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Nonlinear and Nonideal Sampling:
Theory and Methods

Tsvi G. Dvorkind, Yonina C. Eldar, Senior Member, IEEE, and Ewa Matusiak

Abstract—We study a sampling setup where a continuous-time
signal is mapped by a memoryless, invertible and nonlinear
transformation, and then sampled in a nonideal manner. Such
scenarios appear, for example, in acquisition systems where a
sensor introduces static nonlinearity, before the signal is sampled
by a practical analog-to-digital converter. We develop the theory
and a concrete algorithm to perfectly recover a signal within a
subspace, from its nonlinear and nonideal samples. Three alter-
native formulations of the algorithm are described that provide
different insights into the structure of the solution: A series of
oblique projections, approximated projections onto convex sets,
and quasi-Newton iterations. Using classical analysis techniques
of descent-based methods, and recent results on frame perturba-
tion theory, we prove convergence of our algorithm to the true
input signal. We demonstrate our method by simulations, and
explain the applicability of our theory to Wiener–Hammerstein
analog-to-digital hybrid systems.

Index Terms—Generalized sampling, interpolation, nonlinear
sampling, Wiener–Hammerstein.

I. INTRODUCTION

D IGITAL signal processing applications are often con-
cerned with the ability to store and process discrete

sets of numbers, which are related to continuous-time signals
through an acquisition process. One major goal, which is at the
heart of digital signal processing, is the ability to reconstruct
continuous-time functions, by properly processing their avail-
able samples.

In this paper, we consider the problem of reconstructing a
function from its nonideal samples, which are obtained after the
signal was distorted by a memoryless (i.e., static), nonlinear, and
invertible mapping.

The main interest in this setup stems from scenarios where
an acquisition device introduces a nonlinear distortion of
amplitudes to its input signal, before sampling by a practical
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Fig. 1. (a) Sampling setup. (b) Illustration of the memoryless nonlinear map-
ping.

analog-to-digital converter (ADC) [see Fig. 1(a)]. Nonlinear
distortions appear in a variety of setups and applications of
digital signal processing. For example, charge-coupled device
(CCD) image sensors introduce nonlinear distortions when
excessive light intensity causes saturation [1], [2]. Memoryless
nonlinear distortions also appear in the areas of power elec-
tronics [3] and radiometric photography [4], [5]. In some cases,
nonlinearity is introduced deliberately in order to increase the
possible dynamic range of the signal while avoiding amplitude
clipping, or damage to the ADC [6]. The goal is then to process
the samples in order to recover the original continuous-time
function.

The usual assumption in such problems is that the samples are
ideal, i.e., they are pointwise evaluations of the nonlinearly dis-
torted, continuous-time signal. Even then, the problem may ap-
pear to be hard. For example, nonlinearly distorting a band-lim-
ited signal, usually increases its bandwidth. Thus, it might not be
obvious how to adjust the sampling rate after the nonlinearity.
In [7], for instance, the author seeks sampling rates to recon-
struct a band-pass signal, which is transformed by a nonlinear
distortion of order at most three. However, as noticed by Zhu [8],
oversampling in such circumstances is unnecessary. Assuming
the band-limited setting and ideal sampling, Zhu showed that
perfect reconstruction of the input signal can be obtained, even
if the distorted function is sampled at the Nyquist rate of the
input. The key idea is to apply the inverse of the memoryless
nonlinearity to the given ideal samples, resulting in ideal sam-
ples of the band-limited input signal. Recovery is then straight-
forward by applying Shannon’s interpolation. Unfortunately, in
practice, ideal sampling is impossible to implement. A more ac-
curate model considers generalized sampling [9]–[12]. Instead
of pointwise evaluations of the continuous-time function, the
samples are modeled by a set of inner products between the con-
tinuous-time signal and the sampling functions. These sampling
functions are related to the linear part of the acquisition process,
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for example they can describe the antialiasing filtering effects of
an ADC [9].

In the context of generalized sampling, considerable effort
has been devoted to the study of purely linear setups, where
nonlinear distortions are absent from the description of the ac-
quisition model. The usual scenario is to reconstruct a function
by processing its generalized samples, obtained by a linear and
bounded acquisition device. Assuming a shift-invariant setup,
the authors of [9] introduce the concept of consistent recon-
struction in which a signal is recovered within the reconstruc-
tion space, such that when re-injected into the linear acquisition
device, the original sample sequence is reproduced. The idea
of consistency was then extended to arbitrary Hilbert spaces in
[10], [13], and [14]. In some setups, the consistency requirement
leads to large error of approximation. Instead, robust approx-
imations were developed in [12], in which, the reconstructed
function is optimized to minimize the so called minimax regret
criterion, related directly to the squared-norm of the reconstruc-
tion error. This approach guarantees a bounded approximation
error, however, there as well, the acquisition model is linear.

In this paper, we consider a nonlinear sampling setup, com-
bined with generalized sampling. The continuous-time signal is
first nonlinearly distorted and then sampled in a nonideal (gen-
eralized) manner. We assume that the nonlinear and nonideal
acquisition device is known in advance, and that the samples are
noise free. In this general context, we develop the theory to en-
sure perfect reconstruction, and an iterative algorithm, which is
proved to recover the input signal from its nonlinear and gener-
alized samples. The theory we develop leads to simple sufficient
conditions on the nonlinear distortion and the spaces involved,
that ensure perfect recovery of the input signal. If the signal is
not constrained to a subspace, then the problem of perfect re-
covery becomes ill-posed (see Section III) as there are infin-
itely many functions which can explain the samples. Therefore,
our main effort concerns the practical problem of reconstructing
a function within some predefined subspace. For example, the
problem may be to reconstruct a band-limited function, though,
in this work we are not restricted to the band-limited setup.

Three alternative formulations of the algorithm are developed
that provide different insight into the structure of the solution: A
series of oblique projections [15], [16], an approximated projec-
tions onto convex sets (POCS) method [17], and quasi-Newton
iterations [18], [19]. Under some conditions, we show that all
three viewpoints are equivalent, and from each formulation we
extract interesting insights into the problem.

