results between the solution of the -problem and
the output of the proposed efficient algorithm have been de-
rived. In [11] an equivalence result was obtained for a mixed

program in which the objective is to minimize the sum of
the -norms of the rows of the estimated matrix whose columns
are the unknown vectors. The condition is based on mutual co-
herence, and turns out to be the same as that obtained from a
single-measurement problem, so that the joint sparsity pattern
does not lead to improved recovery capabilities as judged by
this condition. Recovery results for the more general problem
of block-sparsity were developed in [21] based on the RIP, and
in [20] based on mutual coherence. Reducing these results to
the multiple measurement vectors (MMV) setting leads again
to conditions that are the same as in the single-measurement
case. An exception is the work in [24], [25] which considers
average-case performance of thresholding and SOMP. Under a
mild condition on the sparsity and on the matrix , the prob-
ability of reconstruction failure decays exponentially with the
number of channels . In Section VI, we slightly improve on
these bounds using the tools developed in this paper.

In Section IV, we follow a similar approach and treat the av-
erage behavior of the mixed -minimization program [21],
[22], [45] defined by

subject to (5)

with . This minimization program pro-
motes joint sparsity, as argued for instance in [22]. In the single-
channel case , this is the usual BP principle. Therefore,
our results can also be used to deduce the average-case behavior
of BP. This is in contrast to [25], in which the recovery results
derived are not applicable to the single-channel setting. As we
discuss in Section VI, our theoretical results are superior to the
previous average-case analysis of [25] in the sense that we use
an equally mild or even milder condition on the sparsity and
on the matrix , but at the same time get a faster exponential
decay of the failure probability with respect to the number of
channels .

B. Recovery Results

Recovery results for the program (5) were considered in [11],
[20], [21]. In particular, the lemma below is derived in [11] and

follows also from [20] where the more general case of block
sparsity is considered.

Proposition 2.1: Let and suppose that

for all (6)

with denoting the pseudoinverse of .
Then (5) recovers all with from

.

Note, that the condition above does not depend on the number
of channels. In the next section, we will derive a condition sim-
ilar to (6) that involves the -norm instead of the -norm, and
is therefore weaker (namely, easier to satisfy). Assuming the
columns of are normalized, , we can guarantee
that (6) holds as long as the coherence of is small enough,
where [17]

(7)

The following result follows from [20] by noting that the block
coherence in this setting is equal to .

Proposition 2.2: Assume that

(8)

Then (5) recovers all with from .

Under the same conditions as in Propositions 2.1 and 2.2, it
is shown in [43] that BP will recover a single -sparse vector.
Therefore, if (6) holds, then instead of solving (5) we could also
use BP on each of the columns of .

The coherence is lower-bounded by [40]

(9)

The lower bound behaves like for large , which limits
the Proposition 2.2 to maximal sparsities . To im-
prove on this we can generalize existing recovery results [6], [8]
based on RIP to the multichannel setup. The restricted isometry
constant of a matrix is defined to be the smallest constant

such that

(10)

for all -sparse vectors . The next proposition follows from
[21].

Proposition 2.3: Assume with .
Let , , and let be the minimizer of (5).
Then

where is a constant, is the Frobenius
norm of , and denotes the best -term approximation of

, i.e., consists of the indices corresponding to the
largest row norms . In particular, recovery is exact if

.
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It is well known that Gaussian and Bernoulli random matrices
satisfy with high probability as long

as [1], [10]

(11)

For random partial Fourier matrices, the respective condition is
[36], [38]. Therefore, Proposition 2.3 allows

for a smaller number of measurements. However, there is still
no dependency on the number of channels. Indeed, under the
same RIP condition BP will recover a single -sparse vector
and therefore, as before, BP may as well be applied to each of
the columns of individually.

We conclude this overview by stressing that known equiva-
lence results do not improve on those for single-channel sparse
recovery. In [20], [21] equivalence results are derived for a
mixed program when different measurement matrices

are used on each channel. In this case, even worst case
analysis shows improvement over . However, when all
measurement matrices are equal, the recovery conditions do
not show any advantage with multiple signals.

