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Abstract—We consider the problem of linear zero-forcing pre-
coding design and discuss its relation to the theory of generalized
inverses in linear algebra. Special attention is given to a specific
generalized inverse known as the pseudo-inverse. We begin with
the standard design under the assumption of a total power con-
straint and prove that precoders based on the pseudo-inverse are
optimal among the generalized inverses in this setting. Then, we
proceed to examine individual per-antenna power constraints. In
this case, the pseudo-inverse is not necessarily the optimal inverse.
In fact, finding the optimal matrix is nontrivial and depends on
the specific performance measure. We address two common cri-
teria, fairness and throughput, and show that the optimal gener-
alized inverses may be found using standard convex optimization
methods. We demonstrate the improved performance offered by
our approach using computer simulations.

Index Terms—Beamforming, generalized inverses, per-antenna
constraints, semidefinite relaxation, zero-forcing precoding.

I. INTRODUCTION

T RANSMITTER design for the multiple-input single-
output (MISO) multiuser broadcast channel is an im-

portant problem in modern wireless communication systems.
The main difficulty in this channel is that coordinated receive
processing is not possible and that all the signal processing
must be employed at the transmitter side. From an information
theory perspective, the capacity region of this channel was only
recently characterized [1]. From a signal processing point of
view, there are still many open questions and there is ongoing
search aimed at finding efficient yet simple transmitter design
algorithms. In particular, linear precoding schemes which seem
to provide a promising tradeoff between performance and
complexity were proposed in [2]–[5].

The most common linear precoding scheme is zero-forcing
(ZF) beamforming. It is a suboptimal approach that attracted
considerable attention since there are computational difficul-
ties even within the class of linear precoding strategies. For ex-
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ample, we are not aware of any efficient techniques for max-
imizing throughput using linear beamforming. Instead, ZF is
a simple method which decouples the multiuser channel into
multiple independent subchannels and reduces the design to a
power allocation problem. It performs very well in the high
signal-to-noise-ratio (SNR) regime or when the number of users
is sufficiently large, and is known to provide full degrees of
freedom [1]. Moreover, it is easy to generalize this method to in-
corporate nonlinear dirty paper coding (DPC) mechanisms [1].
There are dozens of papers on ZF precoding focusing on dif-
ferent design criteria [4], [6]–[11]. Among these, two common
criteria are maximal fairness and maximum throughput. Due
to its simplicity, ZF precoding is also an appealing transmis-
sion method in multiple-input multiple-output (MIMO) broad-
cast channels [12]–[17].

Traditionally, the transmitter is designed under the assump-
tion of a total power constraint [1]–[11]. In practice, there is
increasing interest in addressing more complicated scenarios,
such as individual per-antenna power constraints. These are
more realistic since each transmit antenna has its own power
amplifier. Moreover, state-of-the-art communication systems
will utilize multiple transmitters, which are geographically
separated, but cooperatively send data to the receiving units. In
such systems, it is clear that each transmitter will have its own
power restrictions. Single-user transmit beamforming in this
setting is addressed in [18]. Our work on linear beamforming
for multiuser systems [2] was generalized to incorporate per-an-
tenna power constraints in [19]. ZF precoding methods were
also extended to deal with individual restrictions [20]–[22].

Interestingly, ZF precoding design is highly related to the
concept of generalized inverses in linear algebra [23]. This is
easy to understand as the ZF precoder basically inverts the mul-
tiuser channel. Previous works using total power constraints [4],
[6]–[11] as well as individual per-antenna power constraints
[20]–[22] began with the assumption that the precoder has the
form of a specific generalized inverse known as the pseudo-in-
verse. We prove that the pseudo-inverse-based precoder is
optimal among the generalized inverses for maximizing any
performance measure under a total power constraint. However,
when per-antenna power constraints are involved, it is no
longer optimal and other inverses may outperform it. Finding
the optimal matrix is nontrivial and depends on the specific
performance criterion. We consider the two classical criteria,
fairness and throughput, and transform the design problems into
convex optimization programs which can be solved efficiently
using off-the-shelf numerical packages.