Our approach relies on linearization, where at each iteration
we solve a linear approximation of the original nonlinear sam-
pling problem. To prove convergence of our algorithm we ex-
tend some recent results concerning frame perturbation theory
[20]. We also apply classical analysis techniques which are used
to prove convergence of descent-based methods.

After stating the notations and the mathematical prelim-
inary assumptions in Section II, we formulate our problem
in Section III. In Section IV, we prove that under proper
conditions, perfect reconstruction of the input signal from its
nonlinear and generalized samples is possible. In Section V,
we suggest a specific iterative algorithm. The recovery method
relies on linearization of the underlying nonlinear problem,

and takes on the form of a series of oblique projections. In
Section VI, we develop a reconstruction based on the POCS
method and show it to be equivalent to the iterative oblique-pro-
jections algorithm. In Section VII, we view the linearization
approach within the framework of frame perturbation theory.
This viewpoint leads to conditions on the nonlinear mapping
and the spaces involved, which ensure perfect recovery of
the input. In Section VIII, we formulate our algorithm as
quasi-Newton iterations, proving convergence of our method.
Some practical aspects are discussed in Section IX. Specifi-
cally, we explain how the algorithm should be altered, if some
of the mathematical preliminary assumptions do not hold in
practice. We also show how to apply our results to acquisition
devices that are modeled by a Wiener–Hammerstein system
[21]. Simulation results are provided in Section X. Finally,
in Section XI, we conclude and suggest future directions of
research. Some of the mathematical derivations are provided
within the appendixes.

II. NOTATIONS AND MATHEMATICAL PRELIMINARIES

We denote continuous-time signals by bold lowercase letters,
omitting the time dependence, when possible. The elements of a
sequence will be written with square brackets, e.g., .
Operators are denoted by upper case letters. The operator
represents the orthogonal projection onto a closed subspace ,
and is the orthogonal complement of . stands for
an oblique projection operator [15], [16], with range space
and null space . The identity mapping is denoted by . The
range and null spaces are denoted by and , respec-
tively. Inner products and norms are denoted by and

, with being the Hilbert space involved. The norm
of a linear operator is its spectral norm.

The Moore–Penrose pseudoinverse [22] and the adjoint of a
bounded transformation are written as and , respec-
tively. If is a linear bounded operator with

closed range space, then the Moore–Penrose pseudoinverse
exists [22, pp. 321]. If in addition, is a linear bijection on
then . Therefore, for a linear and bounded bi-

jection , and linear, bounded with closed range,
exists.

An easy way to describe linear combinations and inner prod-
ucts is by utilizing set transformations. A set transformation

corresponding to frame [23] vectors is defined
by for all . From the definition of the
adjoint, if , then . A direct sum
between two closed subspaces and of a Hilbert space
is the sum set with
the property . For an operator and a subspace

, we denote by the set obtained by applying to all
vectors in .

We denote by a nonlinear memory-
less (i.e., static) mapping, which maps an input function to
an output signal . Being static, there is a functional

describing the input–output relation at each time in-
stance , such that [see Fig. 1(b)].
The derivative of is denoted by . We will also use
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the Fréchet derivative [24] of to describe in terms of
an operator in .

Definition 1: An operator is Fréchet differen-
tiable at , if there is a linear operator , such
that in a neighborhood of

(1)
We refer to as the Fréchet derivative (or simply the deriva-
tive) of at . Note that the Fréchet derivative of a linear
operator is the operator itself.

In our setup, is memoryless, so that the image
is completely determined in terms of the composition

, i.e., . In such a
setting, , the Fréchet derivative of at satisfies

, for any function , and for all
time instances . For example, the Fréchet derivative of the
memoryless operator evaluated at is de-
termined by the functional , and .

A. Mathematical Safeguards

Our main treatment concerns the Hilbert space of real-valued,
finite-energy functions. Throughout the paper we assume that
the sampling functions form a frame [23] for the closure
of their span, which we denote by the sampling space .
Thus, there are constants such that

(2)

for all , where is the set transform corresponding to
.

To assure that the inner products are well de-
fined, we assume that the distorted function is in

for all . The latter requirement is satisfied if, for ex-
ample, and is Lipschitz continuous. Indeed, in this
case

(3)

where is a Lipschitz bound of . Another case in which
has finite energy, is when is Lipschitz continuous

and the input function has finite support.
Lipschitz continuity of the nonlinear mapping can be guar-

anteed by requiring that .
Throughout our derivations we also assume that is invert-
ible. In particular, this holds if the input–output distortion
curve is a strictly ascending function,1 i.e., .

1The results of this work can be extended for the strictly descending case as
well; see Section IX.

In summary, our hypothesis is that the slope of the nonlinear
distortion satisfies

(4)

for some , , and all .
To reconstruct functions within some closed subspace of
, let to be a Riesz basis [23] of . Then the corre-

sponding set transformation satisfies

(5)

for some fixed , and all .

III. PROBLEM FORMULATION

Our problem is to reconstruct a continuous-time signal
from samples of , which is obtained by a nonlinear, memo-
ryless and invertible mapping of , i.e.,

This nonlinear distortion of amplitudes is illustrated in Fig. 1(b),
where a functional describes the input–output relation of the
nonlinearity. Our measurements are modelled as the generalized
samples of , with the th sample given by

(6)

Here, is the th sampling function. We define to
be the sampling space, which is the closure of and

to be the set transformation corresponding to . With this
notation, the generalized samples (6) can be written as

(7)

By the Riesz representation theorem, the sampling model (7)
can describe any linear and bounded sampling scheme.