III. A RECOVERY CONDITION

Before turning to analyze the average-case behavior of (5),
we first develop a new condition on that allows for perfect
recovery. This formulation will be useful in deriving the av-
erage-case results.

In the following theorem, we give a sufficient condition on the
minimizers of (5). This theorem generalizes a result of [23], [44]
for the case. To this end, we denote by
the matrix with entries

.
(12)

In this definition, each element of is normalized by the norm
of the corresponding row. When , reduces to the
sign of the elements of the vector .

Theorem 3.1: Let with and assume
to be nonsingular. If there exists a matrix such

that

(13)

and

for all (14)

then is the unique solution of (5).

Before proving the theorem, we note that the two conditions
on easily imply that

for all (15)

Proof of Theorem 3.1: The proof follows ideas of [44], with
appropriate modifications to account for the mixed norm
that replaces the norm. Let , and assume there exists
a matrix such that satisfy (13) and (14). Let be an
alternative matrix satisfying . Our goal is to show that

. To this end, we note that

(16)

where denotes the trace. Substituting into
(16), and using the permutation invariance of the trace we have

(17)

where we used the fact that and denotes
the support of . Applying the Cauchy–Schwarz inequality
leads to

where we used (13), (14), and the fact that is nonempty. In-
deed, the inclusion would imply

, which contradicts the hypothesis that is non-
singular and . Thus, we have shown that

for any such that , and therefore (5) re-
covers the true sparse matrix .

We refer to [48] for an alternative proof based on duality
theory. Choosing in Theorem 3.1 results
in the following corollary.

Corollary 3.2: Let with and assume
to be nonsingular. If

for all (18)

then is the unique minimizer of (5).

This corollary will be instrumental in proving the average
case performance of (5). It can easily be seen that Corollary 3.2
implies Proposition 2.1. This follows from the triangle in-
equality

where we used the fact that .

IV. AVERAGE CASE ANALYSIS

Intuitively, we would expect multichannel sparse recovery to
perform better than single-channel methods. However, in the
worst case setting this is not true as already suggested by the
results of Section II. The reason is very simple. If each channel
carries the same signal, for , then also the
components of are all the same and we do not have
more information on the support of than provided by a single
vector . The following proposition establishes formally that if
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BP fails for a given measurement matrix , then multichannel
optimization (5) will fail as well so that in the worst case, adding
channels will not improve performance.

Proposition 4.1: Suppose there exists a -sparse vector
that -minimization is not able to recover from .

Then -minimization fails to recover
from .

Proof: If -recovery fails on some -sparse , then neces-
sarily for some satisfying . Clearly,

is (jointly) -sparse and for
. Furthermore

and, therefore, is not the unique minimizer of the -mini-
mization problem.

Realizing that (5) is not more powerful than usual BP in the
worst case, we seek an average-case analysis. This means that
we impose a probability model on the -sparse . In particular,
as in [25], we will assume that on the support of size the co-
efficients of are chosen at random. We then show that under
a suitable probability model on the nonzero elements of , the
condition given by Corollary 3.2 is satisfied with high proba-
bility, which depends on .

We follow the probability model used in [25]: let be the
joint support of cardinality . On the coefficients are given by

(19)

where is an arbitrary diagonal
matrix with positive diagonal elements . The matrix will be
chosen at random according to one of the following models.

• Real Gaussian: each entry of is chosen inde-
pendently from a standard normal distribution.

• Real spherical: the rows of are chosen inde-
pendently and uniformly at random from the real sphere

.
• Complex Gaussian: the real and imaginary parts of each

entry of are chosen independently according to
a standard normal distribution.

• Complex spherical: the rows of are chosen
independently and uniformly at random from the complex
sphere .

Note that taking to be the identity matrix results in a standard
Gaussian random matrix , while taking arbitrary nonzero

’s on the diagonal of allows for different variances. The ma-
trix may be deterministic or random. In particular, choosing

to be the matrix with diagonal elements given by the in-
verse -norm of the rows of in the real (complex) Gaussian
model, leads to a matrix with a real (complex) spherical
distribution.