The ZF precoding design for maximizing throughput turns
out to be a nonconvex optimization problem. One of the methods
for handling such problems is to lift it into a higher dimension
and then relax the nonconvex constraints. Consequently, there
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is an increasing interest in analyzing the tightness of such re-
laxations [24], [25]. In the context of transmit beamforming,
semidefinite relaxation and its tightness have been addressed in
[26]–[29]. However, these works do not consider per-antenna
power constraints nor the zero-forcing assumption. We apply
this method to the problem at hand and use Lagrange duality to
prove that the relaxation is always tight in our setting.

The paper is organized as follows. In Section II, we introduce
the ZF precoding design problem. A brief review of general-
ized inverses is provided in Section III. Next, precoding under
total power constraint is addressed in Section IV, whereas pre-
coding under individual per-antenna power constraints is con-
sidered in Section V. A few numerical results are demonstrated
in Section VI.

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column vec-
tors, and standard lower case letters denote scalars. The super-
scripts , , , , and denote the transpose,
the conjugate transpose, matrix inverse, generalized inverse and
pseudo-inverse, respectively. The operators , and
denote the trace, the Euclidean norm, and the Frobenius norm,
respectively. The operators and denote a di-
agonal matrix with the elements and , respectively. The ma-
trix denotes the identity matrix, is the vector of ones, and
is a zeros vector with a one in the th element. The operators

and denote the real and imaginary parts, respec-
tively. Finally, means that is positive semidefinite.

II. PROBLEM FORMULATION

We consider the standard MISO multiuser broadcast channel

(1)

where is the received sample of the ’th user, is the length
channel to this user, is the length transmitted vector and
are zero mean and unit variance complex Gaussian noise

samples. For simplicity, we use the following matrix notation

(2)

where , and
. Throughout the paper, we will assume that

and is full row-rank.
In linear precoding methods, the transmitted vector is a linear

transformation of the information symbols (see Fig. 1)

(3)

where the length information vector satisfies .
The precoding matrix is then designed to maximize some
performance measure. Typical metrics involve functions of the
received signal-to-interference-plus-noise ratios (SINRs):

(4)

Fig. 1. ZF precoding with per-antenna power constraints.

Direct formulations of design problems incorporating such
measures usually lead to intractable optimization problems.
ZF precoding is a standard suboptimal approach which is
known to provide a promising tradeoff between complexity and
performance. Here, is designed to achieve zero interference
between the users, i.e., if . Moreover,
without loss of generality, we assume that
and for . Using matrix nota-
tion, the ZF condition is equivalent to

(5)

where is a vector with real non-neg-
ative elements. These restrictions simplify the design and de-
couple the broadcast channel into independent scalar sub-
channels

(6)

Traditionally, precoders are designed subject to a total power
constraint of the form

(7)

where . As we will show in the next sections, the total
power constraint simplifies the design problem and leads to
simple and efficient precoders. Nonetheless, in practice, many
systems are subject to individual per antenna power constraints
as illustrated in Fig. 1

(8)

In order to properly formulate the design problem we need
to define its objective. Depending on the application, different
criteria may be considered. Two typical performance measures
are as follows:

• Fairness: ;
• Throughput: .

Therefore, we treat two fundamental design problems. In
Section IV, we consider the optimal for maximizing
subject to the zero-forcing constraint and a total power con-
straint. In Section V, we generalize the setting to individual
per-antenna power constraints. Both fairness and throughput
are addressed in the two problems.
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III. GENERALIZED INVERSES

The ZF precoding design problem is closely related to the
concept of generalized inverses in linear algebra [23], [30].
Therefore, we now briefly review this topic.

Formally, the generalized inverse of a size matrix
is any matrix of size such that .