An important special case of sampling, is when is a shift-in-
variant (SI) subspace, obtained by equidistant shifts of a gener-
ator

An example is an ADC which performs prefiltering prior to sam-
pling, as shown in Fig. 2. In such a setting, the sampling vectors

are shifted and mirrored versions of the
prefilter impulse response [9]. Furthermore, the sampling func-
tions form a frame for the closure of their span [23], [25] if and
only if

for some . Here we denote,

(8)
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Fig. 2. Filtering with impulse response ����� followed by ideal sampling. The
sampling vectors are ����� �� ��.

where is the continuous-time Fourier transform of the
generator , and is the set of frequencies for which

.
If there are no constraints on , then the problem of re-

constructing this input from the samples becomes ill-posed.
Specifically, there are infinitely many functions of which
can yield the known samples. Indeed, any signal of the form

is a possible candidate, where is an arbitrary
vector in and

(9)

is the orthogonal projection of onto the sampling space, which
is uniquely determined by the samples . However, in many
practical problems we assume some subspace structure on the
input signal. The assumption of a signal being band-limited is
probably the most common scenario, though, in this work, we
are not limited to the band-limited setup. Our formulation treats
the problem of reconstructing which is known to lie in an ar-
bitrary closed subspace . The overall sampling scheme
we consider is illustrated in Fig. 1.

To recover from its samples, we need to determine a bi-
jection between this function and the sample sequence. Unfor-
tunately, though we restrict the solution to a closed linear sub-
space of , it is still possible to have infinitely many func-
tions in which can explain the samples. For example, even for
a simplified setup of our problem where is replaced by the
identity mapping, there are infinitely many consistent solutions
if but . Indeed, for any
we have . If, however, and satisfy
the direct sum condition

(10)

then it is well known [10], [14] that for , a unique consis-
tent solution exists. In that case, the consistent solution is also
the perfect reconstruction of the true input . Thus, if

and (10) holds, then the problem is trivial.
In our setup, however, . Furthermore, is not even

a linear operator. Instead of ignoring the effects of the nonlin-
earity, yet another simplification of the problem might be to
assume that the samples are ideal, i.e., . In that
case, we can resort to Zhu’s sampling theorem [8], by applying

to the samples . Presuming that indeed ,
by this approach we then obtain the ideal samples of .
The problem then reduces to that of recovering a signal in a
subspace from its ideal samples, which has been treated ex-
tensively in the sampling literature (see, for example, [26]).

As mentioned, however, in our setup the signal is distorted
by a nonlinear mapping , and generalized (rather than ideal)
sampling takes place. Hence, approaches which ignore the non-
linearity or the nonideal nature of the sampling scheme are sub-

optimal, and in general, will not lead to perfect recovery of the
input . In Section X, we demonstrate that by applying di-
rectly to the samples and then recovering leads to suboptimal
reconstruction performance. Nonetheless, we will show that if
(10) is satisfied, and under proper assumptions on the nonlinear
distortion , then there is a unique function within , which
can explain the measured samples. Building on this result we de-
velop the theory and a concrete iterative method for obtaining
perfect reconstruction of a signal in a subspace, despite the fact
that it is measured through a nonlinear and nonideal acquisition
device.

Before treating this general case, we note that there are special
setups for which it is possible to reconstruct the function in
a closed form. An example of such a setup is presented in the
following theorem.

Theorem 1: Let be a periodic function with period
that satisfies the Dirichlet conditions. Let be a Lip-

schitz continuous, memoryless and invertible mapping. If
is sampled with the sampling functions

(11)

and the generator satisfies

(12)

for all , then can be reconstructed from the gen-
eralized samples (6). The reconstruction is given by

(13)

where is the convolutional inverse of , and
is the continuous-time Fourier transform of .
Proof: See Appendix I.

In Theorem 1, a special choice of sampling functions is em-
ployed in order to reconstruct a periodic function. In the gen-
eral case, however, the sampling functions do not satisfy (11).
Hence, the rest of this paper will treat a much broader setting, al-
lowing the use of arbitrary sampling and reconstruction spaces.
In particular, the more standard setup of SI spaces is included in
our framework.

IV. UNIQUENESS

In this section, we prove that under proper conditions on
and the spaces involved, the problem of perfectly reconstructing
the input signal from its nonlinear and generalized samples
indeed has a unique solution. Specifically, we show that if
the subspace (i.e., the space obtained by applying the
Fréchet derivative to each vector in ) satisfies the direct
sum for all , then is uniquely
determined by its samples.

Theorem 2: Assume for all .
Then there is a unique such that .

Proof: Assume that there are two functions ,
which both satisfy . Then
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implying that .
For each time instance , we have some interval of ampli-

tudes , where we have assumed, without loss of
generality, that . Since by (4) the nonlinear dis-
tortion curve is continuous and differentiable, by the mean
value theorem, there is a scalar and an intermediate
value such that

(14)

Defining a function , we may rewrite (14) for all
using operator notations

(15)

The resulting function lies within the subspace
and by the right-hand side of (15) it is also a function

in . By the direct sum assumption , we
must have , or equivalently (since is a
bijection), .

In the sequel we will state simple conditions on and the
spaces and , which assure that the direct sum assumptions
of Theorem 2 are met in practice. In particular, we will show
that if is smooth enough, then (10) is sufficient to ensure
uniqueness.

V. RESTORATION VIA LINEARIZATION

Under the conditions of Theorem 2, there is a unique function
which is consistent with the measured samples . There-

fore, all we need is to find satisfying .
A natural approach to retrieve is to iteratively linearize these
nonlinear equations. As this method relies on linearization, we
first need to explain in detail, how to recover the input if
it is related to through a linear mapping.

A. Perfect Reconstruction for Linear Schemes

In this section we adopt a general formulation within some
Hilbert space (which is not necessarily ). Assume a model
where is related to through a linear, bounded and bijective
mapping , i.e.,

The case was previously addressed in the literature [9],
[10], [13], [14]. Assuming that the direct sum condition (10) is
satisfied, it is known that can be perfectly reconstructed
from the samples of , by oblique projecting of (9) along
onto the reconstruction space :

(16)

The extension of this result to any linear continuous and con-
tinuously invertible (not necessarily ) is simple. First
note that since the solution lies within , the function is
constrained to the subspace . Further-
more, in our context will play the role of the operator of

Fig. 3. Perfect reconstruction with linear invertible mapping.