In Theorems 4.4 and 4.5, we develop conditions under which
(5) recovers from with probability that decays
exponentially with . The condition in both theorems is given
in terms of an upper bound on for not in . This
is in contrast to the worst case result of Proposition 2.1 that is
given in terms of and therefore stronger. The essential
idea in both proofs is to show that if the bound on

is satisfied, then the sufficient condition of Corollary 3.2 holds
with high probability.

Before stating the first theorem, we derive the following result
on the norm of sums of independent random vectors, uniformly
distributed on a sphere.

Theorem 4.2: Let and let , , be a
sequence of independent random vectors which are uniformly
distributed on the real sphere . Then for any

Proof: See Appendix A.

Theorem 4.2 generalizes the Bernstein inequality for Stein-
haus sequences in [46, Theorem 13] to higher dimensions. We
may extend the estimate easily to random vectors uniformly dis-
tributed on complex unit spheres.

Corollary 4.3: Let and let , , be a
sequence of independent random vectors which are uniformly
distributed on the complex sphere . Then for any

Proof: First observe that has the same distribution
as . We may therefore assume without loss of generality
that . Next, a random vector is uniformly
distributed on if and only if is uni-
formly distributed on the real sphere . Applying The-
orem 4.2 with replaced by yields the statement.

With this tool at hand, we can now easily prove the following
average-case recovery theorem.

Theorem 4.4: Let be a set of cardinality
and suppose that

for all (20)

Let with such that the coefficients on
are given by (19) with some diagonal matrix and

chosen from the real Gaussian or spherical proba-
bility. Then with probability at least

(21)

on the random coefficients, (5) recovers from .
If one of the two complex models is used instead of the real

probability model, then can be replaced by in (21).
For , we are guaranteed that the exponent in (21) has

a negative argument, and therefore the failure probability expo-
nentially in .

Proof: First observe that by the rotational invariance of
Gaussian random vectors the columns of
are independent and uniformly distributed on the real sphere,
and the same is also true if we use the real spherical random
model. Denote for and by ,
a sequence of independent random vectors that are uniformly
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distributed on the sphere . Using the sufficient recovery
condition of Corollary 3.2, the union bound, and Theorem 4.2
we can estimate the probability that minimization fails to
recover by

The complex case follows analogously using Corollary 4.3.

For , Theorem 4.4 is contained implicitly in [46, The-
orem 13]. The appearance of the -norm in (22) instead of the

-norm as in (6) makes the condition of the theorem weaker than
worst case estimates (recall that for
any length- vector ). In Section V, this will be made more
evident when we consider conditions on the coherence and
the RIP constant to allow for recovery with high probability.
The requirement we obtain on is weaker than that of Proposi-
tion 2.2 and allows for recovery with on the order of , while
the worst case results limit recovery to order . Furthermore,
in contrast to the worst case results which depend on , we
will show that high-probability recovery is possible as long as

is small enough.
It is evident from (21) that the failure probability decays

exponentially with growing number of channels . Moreover,
the bound is also useful for small , and in particular for the
monochannel case . Indeed, a simple algebraic manipu-
lation shows that the failure probability is less than provided

for all with satisfying

This provides a useful average-case analysis even for .
For completeness, we also state an alternative recovery result

below. In most cases, Theorem 4.4 will provide a better esti-
mate of the recovery probability since the required bound (22)
on is stronger than (20) of Theorem 4.4. However, for
very large and rather small , Theorem 4.5 below is poten-
tially better due to a factor of in the probability estimate (24)
instead of a factor in (21).

Theorem 4.5: Let be a set of cardinality
, and let be random sparse coefficients with

given by the real Gaussian probability model. If

(22)

for all , where

(23)

and denotes the Gamma function, then with probability at
least

(24)

on the random coefficients, (5) recovers from .
It follows from Stirling’s formula ,

that

Moreover, for all it holds that

Note that is monotonically increasing in .
In addition, the probability is also increasing (towards ) in

. Therefore, more channels increase the probability of success
and in addition relax the requirements on the matrix .