If is square and invertible, then . Otherwise,
the generalized inverse is not unique. The pseudo-inverse
is a specific generalized inverse that satisfies ,

, and . It
is unique and is known to have minimal Frobenius norm among
all the generalized inverses.

In this paper, we assume that is a full row-rank matrix.
Under this assumption, the generalized inverse is any matrix

such that . The pseudo-inverse is given by
and any generalized inverse may be expressed

as

(9)

where is the orthogonal projection onto the
null space of and is an arbitrary matrix.

Using the above definitions and properties, it is easy to see the
relation between ZF precoding and generalized inverses. Due to
(5), the general structure of any ZF precoder is

(10)

This reduces the precoder design problem to an optimization
with respect to the elements of and the specific choice of gen-
eralized inverse via . Roughly speaking, we will show that
the optimization of depends on the design criteria (fairness
versus throughput), whereas the optimization of is associated
with the power constraints (total versus per-antenna). In fact, the
discussion above suggests that the pseudo-inverse ( ) is
optimal with respect to the total power constraint which is asso-
ciated with the Frobenius norm. We will show that when more
complicated constraints are involved the optimal is not nec-
essarily zero.

IV. TOTAL POWER CONSTRAINT

The problem of ZF precoding design under a total power con-
straint has already received considerable attention [4], [6]–[10].
To our knowledge, in all of the previous works it was taken for
granted that the precoder must be based on the pseudo-in-
verse rather than any other generalized inverse. This simplified
the design and reduced it to a power allocation problem. The
next theorem proves that the pseudo-inverse is indeed optimal
under a total power constraint:

Theorem 1: Let be an arbitrary function of . The op-
timal solution to

(11)

is where is the solution to

(12)

Proof: Due to (10), we can rewrite (11) as

(13)

Now,

(14)

since and . Therefore,
the following problem:

(15)

is a relaxation of (13) and generates an upper bound on its op-
timal value. However, this bound can be achieved by choosing

and is therefore tight. Finally, choosing is equiv-
alent to and results in (12).

The importance of this result stems from the fact that (12) is
a simple power allocation problem. In particular, assuming that

is concave in , the problem is a concave maximiza-
tion with one linear constraint. For example, in the throughput
problem the problem boils down to [6], [8]

(16)
which can be solved using the well known water filling solution.

V. PER-ANTENNA POWER CONSTRAINTS

We now treat the more difficult case of ZF precoding de-
sign under individual per-antenna power constraints. Here,
the pseudo-inverse is not necessarily the optimal generalized
inverse. In fact, finding the optimal inverse is a nontrivial
optimization problem which depends on the specific perfor-
mance measure. Therefore, we begin by presenting general
performance bounds and then address the two standard metrics,
fairness, and throughput separately.

The optimal ZF precoder with per-antenna power constraints
for maximizing an arbitrary objective function is the solu-
tion to

;
.

(17)
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In general, (17) is a difficult nonconvex optimization problem.
However, we can easily bound its optimal value

(18)

where

(19)

. (20)

As proof, just note that the lower bound in (19) can be achieved
by using the pseudo-inverse . Indeed, this

yields as expressed in the con-
straints of (19). The upper bound is equal to the optimal value
of (11) or (12). Clearly, if is feasible for (17) then it will also
be feasible for (11). Therefore, (11) is a relaxation of (17) and
results in an upper bound.

Although simple, these bounds provide some insight into the
problem without the need for solving (17) explicitly. Indeed, a
sufficient condition for the optimality of the pseudo-inverse is

. Moreover, when the condition does not hold, we can
bound the performance loss due to using the pseudo-inverse by
examining the value of or . Depending on the appli-
cation, if this difference is sufficiently small, then an effective
solution can be obtained without the need to solve (17). Oth-
erwise, there may be an advantage in finding the optimal gen-
eralized inverse. This optimization is usually more complicated
and depends on the specific performance measure. In the fol-
lowing sections, we treat two standard objectives: fairness and
throughput.