Theorem 2, and we will derive conditions to assure that the di-
rect sum holds. Then, perfect reconstruction
of any is given by

(17)

Also note that due to the direct sum assumption
, the oblique projection operator is well defined

(e.g., [25]). Finally, to obtain itself, we apply to (17).
This simple idea is illustrated in Fig. 3 and summarized in the
following theorem.

Theorem 3: Let and let with
a linear, continuous and bijective mapping satisfying

. Then we can reconstruct from the samples
by

(18)

where is a set transformation corresponding to a Riesz basis
for .

In (18) we have used . For the
special case we obtain the expected oblique projection
solution [9], [13], [14] of (16).

B. Iterating Oblique Projections

We now use the results on the linear case to develop an iter-
ative recovery algorithm in the presence of nonlinearities. The
true input is a function consistent with the measured samples
, i.e., it satisfies

(19)

To recover we may first linearize (19) by starting with some
initial guess and approximating the memoryless non-
linear operator using its Fréchet derivative at

(20)
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Fig. 4. Schematic of the iterative algorithm.

where for brevity we denoted . Rewriting (19) using
(20) yields

(21)

The left-hand side of (21) describes a vector which lies
within the subspace and is sampled by the analysis oper-
ator . The right hand is the resulting sample sequence. Since
by (4) the linear derivative operator is a bounded bijection
on , we may apply the result of Theorem 3 as long as the di-
rect sum condition is satisfied. Specifically,
identifying with in Theorem 3, the unique solution of (21)
is

(22)

where such that . The process can now be
repeated, using as the new approximation point.

Assuming that for each iteration we have
, we may summarize the basic form of the algorithm by

(23)

where we used in the last
equality. This leads to the following interpretation of the algo-
rithm:

• Using the current approximation , calculate
, the error within the sampling space.

• Solve a linear problem of finding a function within the re-
construction space , consistent with when .
The solution is .

• Update the current estimate using the resulting correc-
tion term.

This idea is described schematically in Fig. 4.
Finally, note that in practice, we need only to update the rep-

resentation coefficients of within . Thus, we may write
, where the set transformation corresponds to a

Riesz basis for , and are the coefficients. This results
in a discrete version of the algorithm (23):

(24)

where we used , and
. Note that the pseudoinverse is well defined due to

the direct sum assumption [25].

VI. THE POCS POINT OF VIEW

A different approach for tackling our problem can be obtained
by the POCS algorithm [17]. In this section we will show the
equivalence between the POCS method and the iterative oblique
projections (23).

First note that the unknown input signal lies in the intersection
of two sets: The subspace and the set

(25)

of all functions which can yield the known samples. For non-
linear , the set of (25) is in general nonconvex. POCS
methods are successfully used even in problems where we it-
erate projections between a convex set and a nonconvex one,
assuming that it is known how to compute the projections onto
the sets involved (e.g., [27] and [28]). Unfortunately, in our
problem, it is hard to compute the orthogonal projection onto

. However, we can approximate using an affine (and hence
convex) subset. Replacing the operator with its linearization
around some estimate , i.e., ,
allows us to locally approximate by the set

(26)

where we define

(27)

Note that when is linear, . For nonlinear , also
contains a residual term due to approximating by its Fréchet
derivative.

We point out that the set is never empty; indeed,
, but since by (4) is bijective, then
. In addition, since is also bounded, the Moore-Pen-

rose pseudoinverse of is well defined (see Section II).
Therefore, we may rewrite as the affine subset

(28)

Given a vector , its projection onto is given by

(29)

Using (29), we now apply the POCS algorithm to this approx-
imated problem of finding an element within the intersection

.
Starting with some initialization , the POCS iterations take

the form

(30)

where is held fixed, and is the iteration index. As long as
the intersection is non empty, for any initialization ,
the iterations (30) are known to converge [17] to some element
within . Once convergence has been obtained, the process
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can be repeated by setting a new linearization point
and defining a new approximation set, , similarly to (28).

Combining (30) with (29) we have
. Continuing this expansion, while expressing

the result in terms of the initial guess , leads to

Substituting , in the limit we have

(31)

Interestingly, the infinite sum (31), can be significantly sim-
plified if again we assume that the direct sum conditions

(32)

are satisfied for all . In fact, the POCS method becomes equiv-
alent to the approach presented in the previous section.

Theorem 4: Assume holds for all .
Then iterations (31) are equivalent to (23).

Proof: See Appendix II.

VII. LINEARIZATION AS FRAME PERTURBATION THEORY

We have seen that under the direct sum conditions (32)
both the iterative oblique projections and the approximated
POCS method take on the form (23). Furthermore, as stated in
Theorem 2, such direct sum conditions are also vital to prove
uniqueness of the solution. Ensuring that for any linearization
point , the direct sum holds is not trivial. In this
section we derive sufficient (and simple to verify) conditions
on the nonlinear distortion , which assure this condition.

The key idea is to view the linearization process, which led to
the modified subspace , as a perturbation of the original
space . If the perturbation is ‘small enough’, and

, then we can prove (32). Before proceeding with the mathe-
matical derivations, it is beneficial to geometrically interpret this
idea for , as illustrated in Fig. 5. As long as
holds (here, the line defined by the subspace is not perpen-
dicular to ) and is sufficiently close to , we can also
guarantee that , since the angle between
and the perturbed subspace is smaller than 90 .

As shown in Fig. 5, the concept of an angle between spaces
is simple for . The natural extension of this idea in
arbitrary Hilbert spaces is given by the definition of the cosine
and sine between two subspaces , of some Hilbert space

[9], [16]:

(33)

Fig. 5. Subspace� and its perturbation. As long as the sum of maximal angles
between � and �, and � with its perturbation� ��� (i.e., � and � , respec-
tively) is smaller than 90 , the direct sum (32) is satisfied.