Proof: To prove the theorem, we show that if (22) is satis-
fied, then condition (18) of Corollary 3.2 holds with probability

.
To this end, let denote a random matrix with in-

dependent standard normal distributed entries, and define as
the diagonal matrix with diagonal elements ,

where We can then express
. (This equation also

means that the diagonal matrix does not play any role.) De-
noting for

By the assumption of the theorem , where is defined
by (22). It therefore remains to bound and . From
[10, eq. (4.35)], see also [41], the operator norm of satisfies

(25)

with probability at least .
Next we consider . Observe that the are dis-

tributed. Therefore, denoting a -variable by

As a function of , the are Lipschitz continuous, i.e.,
. Using these two observations, we

rely on the following standard concentration of measure result,
see, e.g., [28, eq. (2.35)] or [29, eq. (1.6)].

Theorem 4.6: Let be a Lipschitz function on , i.e.,
for all . Further assume

that is a vector of independent standard
Gaussian random variables. Then
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Our goal is to show that is bounded from above, which
is equivalent to bounding the smallest value of from below.
Applying Theorem 4.6 to

where we used the fact that and . Using a
union bound over all , we obtain

Assuming that holds,
. Combining this bound with (25) for

we have

Choosing

(26)

From (26) and Corollary 3.2, is recoverable using (5).
The probability that (26) does not hold can be computed by

applying a union bound to the probabilities that the spectral
norms of each of the matrices and are not bounded.
This shows that (26) does not hold with probability at most

completing the proof of the
theorem.

V. BOUNDED NORM CONDITION

Both Theorems 4.4 and 4.5 state that can be recovered
with high probability from , as long as is bounded.
In this section, we develop several different conditions under
which this holds.

Proposition 5.1: Let have unit-norm columns
and coherence , and let be a set of cardinality

. Assume that

(27)

for some . Then for all .
Proof: Gershgorin’s disk theorem implies that the smallest

eigenvalue of is bounded from below by
. In particular, is invertible provided .

Further

since by definition, . Now, using the fact that

where the last inequality follows from the fact that (27) implies
.

Condition (27) is slightly weaker than (8) as long as
. This follows from the -norm that replaced the -norm

in the upper bound. However, (27) still suffers the square-root
bottleneck . To improve on this result, we next
provide a condition based on the following refinement of the
RIP of . For a set we let

The restricted isometry constant of (10) satisfies
so that if has cardinality then

. We further define

(28)

Clearly, . Finally, we make use of the
following “local” -coherence function:

(29)

for a subset , where denotes the elements
in excluding the th one. From the definition of the coherence
it follows immediately that

(30)

since the magnitude of each element of the vector
is bounded above by . In addition

(31)

This is a result of the fact that is a submatrix of
for , while is a submatrix

of for . (They both consist of a subcolumn of
the respective matrix, that “leaves” out the diagonal element.)
We now use these definitions to bound .

Proposition 5.2: Let . Then
(a) if satisfies then

for all

(b) if satisfies and then

Proof: Denoting by an eigenvalue of , the defi-
nition of implies that . Con-
sequently, the smallest eigenvalue of is bounded from
below by and therefore

For (a), as already noted above, for is a
submatrix of . Therefore

and
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The proof of (b) follows from the fact that .
A similar estimate as above yields .

Proposition 5.2 applies if is small while in contrast
Theorem 2.3 works with , which is generally larger than

. By (11), the condition can be satisfied if
. Working with instead of

allows to improve on the bound (11) for Gaussian, Bernoulli,
and random spherical matrices.

Proposition 5.3: Let be a set of cardinality
and suppose that , where is drawn at

random according to a standard Gaussian or Bernoulli distribu-
tion (with expectation and variance ). Then
with probability at least provided that

(32)

for a suitable constant.