A. Fairness

We begin with the fairness criterion which yields the fol-
lowing optimization problem:

(21)

We begin by examining our previous bounds, and provide a
simple sufficient condition for the optimality of the pseudo-in-
verse.

Proposition 1: Consider the fairness optimization problem in
(21). The loss in the objective value due to using the (possibly)
suboptimal pseudoinverse based precoder is upper bounded by

(22)

where

(23)

and we assume that and . In particular,
if are equal for all then and the solution to
(21) is .

Proof: As proof, just note that since
is feasible for (19), and that the op-

timal solution to (20) is simply . The second
equality holds since

(24)

The condition in Proposition 1 holds in many prac-
tical deterministic channels. For example, it applies whenever
the right singular vectors of are the Fourier vectors. More
details on such matrices and geometrically uniform frames can
be found in [31]. Moreover, the condition holds asymptotically
in the number of users under different models in which is a
random matrix. Two typical examples that arise in wireless com-
munication systems are when the elements of are zero mean,
equal variance and independent complex Gaussian random vari-
ables [32], and when is modeled using the circular Wyner
model [21], [22].

We now continue with the general solution to (21). As can be
expected, the fairness criterion implies that

(25)

for some is optimal. As proof, assume that the optimal
solution is and . If for some then
and are also optimal. Otherwise, define ,

and . Then, and are
also feasible (since for all ) and provide the same
objective value as .

Due to (10) and (25), we obtain

(26)
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for some . This reduces the problem to

(27)

Now, it is clear that

(28)

where is the solution to

(29)

Problem (29) is a convex second order cone program (SOCP). It
can be solved efficiently using standard optimization packages
[33], [34].

B. Throughput

Next, we consider the throughput objective function

(30)

This is a difficult nonconcave maximization problem due to the
square root of . In this section, we will show how it can be
solved using modern convex optimization tools. But before that,
we can examine the optimality of the pseudo-inverse using our
general bounds.

Proposition 2: Consider the fairness optimization problem in
(30). The loss in the objective value due to using the (possibly)
suboptimal pseudoinverse based precoder is upper bounded by

(31)

where and are defined in (23) and we assume that
and . This loss is clearly a power

loss and does not effect the multiplexing gain, i.e., the number
of degrees of freedom. In particular, at high SNR, the loss is
bounded by a constant which does not depend on the SNR.

Proof: The proof is a straightforward consequence of the
well known result that uniform power allocation tends to max-
imize the throughput in high SNR [35]. For completeness, the
details are provided in Appendix I.

In the remainder of this section, we provide an exact solution
to (30) which finds the optimal generalized inverse. For this pur-
pose, it is convenient to rewrite the problem using the notation
in (1), i.e., and for . Thus,

and (30) is equivalent to

(32)

Next, we linearize the quadratic terms by defining
for , which results in

(33)

The only nonconvex constraints in (33) are the rank-one restric-
tions. Therefore, we now relax the problem and omit these prob-
lematic constraints to obtain

(34)

Problem (34) is a standard determinant maximization
(MAXDET) program subject to linear matrix inequalities [36].
It is a convex optimization problem and there are off-the-shelf
numerical optimization packages which can solve it efficiently
[34]. If the optimal are all of rank-one, then we can easily
recover from them and find the optimal solution to (30).
Fortunately, the following theorem proves that the relaxation is
always tight.

Theorem 2: Problem (34) always has a solution with rank-one
matrices. This solution can be found as follows: Let for

be a (possibly high rank) optimal solution to (34).
For each define as the optimal solution to

(35)
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Fig. 2. Maximal fairness ZF precoding as a function of � .

Then, for is a rank-one solution to
(34).