Throughout this section we will also use the relations [16]

(34)

We start by showing that is ‘sufficiently close’ to
(in terms of Fig. 5, the angle is smaller than 90 degrees), by
stating a sufficient condition on the nonlinear distortion which
guarantees that

(35)

along the iterations. We then use (35), to derive sufficient con-
ditions for the direct sum to hold. In terms
of Fig. 5, the latter means that is also smaller than 90
degrees.

To show (35), we rely on recent results concerning frame per-
turbations on a subspace, and extend these to our setup.

Proposition 1: If , then
.

Proof: The direct sum condition is
equivalent to and
[16]. The requirement can be guaranteed
by relying on the following lemma.

Lemma 1 [20, Theorem 2.1]: Let be a frame for
, with frame bounds . For a sequence in , let

, and assume that there exists a constant
such that

(36)

for all finite scalar sequences . Then the following holds:
a) is a Bessel sequence2 with bound

;
b) if , then

2�� � is a Bessel sequence if the right-hand side inequality of (2) is satisfied.
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If, in addition to b), , then
c) is a frame for with bounds ,

;
d) is isomorphic to .
Substituting for , for and ,

where we take to be an orthonormal basis of with set
transformation , we can rewrite condition (36) using operator
notations as

(37)

Now

where we used the orthonormality of in the last equality.
Thus, (37) holds with . By Lemma 1, part b),
this means that as long as

(38)

then

(39)
To avoid expressions which require the computation of

, we can further lower bound (39) by

(40)

To also establish we now extend
Lemma 1, by exploiting the special relation between and

(i.e., connected by an invertible, bounded and self
adjoint mapping).

Lemma 2: Assume with a bounded,
invertible and self adjoint mapping. Then .

Proof: Let for some , such that
. Take to be a set transformation of a Riesz basis

of , with Riesz bounds as in (5). Since
it is suffi-

cient to show that

(41)

Exploiting the fact that is bijective and self adjoint, we may
write

Since and the operator
is bounded, we must have that

for every unit norm in , and some

strictly positive . Thus, the left-hand side of (41) can be lower
bounded by

where we used in the last in-
equality.

Having established that and
, it follows from [16] that

, completing the proof.
We now show that if is ‘sufficiently close’ to then there

are nonlinear distortions for which (32) holds.
Theorem 5: Assume . If

(42)

then .
Before stating the proof, note that (42) also implies

, which by Proposition 1 ensures
. We also note that since the direct

sum condition guarantees that ,
the norm bound is meaningful as the right-hand side of (42) is
positive. In the special case we have and
(42) becomes which is the less restrictive
requirement of Proposition 1.

Proof: See Appendix III.
We have seen that the initial direct sum condition
and the curvature bound (42) are sufficient to ensure that the

direct sum condition is satisfied. Consequently,
by Theorem 2, there is also a unique solution to our nonlinear
sampling problem.

As a final remark, note that by relating the curvature bounds
(4) with (42) yields

(43)

and

(44)

This means that a sufficient condition for our theory to hold,
is to have an ascending nonlinear distortion, with a slope no
larger than two. In Section IX, we suggest some extensions of
our algorithm to the case in which these conditions are violated.

VIII. CONVERGENCE: THE NEWTON APPROACH

In Sections V and VI, we saw that under the direct sum condi-
tions the iterative oblique projections and
the approximated POCS method take the form (23). We now
establish that with a small modification, algorithm (23) is guar-
anteed to converge. Furthermore, it will converge to the input
signal .
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To this end, we interpret the sequence version of our algo-
rithm (24), as a quasi-Newton method [18], [19], aimed to min-
imize the consistency cost function

(45)

where

(46)

is the error in the samples with a given choice of . Note
that by expressing the function in terms of its represen-
tation coefficients, we obtained an unconstrained optimization
problem.

The true input has representation coefficients , for which
attains the global minimum of zero. Since by Theorem 2 there is
only one such function, of (45) has a unique global minimum.
Unfortunately, since is nonlinear, is in general nonlinear
and nonconvex. Obviously, without some knowledge about the
global structure of the merit function (e.g., convexity), opti-
mization methods cannot guarantee to trap the global minimum
of . They can, however, find a stationary point of , i.e., a
vector where the gradient is zero.

We now establish a key result, showing that if the direct sum
conditions are satisfied, then a stationary point of must also
be the global minimum.

Theorem 6: Assume for all .
Then a stationary point of is also its global minimum.

Proof: Assume that is a stationary
point of . Then, the gradient of at is

. Denoting
and using definition (46) of , we can also rewrite

. Assume to the con-
trary that is not the zero vector.
Then, since , also

is not the zero function within . By
the direct sum , we must have that

is not the zero vector, contradicting the
fact that a stationary point has been reached.

Note that the combination of Theorems 2 and 6 implies that
when the direct sum conditions are satisfied,
optimization methods which are able to trap stationary points of

, also retrieve the true input signal . Also, in Theorem 5
we have obtained simple sufficient conditions for these direct
sums to hold. This leads to the following corollary.

Corollary 1: Assume that the slope of the nonlinear distortion
satisfies

(47)

and that . Then any algorithm which can trap
a stationary point of in (45) also recovers the true input

.

We now interpret (24) as a quasi-Newton method aimed to
minimize the cost function of (45). For descent methods in
general, and quasi-Newton specifically, we iterate

(48)

with and being the step size and search direction, respec-
tively. To minimize , the search direction is set to be a descent
direction:

(49)

where, for some positive-definite matrix3

. The step size is chosen to satisfy the Wolfe conditions
[18] (also known as the Armijo and curvature conditions) by
using the following simple backtracking procedure:

Set

Repeat until

by setting (50)

It is easy to see that the sequence version of our algorithm (24)
is in the form (48) with and .
This search direction is gradient related:

(51)

The last equality follows from the fact that when
is satisfied then [14] , and by (46),

.
Using this Newton point of view, we now suggest a slightly

modified version of our algorithm, which converges to coeffi-
cients of the true input .

Theorem 7: The algorithm of Table I will converge to coeffi-
cients of the true input, if

1) and the derivative satisfies the bound
;

2) is Lipschitz continuous.
Before stating the proof, note that condition 1 implies

for all . The only difference with the
basic version (24) of the algorithm, is by introducing a step size

and stating requirement 2. The latter technical condition is
needed to assure convergence of descent based methods.