The same statement holds as well (with possibly a different
constant) for a random matrix whose columns are chosen inde-
pendently at random according to the uniform distribution on a
sphere.

Proof of Proposition 5.3: See Appendix B.

A straightforward extension of the proof, as in [1], also
shows that a random matrix with independent
columns drawn from the uniform distribution on the sphere
satisfies RIP, with probability at least provided

. Although this fact seems
to be known [49], we are not aware of a reference where this
is rigorously proven.

The next result relies on a theorem by Tropp [46, Theorem
B] that uses random support sets and allows to work with the
coherence alone. Note that choosing at random is perfectly
in line with an average-case analysis.

Theorem 5.4: Let have unit norm columns and
coherence . Let be a set of cardinality
chosen uniformly at random. Let and assume that

(33)

(34)

where . Then

for all

with probability at least .
Proof: The proof relies on [46, Theorem 12]. The formula-

tion below follows from [46] by setting
and estimating for

.

Theorem 5.5: Assume has unit norm columns
and coherence . Let be a set of cardinality

chosen uniformly at random. The condition

(35)

implies

Using (33) and the value of , the square root in (35) becomes
. Combining this with (34) shows that (35) is satisfied.

Therefore, with probability at least ,
which implies that

Finally

by using condition (33) once more.

A. Comparison With Worst Case Results

Our average-case analysis depends on , while the
classical condition (6) of Proposition 2.1 depends on
and is therefore significantly stronger. Proposition 5.2 es-
tablishes that the -norm condition can be satisfied as long
as . This is clearly weaker than the worst case
condition of Proposition 2.3.

Let us now compare worst case and average-case results
based on the coherence , by relying on Theorem 5.4. For
simplicity, we consider the case in which is a unit-norm tight
frame, for which . In this case, (34) is equivalent to

. If additionally , then conditions (33)
and (34) are both satisfied for fixed provided

This beats the square-root bottleneck and even removes the
-factor present in estimates for the restricted isometry con-

stants; see (11). We also have the additional advantage that
the coherence is much easier to estimate than the restricted
isometry constants.

Combining Theorem 5.4 with the average-case analysis of
Theorems 4.4 and 4.5 shows that for a unit norm tight frame

of coherence multichannel sparse recovery by (5) can be
ensured in the average-case provided , which can be
as small as . Moreover, the failure probability decays
exponentially in the number of channels.

In the next section, we provide further examples when we
discuss particular choices of the matrix .

VI. COMPARISON WITH MULTICHANNEL

GREEDY ALGORITHMS

We now compare our results regarding optimization
to those obtained for the greedy algorithms -thresholding
and -SOMP [25]. These are multichannel versions of simple
thresholding and orthogonal matching pursuit. For ,
they produce a -sparse signal from measurements
using a greedy search. To this end, we improve slightly on
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previous average-case performance results in [25] for these
algorithms in the noiseless setting.

A. Greedy Methods

In -thresholding, we select a set of indices whose -cor-
relation with are among the largest

(36)

After the support is determined, the nonzero coefficients of
are computed via an orthogonal projection: .
The -SOMP algorithm is an iterative procedure. At each iter-

ation, an atom index is selected, and a residual is updated. At
the first iteration, the residual is simply . After itera-
tions, the set of selected atoms being , the new
residual is computed as
where and is the orthogonal
projection onto the linear span of the selected atoms. The next
selected atom is the one which maximizes the -correla-
tion with the residual

(37)

Using the real Gaussian probability model (19) average-case
recovery theorems for -thresholding and -SOMP have been
proven in [24], [25, Theorems 4, 6, 7, 8]. We improve slightly
on these in the following. (Note, however, that [25] also treats
the noisy case.) Our first result generalizes the one in [39] to the
multichannel setup.

Theorem 6.1: Let have unit norm columns and
local -coherence function defined in (29). Let

with where , and such
that the coefficients on are given by (19), , where
we choose the real spherical model for . Set and

, where . If

(38)

then the probability that -thresholding applied to fails to
recover is bounded by

If we use the complex spherical model instead of the real spher-
ical model then in the above probability estimate may be
replaced by .