Proof: See Appendix II.
In practice, our experience shows that the MAXDET soft-

ware [34] usually provides a rank-one solution automatically.
If it does not, then the theorem provides a constructive method
for finding a rank-one solution by solving simple convex pro-
grams of the form (35).

VI. NUMERICAL RESULTS

We now demonstrate our results using two numerical exam-
ples. In the first example, we consider the fairness ZF precoding
design under individual per-antenna power constraints. We sim-
ulate a system with users and (in the fairness
case, the value of is not important as it just scales the resulting
power). The elements of the matrix are randomly generated
as independent, zero mean and unit variance complex Gaussian
random variables. We estimate the average received power in
(26). For comparison, we also estimate this mean power when
we assume , i.e., restrict the precoder to be a standard
pseudo-inverse, and when we replace the per-antenna power
constraints with a total power constraint. The results are pre-
sented in Fig. 2 as a function of the number of transmit antennas

. As expected, the stricter per-antenna constraints result in a
lower received power. However, the graph shows that part of
this loss can be recovered by optimizing and finding the ap-
propriate generalized inverse.

In the second example, we consider the maximization of the
throughput under the same setting as before except that now

, and we simulate different s. The estimated sum-rates
are provided in Fig. 3. Again, it is easy to see the degradation
in performance due to the individual per-antenna power con-
straints, as well as the advantage of optimizing the generalized
inverse.

Fig. 3. Maximal throughput ZF precoding as a function of � .

VII. CONCLUSION

In this paper, we consider ZF precoding design in MISO
broadcast channels. We discussed the intimate relation between
ZF precoding and the theory of generalized inverses. Our
results show that designing the precoders based on the standard
pseudo-inverse is optimal under the assumption of a total power
constraint. However, when more complex power constraints are
involved, e.g., individual total per-antenna power constraints,
the pseudo-inverse is no longer sufficient and other generalized
inverses may provide better performance. In general, finding
the optimal inverse is a difficult optimization problem which is
highly dependent on the specific design criterion. We consider
two classical criteria, fairness and throughput and demonstrate
how to transform these problems into standard convex opti-
mization programs.

Using the methods that we developed it is straightforward to
generalize the setting to a variety of applications. More practical
criteria may be addressed using the semidefinite relaxation ap-
proach as long as these are concave in the received powers, e.g.,
weighted sum-rate. In addition, other power constraints may be
implemented, e.g., the expected value of the squared norm of
subblocks of . Such constraints may be important in modern
systems where multiple base stations, each with multiple an-
tennas, cooperatively transmit data to the same users.

Precoding with generalized power constraints is an important
problem in modern communication systems and there are still
many open questions. More advanced linear precoding schemes
should be addressed. For example, it is well known that in low
SNR conditions, and under channel uncertainty, regularizing the
pseudo-inverse can considerably improve the performance. It is
interesting to examine this property in the context of generalized
inverses. Future work should also address the implications of
our results on nonlinear schemes such as ZF DPC precoding.

Another extension of our work is to consider the well known
duality between receive and transmit processing. It has already
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been shown in [19] that precoding with per-antenna power con-
straints is the dual of decoding under noise uncertainty condi-
tions. ZF decoding using the pseudo-inverse (the decorrelator)
is probably the most common decoding algorithm. Our results
suggest that other generalized inverses may outperform it under
uncertainty conditions.

APPENDIX I
PROOF OF PROPOSITION 2

We want to bound in (19)–(20) from above when
. First, note that

(36)

where are defined in (23), since
is a feasible but (possibly) suboptimal solution to (19). On the
other hand, we will upper bound using its Lagrange dual func-
tion as proposed in [35]

(37)

where are defined in (23) and the inequality holds for any
nonnegative and . The bound is
finite only if for all . Under this condition, the
maximum with respect to is achieved when

(38)

and yields

(39)

This last bound holds for any and which satisfy
for all . Now, let

(40)

then all the conditions are satisfied and

(41)

Therefore

(42)

APPENDIX II
PROOF OF THEOREM 2

First, we rewrite (34) using additional slack variables:

(43)

where

; (44)

where . Using this new formulation, all we need
to show is that (44) always has an optimal solution of rank-one.
In fact, we will prove a more general result.