Proof: By Corollary 1 we only need to show that the algo-
rithm converges to a stationary point of . We start by following
known techniques for analyzing Newton-based iterations. The

3With quasi-Newton methods � � �� ���� � where � is a computa-
tionally efficient approximation of the Hessian inverse. Though in our setup it is
possible to show that � is related to�� �� � with a matrix approximating the
Hessian inverse, we will not claim for computational efficiency here. Nonethe-
less, we will use the term quasi-Newton when describing our method.
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TABLE I
THE PROPOSED ALGORITHM

standard analysis is to show that Zoutendijk condition [18] is
satisfied:

(52)

where

(53)

is the cosine of the angle between the gradient and the
search direction . If

(54)

that is, the search direction never becomes perpendicular to the
gradient, then Zoutendijk condition implies that ,
so that a stationary point is reached.

To guarantee (52) we rely on the following lemma.
Lemma 3 [18, Theorem 3.2]: Consider iterations of the form

(48), where is a descent direction and satisfies the Wolfe
conditions. If is bounded below, continuously differentiable
and is Lipschitz continuous then (52) holds.

In our problem, is a descent direction and the backtracking
procedure guarantees that the step size satisfies the Wolfe
conditions [18], [19]. Also, and the
partial derivatives of with respect to exist and are given
by . Thus, all that is left is to prove
Lipschitz continuity of (which will also imply that is a
continuous mapping, and thus, is continuously differentiable).
This is proven in Appendix IV.

We now establish (54). Using (51)

(55)

where we used the notations . Since

, it is sufficient to show that is upper

bounded. Now [29], , where

(56)

Since for all , there exists an such
that for all . Therefore,

so that and (54) is satisfied. Having proved
that the suggested quasi-Newton algorithm converges to a sta-
tionary point of , by Theorem 6, we also perfectly reconstruct
the coefficients of the input .

IX. PRACTICAL CONSIDERATIONS

We have presented a Newton based method for perfect recon-
struction of the input signal. Though the suggested algorithm
has an interesting interpretation in terms of iterative oblique pro-
jections and approximated POCS, it is definitely not the only
choice of an algorithm one can use. In fact, any optimization
method, which is known to trap a stationary point of the con-
sistency merit function (45), will, by Theorem 6, also trap its
(unique) global minimum of zero. Thus, we presented here con-
ditions on the sampling space , the restoration space and
the nonlinear distortion , for which minimization of the merit
function (45) leads to perfect reconstruction of the input signal.

We will now explain how some of the conditions on the spaces
involved and the nonlinear distortion can be relaxed.

For some applications, the bounds (43) and (44) might not be
satisfied everywhere but only for a region of input amplitudes.
For example, the mapping is Lipschitz con-
tinuous only on a finite interval. Also, the derivative is zero
for an input amplitude of zero. Thus, conditions (43) and (44)
are violated unless we restrict our attention to input functions

which are a priori known to have amplitudes within
some predefined, sufficiently small interval. Restricting our at-
tention to amplitude bounded signals can be obtained by min-
imizing (45) with constraints of the form .
There are many methods of performing numerical optimization
with constraints. For example, one common approach is to use
Newton iterations while projecting the solution at each step onto
the feasible set (e.g., [30]). Another example is the use of barrier
methods [18].

Note, however, that the functional (45) is optimized with re-
spect to the representation coefficients and not the contin-
uous-time signal itself. Thus, it is imperative to link ampli-
tude bounds on to its representation coefficients , in cases
where amplitude constraints should be incorporated. It is pos-
sible to do that if we also assume that the reconstruction space
is a reproducing kernel Hilbert space (RKHS) [31], [32], which
are quite common in practice. For example, any shift-invariant
frame of corresponds to a RKHS [33]. In particular, the sub-
space of band-limited functions is a RKHS. Formally, if is
a RKHS, then for any ,

, where is the kernel function of the space [31],
[32]. Thus, we can bound the amplitude of by controlling its
energy, which can be accomplished by controlling the norm of
its representation coefficients.
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Fig. 6. Extension of the memoryless nonlinear setup to Wiener–Hammerstein
sampling systems.

An additional observation concerns the special case of
. In such a setup, at the th approximation point, the gra-

dient of (45) is . Since the operator
is positive, we can use as a descent direction,

eliminating the need to compute oblique projections at each step
of the algorithm.

We have also assumed that the nonlinearity is defined by a
strictly ascending functional . If is strictly descending
then we can always invert the sign of our samples, i.e., process
the sequence instead of , to mimic the case where we sample

, instead of . Once convergence of the al-
gorithm is obtained, the sign of the resulting representation co-
efficients should be altered. Thus, our algorithm and the theory
behind it, also apply to strictly descending nonlinearities.

Finally, we point out that the developed theory imposed the
nonlinearity to have a slope which is no larger than the
upper bound . This is, however, merely a sufficient con-
dition. In practice, we have also simulated nonlinearities with a
larger slope, and the algorithm still converged (see the examples
within Section X).

A. Extension to Wiener–Hammerstein Systems

Throughout the paper we have assumed that the nonlinear
distortion caused by the sensor is memoryless. Such a model
is a special case of Wiener, Hammerstein and Wiener–Ham-
merstein systems [21]. A Wiener system is a composition of a
linear mapping followed by a memoryless nonlinear distortion,
while in a Hammerstein model these blocks are connected in re-
verse order. Wiener–Hammerstein systems combine the above
two models, by trapping the static nonlinearity, with dynamic
and linear models from each side. We can address such systems
by noting that we can absorb the first linear mapping into the
structural constraints , and use the last linear operator to
define a modified set of generalized sampling functions. Thus,
it is possible to extend our derivations to Wiener–Hammerstein
acquisition devices as well. This concept is illustrated in Fig. 6.