The probability bound of Theorem 6.1 is similar to that of
Theorem 4.4. However, in contrast to our results for -min-
imization, success of thresholding suffers a dependency on the
diagonal matrix . The larger the ratio , the stronger the con-
dition (38) on the maximal allowed sparsity , and the larger the
probability of error.

Proof of Theorem 6.1: We proceed similarly as in [39]. We
denote by the event that -thresholding fails. Clearly,

where will be specified later. Denote by , , a sequence
of independent random vectors which are uniformly distributed
on the unit sphere of . Then

(39)
Now

Substituting into (39)

Choosing and applying Theorem 4.2 we obtain

where we used the definition of and . Similarly

Combining the two estimates completes the proof for the real
case. Choosing the vectors , , from the complex unit
sphere and using Corollary 4.3 yields the statement for the
complex case.

We now state the corresponding result for -SOMP, which
slightly improves the one in [25] for the noiseless case. (Note
that we restrict to here, although the theorem is easily
extended to general values of .)

Theorem 6.2: Let be a matrix with unit norm columns and
constants where . Assume
that

(40)

for some . Let be a random coefficient matrix with
support that is selected according to the real Gaussian proba-
bility model, see (19), and let . Then -SOMP applied
to recovers in steps with probability at least

(41)

where is given by (23).
If we use the complex Gaussian model instead of the real

Gaussian model then the same conclusion holds with re-
placed by in (41).

Proof: See Appendix C.
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Remark 6.3:
(a) Due to the factor , the probability bound (41) becomes

effective only when the number of channels becomes
comparable to the sparsity . This drawback is very
likely due to the analysis and is not observed in practice.
However, it seems to be very difficult to remove this
factor by a more sophisticated proof technique.

(b) We require , so that the probability decay of (41) is
potentially slower than that given by Theorem 4.4.

(c) With condition (40) is satisfied if
while the probability estimate (41) behaves like

.
(d) With the estimates and ,

(40) with is implied by

(e) By Proposition 5.2, the condition implies
for all , i.e., the bounded norm con-

dition (20) of the average case recovery result for mixed
. In other words, the condition in (d) for SOMP is

slightly stronger than the one for .

B. Comparison

We now compare the average-case recovery conditions for
mixed , thresholding and SOMP for the following choices
of the matrix which we will also use in the numerical
experiments.

1) Random spherical ensemble.
2) Union of Dirac and Fourier.
3) Time–frequency shifts of the Alltop window.
1) Random Spherical Ensemble: Assume that the random

columns of are independent and uniformly dis-
tributed on the sphere . Let be a support set of size .
Then, according to Proposition 5.2 the condition

of Theorem 4.4 is implied by , while
by Proposition 5.3 the latter holds with probability at least
provided

(42)

Assuming, for example, , under the probability
model (19), the probability that reconstruction by fails is
bounded from above by

with .
We now compare this result with the condition of Theorem

6.1 concerning thresholding. As noted in (31), .
Therefore, by Proposition 5.3 we have

with probability at least provided

(43)

and the failure probability of thresholding is bounded by
.

Let us finally consider Theorem 6.2 for SOMP. By Proposi-
tion 5.3, the condition in Remark 6.3 is satisfied
with probability at least provided

(44)

and the failure probability of SOMP is bounded by

(45)

with if the real Gaussian probability model is used.
Conditions (42), (43), (44) for , thresholding and SOMP
are rather similar. However, condition (43) for thresholding in-
volves the ratio . If is large, then thresholding behaves much
worse compared to and SOMP. The probability estimate
(45) is the worst compared to the other two algorithms due to
the factor . Therefore, gives the best known theoretical
average case result.