Lemma 1: Consider the following optimization problem:

(45)

where and . If is bounded, then it always has a
rank-one solution.

Proof: See Appendix III.
Problem (44) is a special case of Lemma 1. Due to the con-

straints and its optimal value is bounded,
and it must have an optimal solution of rank-one. The fact that
(44) has an optimal rank-one solution also provides a simple
way for finding it. Let be the optimal solution to (44)
for some . Then, it is clearly also the solution to

;

.
(46)

Due to Lemma 1, we can restrict the attention to rank-one ma-
trices and solve

;

.
(47)

This last problem is nonconvex due to the quadratic objective.
However, it can be solved by assuming that is real and
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nonnegative, taking its square root value and noting that the op-
timal solution does not change (up to a phase rotation)

;

.
(48)

As proof, assume that is optimal for (48) then it is clearly
feasible for (47) and results in the required objective value. On
the other hand, assume that is optimal for (47). Let be the
angle of , i.e., . Then, is
feasible for (48) and results in the required objective value.

APPENDIX III
PROOF OF LEMMA 1

We begin by eliminating all the constraints for which .
Assume that for all in , and positive
for all other indices. Define , and let

be the orthogonal projection onto the null space of .
Now, for all if and only if .
Thus, in (45) is equivalent to

(49)

Next, we omit the constraint and obtain

(50)

where , and for are all
strictly positive. If is a rank-one optimal solution to (50)
then is a rank-one optimal solution to (49). Therefore,
we can prove the lemma for (50) instead of (45). For simplicity,
we continue with the notation in (45) but assume that for
all .

Consider the following problem:

.
(51)

Program in (45) is the SDP relaxation of . That is
, and if is optimal for then is feasible

for . Thus, all we need to prove is that . We
will do this by considering their corresponding dual programs.

We begin with which is a convex optimization problem. Its
Lagrange dual is

.
(52)

The primal problem is strictly feasible since are all posi-
tive. Therefore, Slater’s condition for strong duality holds and

.

We now move on to in (51). Unfortunately, this is a non-
convex problem due to the quadratic objective. However, we can
find its optimal value by defining

(53)

and noting that . As proof, assume that
is optimal for then it is clearly feasible for and results in
the required objective value. On the other hand, assume that is
optimal for . Let be the angle of , i.e., .
Then, is feasible for and results in the required
objective value.

The main advantage of this linearization is that is a convex
optimization problem which can be solved using its Lagrange
dual program

(54)

Adding an auxiliary variable yields

.

(55)
We now simplify the constraint using the following lemma.

Lemma 2 : [37, p. 135]:1 Let be an Hermitian matrix.
The condition holds for all if
and only if

Applying the lemma to our problem yields

.
(56)

If then and the proof is completed since
. Otherwise, and we can utilize Schur’s

complement lemma below.
Lemma 3 (Schur’s Complement) [30]: Let . The

following two conditions are equivalent:

(57)

to obtain

.
(58)

As before, Slater’s condition holds due to the strict feasibility.
Thus, strong duality assures that and if
we square the objective again and use the monotonicity of

1This reference deals with the real case version of the lemma. The extension
to the complex case is straightforward.
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in , we obtain the following dual of (this is not the
Lagrange dual but just the squared value of )

(59)

which satisfies . Next, we exchange vari-
ables and optimize over instead of

.

(60)

Now examining (52) and (60) we see that their feasible sets are
identical, and in order to prove that all
we need to show is that

(61)

where . But this is easily proved by noting
that the left-hand side of (61) is convex in and attains its
minimum when

(62)

and

(63)

which yields

(64)

as required.
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