X. SIMULATIONS

In this section, we simulate different setups of reconstructing
a signal in a subspace, from samples obtained by a nonlinear
and nonideal acquisition process.

A. Band-limited Example

We start by simulating an optical sampling system described
in [34]. There, the authors implement an acquisition device

Fig. 7. Optical sampling system. For high-gain signals, the optical modulator
introduces nonlinear amplitude distortions.

receiving a high frequency, narrowband electrical signal. The
signal is then converted to its baseband using an optical mod-
ulator. In [34] a small-gain electrical signal is used, such that
the transfer function of the optical modulator is approximately
linear. Here, however, we are interested in the nonlinear distor-
tion effects. Thus, we simulate an example of a high-gain input
signal, such that the optical modulator exhibits memoryless
nonlinear distortion effects when transforming the electrical
input to an optical output. The sampling system is shown in
Fig. 7.

We note that the ability to introduce high-gain signals is very
important in practice as it allows to increase the dynamic range
of a system, improving the signal to interference ratio. We now
show that by applying the algorithm of Theorem 7, we are able
to eliminate the nonlinear effects caused by the optical modu-
lator.

The input–output distortion curve of the optical modu-
lator is known in advance, and can be described by a sine
wave [35]. Here, we simulate a nonlinear distortion which is
given by . For input signals which satisfy

the optical modulator introduces a strictly as-
cending distortion curve. Notice, however, that to test a practical
scenario, we apply our method to a nonlinear distortion having
a maximal slope of five, which is larger than the bound (44).
In this simulation the input signal is composed of two high
frequency, narrowband components; a contribution at a carrier
frequency of 550 MHz and at 600 MHz. The band-
width of each component is set to 8 MHz. Hence, the input
lies in a subspace spanned by
and , where 16 MHz.
The support of the input signal (in the Fourier domain) is
depicted in Fig. 8(a).

As the input signal is acquired by the nonlinear optical sensor,
the input–output sine distortion curve introduces odd order har-
monics at the output. Already the third order harmonics con-
tribute energy in the region of 1.5–2 GHz. The resulting signal
is sampled by an (approximately linear) optical detector (photo-
diode) and an electrical ADC. We approximate both these stages
by an antialiasing low-pass filter followed by an ideal sampler,
similar to the description of Fig. 2. The antialiasing filter is
chosen to have a transition band in the range 620 MHz–1GHz,
and the sampling rate is 2 GHz. Thus, in compliance with Fig. 2,
the sampling functions are shifted and mirrored ver-
sions of the impulse response of this antialiasing filter, with

2 GHz. The original input, the resulting output
and the frequency response of the antialiasing filter are

shown in Fig. 8(b). Notice the harmonics in , introduced by the
optical modulator. Also note that the sampling rate of 2 GHz, is
below the Nyquist rate of .

Since we have prior knowledge of being an element of
(here, a subspace composed of two narrowband regions around

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 27, 2009 at 02:45 from IEEE Xplore.  Restrictions apply.



DVORKIND et al.: NONLINEAR AND NONIDEAL SAMPLING: THEORY AND METHODS 5885

Fig. 8. (a) Input signal � is composed of two high-frequency components,
modulated at 550 and 600 MHz. (b) The input signal �, the distorted output
� � ����, and the frequency response of the antialiasing filter serving as the
generalized sampling function.

550 and 600 MHz) we are able to apply the algorithm of The-
orem 7. In Fig. 9(a), we show the true input and its approx-
imation obtained by a single iteration of the algorithm. In
Fig. 9(b) we show the result after the third iteration. The con-
sistency error in the samples appears in the title of each figure.
At the seventh iteration the algorithm has converged (to the true
input signal), within the numerical precision of the machine.

If we disregard the nonlinearity (i.e., by assuming that
), then the solution will be to perform an oblique projection

onto the reconstruction space: . Since we ini-
tialize our algorithm with , it is simple to show that

, as shown in Fig. 9(a). Evidently, ac-
counting for the nonlinearity improves this result.

Another possibility is to assume that the samples are ideal,
i.e., to assume that are pointwise evaluations of the function ,
and apply prior to interpolation. Unfortunately, since in
practice the samples are nonideal, many of them receive values

Fig. 9. (a) True input signal �, and its approximation � obtained by a single
iteration of the algorithm. (b) True input signal �, and its approximation �
obtained at the third iteration. The consistency error is stated in the title of each
plot.

outside the range . In that case, the operation
cannot even be performed, since the domain of the arcsin func-
tion is restricted to the interval. One can then use an
add-hoc approach by normalizing the samples which have ex-
cessive values to . As evident from the time and fre-
quency-domain plots of Fig. 10, this approach results in poor
approximation of the input signal, giving in this example a spu-
rious-free dynamic rage of only 16 dB. Our proposed method,
in contrast, perfectly reconstructs the input signal, theoretically
giving an infinite spurious-free dynamic range.

B. Non-Band-Limited Example

As another example, which departs from the band-limited
setup, assume that the input signal lies in a shift-invariant
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Fig. 10. True input signal �, and its approximation, obtained by (falsely) as-
suming ideal samples, restricted to the ���� �� interval. (a) Time-domain plot.
(b) Frequency-domain plot.

subspace, spanned by integer shifts of the generator
, where is the unit step function. For example,

can be the impulse response of an RC circuit, with the delay
constant RC set to one. We choose the nonlinear distortion as
the inverse tangent function, i.e., , and the
sampling scheme is given by local averages of the form

. Accordingly, the sampling space is also shift in-
variant, with the generator . In Fig. 11(a)
we show the original input signal and two naive forms
for approximating it from the nonlinear and nonideal samples.
First, one can neglect the nonlinear effects of the acquisition de-
vice, assuming that is the identity mapping. As with the pre-
vious example, in this case the approximation takes the form of
an oblique projection onto the reconstruction space along ,
which also results from the first iteration of our algorithm. As
another option, one can assume an ideal sampling scheme. In
that case, are assumed to be the ideal samples of ,
from which the signal is reconstructed. As can be seen from

Fig. 11. (a) Original input ���� (solid), and two forms of approximation: Ig-
noring the nonlinearity (dotted) and ignoring the nonideality of the sampling
scheme (dashed). (b) True input signal �, and its approximation � obtained at
the sixth iteration.

the figure, this also leads to inexact restoration of the input. On
the other hand, our algorithm takes into account the nonlinear
distortion and the nonideality of the sampling scheme, yielding
perfect reconstruction of the signal [Fig. 11(b)].