2) Union of Dirac and Fourier: Consider the matrix
, where is the identity matrix and is

the normalized Fourier matrix. The coherence of is
easily seen to be . By Proposition 5.1, condition (20),

with is satisfied for all support sets
of cardinality at most provided

If is chosen at random then a much better bound (up to con-
stants) is obtained using Theorem 5.4. In our special case, how-
ever, further improvement is possible. A reformulation of a re-
sult of [5], see also [46, Proposition 3] shows the following. If
the support consists of arbitrary elements of
and random elements of then with proba-
bility at least we have provided

(46)

with . In particular, and the same reasoning
as in the proof of Theorem 5.4 yields

Using one of the complex probability models in Theorem 4.4,
the failure probability of -minimization is bounded by

with .
To compute the performance of thresholding, note that con-

dition (38), is satisfied provided

(47)

Assuming that the nonzero rows of the matrix in the proba-
bility model (19) on the coefficients are independent and uni-
formly distributed on the complex unit sphere , the failure
probability of thresholding is bounded by

.
If and , i.e.,

(48)

then the condition of Remark 6.3 (c) is satisfied since by (31),
. By Theorem 6.2, SOMP fails with

probability at most assuming the complex
Gaussian probability model. Let the support set be such that

arbitrary elements of and random elements of
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are chosen with , as in the discus-
sion of . Then, is true with probability at least

provided (46) holds.
Similar conclusions on the comparison of the three algo-

rithms as in the previous example apply. We note, however,
that in contrast to and SOMP, the performance bound
for thresholding does not require a probability model on the
support set .

3) Time–Frequency Shifts of Alltop Window: Let
be a prime. Denote by and

the cyclic shift and modulation oper-
ator, respectively. Then , forms
the set of time–frequency shifts. Let be the
so-called Alltop window. Then define to be the
matrix with columns being the time–frequency shifts ,

. The coherence of is [40]. As
in the Fourier–Dirac case, under condition (47) and the complex
spherical probability model, thresholding fails with probability
at most by Theorem 6.1.

For the analysis of and SOMP we assume that the sup-
port is chosen uniformly at random. As is the union of
orthonormal bases we have . Then choosing
in Theorem 5.4 yields that under the condition

with a constant (which also implies (34)) we have

for all

with probability at least where . By
Theorem 4.4, using one of the complex probability models, the
failure probability of is then bounded by
with .

For the analysis of SOMP we choose in Theorem 5.5.
The condition that the square root in (35) is less than
is equivalent to the requirement

(49)

with an appropriate . Then with probability at least we
have . Furthermore, as suggested by Remark 6.3
(b), the requirement is also implied by (49) since

. Assuming the complex Gaussian
probability model on the nonzero coefficients of , the failure
probability of SOMP is bounded by due
to Theorem 6.2.

VII. NUMERICAL SIMULATIONS

We tested the three algorithms minimization, thresh-
olding and SOMP using the three different types of matrices
indicated in the previous section. The support set of the
sparse coefficient matrices was always selected uniformly at
random while the nonzero coefficients were selected at random
using one of the following choices of the probability model
(19), :

Fig. 1. Multichannel recovery with � generated according to model 1) and �
chosen from a random spherical ensemble: (a) � , (b) SOMP, (c) thresholding.

1) is chosen at random according to the real Gaussian
model; has independent diagonal entries with standard
normal distribution.

2) is chosen at random according to the complex Gaussian
model; equals the identity.
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Fig. 2. Multichannel recovery with � generated according to model 3) and �
a union of the Dirac and Fourier bases: (a) � , (b) SOMP, (c) thresholding.

3) is chosen at random according to the complex spherical
model; equals the identity.

Note that is favorable for thresholding, while the choice
of should have no influence on the performance of and
only a mild influence on SOMP.

Fig. 3. Multichannel recovery with � generated according to model 2) and �
chosen as time–frequency shifts of the Alltop window: (a) � , (b) SOMP.

In the following figures, the results of various simulation runs
are plotted (we always used 100 simulations for each choice of
parameters).

In Fig. 1, we plot the results when choosing from a random
spherical ensemble of size columns and
rows for between and . The matrix was generated
according to model 1). The improvement with increasing is
clearly evident.