Though out of the scope of the developed theory, it is inter-
esting to investigate the influence of quantization noise. For this
purpose, we repeat the last simulation, when quantizing the sam-
ples with a quantization step of 0.1. Naturally, in such a setup
there is no reason to expect perfect reconstruction of the input
signal. Instead, we will be satisfied if an approximation is
found, which can explain the nonlinear, nonideal and quantized
sample sequence. For that purpose, our algorithm was slightly
rectified by quantizing at each iteration the samples error vector

according to the quantization step. The results of
this simulation are presented in Fig. 12. As can be seen from the
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Fig. 12. Nonlinear, generalized and quantized sampling case. (a) True input
signal �, and its approximation � obtained at the sixth iteration (dashed). (b)
True quantized samples, and the quantized sample sequence of the approxima-
tion � .

figure, the approximation is not identical to the input function
, yet, they both produce the same quantized sample sequence.

We emphasize, however, that the developed theory does not take
noisy samples into account, and we do not claim that this modi-
fied algorithm will produce consistent approximations under all
circumstances.

XI. CONCLUSION

In this paper, we addressed the problem of reconstructing a
signal in a subspace from its generalized samples, which are
obtained after the signal is distorted by a memoryless nonlinear
mapping. Assuming that the nonlinearity is known, we derived
sufficient conditions on the nonlinear distortion curve and the
spaces involved, which ensure perfect reconstruction of the
input signal from these nonlinear and nonideal samples. The

developed theory shows that for such setups, the problem of
perfect reconstruction can be resolved by retrieving stationary
points of a consistency cost function. We then developed an
algorithm for this problem, which was also demonstrated
by simulations. Finally, we explained how to extend these
derivations to nonlinear and nonideal acquisition devices which
can be modeled by a Wiener–Hammerstein system. Future
extensions of this research may consider the important problem
of estimating the nonlinearity of the system from the known
samples, and approximating the signal from noisy samples.

APPENDIX I
PROOF OF THEOREM 1

Under the conditions of the theorem, ad-
mits a Fourier series expansion, and can be written as

for some Fourier coefficients . By
(6), we then have

Thus, the Fourier coefficients of are related to the general-
ized samples through discrete-time convolution with

.
To stably reconstruct from the sample sequence we need

the discrete-time Fourier transform (DTFT) of the sequence
to be invertible and bounded. Since the continuous-time Fourier
transform of at is ,
then , being the uniform samples of with interval

, has the DTFT

(57)

Replacing , we obtain that (57) is bounded from
below and above if and only if (12) holds.

The coefficients can now be determined, by convolving
with . Finally, the restoration of takes the form (13).

APPENDIX II
PROOF OF THEOREM 4

Before stating the proof, we need the following lemma, which
shows that the direct sum condition is invariant under linear
continuous and invertible mappings. Throughout this section,
we use the more general notation of inner products and norms
within some Hilbert space (not necessarily ).

Lemma 4: Let be a linear, continuous and continuously
invertible mapping. Then if and only if

.
Proof: Assume . If there is some

, then contradicting the
assumption . To show , take
some . Then there is a decomposition for
some . Thus, and
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constitute a decomposition of . The proof in the other direction
is similar.

By Lemma 4, if and only if
. Furthermore,

implies [12], [16]

Noting that we conclude that the
mapping is truncating. Thus, for any initialization

,

(58)

and

(59)

Combining (58) and (59) with (31) gives

(60)

It is still left to show that the right-hand side of (60) reduces
to the right-hand side of (23). To simplify the notations, we will

denote . Since
and we rewrite (60) as

(61)

Lemma 5: The transformation satisfies
.

Proof: It is simple to see that for any ,
. Furthermore, due to the direct sum condition this

mapping is onto, that is . Also note that we
can replace .
Therefore

where we used in the transition to
the last line.

Combining Lemma 5 with (61) and (27) yields that the POCS
iterations reduce to

(62)

Now

where we used for bijective in the
transition to the last line. Thus, we can rewrite (62) as

where we used in the last equality.

APPENDIX III
PROOF OF THEOREM 5

Our proof will follow the geometric insight described by
Fig. 5. For that matter we first define

(63)
to be the maximal angles between the spaces, restricted to
the interval . We now show that and

are both lower bounded by . Then,
we will derive a condition on the nonlinear distortion, assuring
that .

Since, we can lower
bound

(64)

We then have

where we used in the last
equality. The condition also implies [16]

. Similarly, implies
and

. Thus, we end up with

(65)
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Interpreting (65) in terms of the angles (63) we can rewrite (65)
as

(66)

Thus, as long as i.e., we also
have .

In a similar manner we can show that

(67)

where we used in the last
equality. Since the lower bounds in (65) and (67) are the same,

implies , as required.
Finally, we interpret the condition in terms

of amplitude bounds for . Starting from the requirement

(68)
it is a matter of straightforward calculations to show that (68)
is equivalent to . Using the lower
bound in (40), it is thus sufficient to show that

(69)

which is equivalent to (42).

APPENDIX IV
PROOF OF GRADIENT LIPSCHITZ CONTINUITY

Using and denoting
,

(70)

Letting to be the Lipschitz bound of we have

(71)

Hence, by (2) and (5)

(72)

Utilizing (72) and
we can further upper bound (70) by

Since the direction is gradient related, and due to the choice
of the step size, the sequence is non ascending. Thus,
we can upper bound . The latter
also equals , when we assume .

Finally, using (46) and a derivation similar to (3) to show
that is Lipschitz continuous with upper bound , we obtain

. In total, this leads to
Lipschitz continuity of as desired:
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