In Fig. 2, we consider all three methods when is a union
of Dirac and Fourier bases, each with 32 elements. Therefore,

and . The matrix was generated according
to model 3). Our simulations show that depending on the
number of channels , the three algorithms behave differently.
For small values of the mixed norm program shows
the best performance. For intermediate number of channels
SOMP shows the best recovery results, while, quite surpris-
ingly, for large values of actually thresholding exhibits
the best recovery performance.

Finally, in Fig. 3, we plot the results when using time–fre-
quency shifts of the Alltop window with and

. Here, the results of thresholding are extremely poor
and therefore not plotted.
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In all examples, the three recovery methods show clear per-
formance advantage with increasing .

VIII. CONCLUSION

In this paper, we analyzed the average-case performance of
recovery of multichannel signals. Our main result is that

under mild conditions on the sparsity and measurement matrix,
the probability of failure decays exponentially with the number
of channels. To develop this result we assumed a probability
model on the nonzero coefficients of a jointly sparse signal. The
results we obtained appear to be the best known theoretical re-
sults on multichannel recovery. Using the tools we developed
for analyzing the approach, we also improved slightly on
previous performance bounds for thresholding and SOMP.

APPENDIX A
PROOF OF THEOREM 4.2

The proof uses the following extension of Khintchine’s in-
equality to higher dimensions stated in [27]:

for all and all vectors . By splitting in real and
imaginary parts it easily follows that this inequality also holds
for all . We may assume, without loss of generality, that

. Then an application of Markov’s inequality yields

(50)

where denotes the
Pochhammer symbol. The last equation is due to the fact that

is the Taylor series of , which converges
for . Minimizing (50) with respect to gives .
Inserting this value yields the statement of the theorem.

APPENDIX B
PROOF OF PROPOSITION 5.3

Consider first the case of Gaussian or Bernoulli matrices.
According to Theorem 2.1 in [37] (see also Lemma 5.1 in
[1]), we have with probability at most

with . A similar
estimate holds for with . A union
bound over all yields with probability at most

. This term is less than if (32)
holds.

Now consider a random matrix with indepen-
dent columns that are uniformly distributed on the sphere .
Then has the same distribution as , where is a Gaussian
matrix as above, , and
where is a vector of independent standard normally
distributed random variables. We now use the following mea-
sure concentration inequality [3, Corollary 2.3] or [4, eq. (2.6)]
for a standard Gaussian vector :

By a union bound this implies that

(51)

By the above reasoning, we have

for all with for some with probability
at least provided (32) holds with a suitable constant. If
additionally

for then

for all with for some . By a union
bound and (51) this holds with probability at least pro-
vided (32) holds and , the latter being
equivalent to . Adjusting the constant in
(32) completes the proof.

APPENDIX C
PROOF OF THEOREM 6.2

We assume that until a certain step SOMP has selected only
correct indices, collected in . Let us first estimate the
probability that it selects a correct element of also in the
next step.

We denote by the orthogonal projection onto the
span of the columns of in , and . The residual
at the current iteration is given by
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. SOMP selects a correct index in in the next
step if

(52)

By Theorem 11 in [25] (which is proven using Theorem 4.6;
note that there is a slight error in [25] in the computation of the
constant ) we have the following concentration of measure
inequalities:

where is the constant in (23) and with
being a vector of independent standard normal

variables. Now we assume that

(53)

Then by the above and a union bound the probability that SOMP
fails can be bounded by

(54)

Let us consider now the maximum on the right-hand side of
(53). First note that for all , in other words

. Hence, we can estimate

Furthermore, for we have

where we used the fact that is a submatrix of
.

Next we consider the maximum on the left-hand side of (53).
We can estimate

Furthermore, for

Combining the above estimates, condition (53) is satisfied if

which is equivalent to (40).
In order to complete the proof, we note that OMP successfully

recovers the correct signal if (53) holds for all . By a
union bound of (54) over all those subsets this is true with
probability at least provided condition
(40) holds.

The extension to the complex valued case is straightforward.
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