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Abstract—In this paper, we consider the problem of estimating
an unknown deterministic parameter vector in a linear regression
model with random Gaussian uncertainty in the mixing matrix. We
prove that the maximum-likelihood (ML) estimator is a (de)regu-
larized least squares estimator and develop three alternative ap-
proaches for finding the regularization parameter that maximizes
the likelihood. We analyze the performance using the Cramér–Rao
bound (CRB) on the mean squared error, and show that the degra-
dation in performance due the uncertainty is not as severe as may
be expected. Next, we address the problem again assuming that
the variances of the noise and the elements in the model matrix are
unknown and derive the associated CRB and ML estimator. We
compare our methods to known results on linear regression in the
error in variables (EIV) model. We discuss the similarity between
these two competing approaches, and provide a thorough compar-
ison that sheds light on their theoretical and practical differences.

Index Terms—Errors in variables (EIV), linear models, max-
imum-likelihood (ML) estimation, random model matrix, total
least squares.

I. INTRODUCTION

ONE of the most classical problems in statistical signal pro-
cessing is that of estimating an unknown, deterministic

vector parameter in the linear regression model ,
where is a linear transformation and is a Gaussian noise
vector. The importance of this problem stems from the fact that
a wide range of problems in communications, array processing,
and many other areas can be cast in this form.

Most of the literature concentrates on the simplest case, in
which it is assumed that the model matrix is completely spec-
ified. In this setting, the celebrated least squares (LS) estimator
coincides with the maximum-likelihood (ML) solution and is
known to minimize the mean squared error (MSE) among all
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unbiased estimators of [1], [2]. Nonetheless, it may be outper-
formed in terms of MSE by biased methods such as the regular-
ized LS estimator due to Tikhonov [3], the James–Stein method
[4], and the minimax MSE approach [5], [6].

The linear regression problem for cases when is not com-
pletely specified received much less attention. In this case, there
are many mathematical models for describing the uncertainty in

. Each of these models leads to different optimization criteria
and accordingly to different estimation algorithms. Most of the
literature can be divided into two main categories, in which the
uncertainty is expressed using either deterministic or random
models. A standard deterministic approach is the “robust LS”
which is designed to cope with the worst case within a known
deterministic set [7], [8]. Recently, the minimax MSE criterion
was also considered in this problem formulation [5]. In the sto-
chastic uncertainty models, is usually known up to some
Gaussian distortion. Typically, there are two approaches in this
setting. First, one can use a random variables (RV) model and
assume that is a random Gaussian matrix with known sta-
tistics. Based on this model, different estimation methods have
been considered. The ML estimator was derived in our recent
letter [9]. An alternative strategy is to minimize the expected
LS criterion with respect to [10], [11]. The minimax MSE es-
timator was also generalized to this setting in [11]. The second
approach is the standard errors-in-variables (EIV) model, where

is considered a deterministic unknown matrix, and an addi-
tional noisy observation on this matrix is available [12]. The ML
solution for in this case was addressed in [12] and it coincides
with the well-known total LS (TLS) estimator [13] (when the
additive Gaussian noise has independent and identically dis-
tributed elements).

Evidently, there are different approaches and optimization
criteria for estimating when there is uncertainty in the model
matrix. The main objective of this paper is to compare the
Gaussian uncertainty approaches and to shed light on their
advantages and disadvantages. In particular, we consider the
two classical Gaussian uncertainty formulations: the RV and
EIV models. We explain the practical and theoretical differ-
ences between them, and discuss the scenarios in which each
is appropriate.

The main part of this paper considers ML estimation of
in the RV linear regression model. We prove that the ML esti-
mate (MLE) is a (de)regularized1 LS method, and that its regu-
larization parameter and squared norm can be characterized as a
saddle point of a concave-quasiconvex objective function. Thus,

1By (de)regularized, we mean that the estimator can be regularized or dereg-
ularized, and that the regularization parameter may be positive or negative de-
pending on the data.
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we can efficiently find the optimal parameters numerically. In
fact, our previous solution in [9] can be interpreted as a minimax
search for this saddle point. Using this new characterization, we
present a more efficient maximin search. Furthermore, an ap-
pealing approach for finding the ML estimate in this setting is
to resort to the classical expectation–maximization (EM) algo-
rithm which is known to converge to a stationary point of the
ML objective (see [14]–[16] and references within). Due to the
nonconvexity of the log-likelihood function, there is no guar-
antee that this point will indeed be the global maximum. Fortu-
nately, our saddle point interpretation provides a simple method
for checking the global optimality of the convergence point. We
conclude this part of the paper with a comparison to the ML in
the EIV model and show that our ML estimator is a regularized
version of the latter.

In the second part of this paper, we analyze the performance
in the RV model using the Cramér–Rao bound (CRB) on the
MSE of unbiased estimators [1], [2]. We derive the CRB asso-
ciated with our model and quantify the degradation in perfor-
mance due to the randomness of . Interestingly, the degrada-
tion in performance is not as severe as one may suspect. Actu-
ally, as we will show and quantify, randomness in may even
improve the performance in terms of MSE.

However, the potential improvement is contingent upon the
assumption that the variances of the random variables are all
known. In practice, this knowledge is not always available, and
therefore, we also consider the case in which these variances
are unknown deterministic nuisance parameters. As before, we
begin with the ML estimator which reduces to the standard LS.
Then, we derive the associated CRB and analyze the degrada-
tion in performance inflicted by the lack of knowledge regarding
the variances. We conclude this section with a comparison to
the EIV model. Interestingly, under these assumptions, the ML
estimate does not exist in the EIV model ([17] and references
within), and the CRB has a similar structure to our random
model bound.

One interesting aspect of our results is the advantage of the
RV formulation in comparison to its EIV counterpart. The first
hint to this property lies in the CRB analysis, but it can also be
observed in our numerical results. The new RV-ML estimator
often outperforms the conventional EIV-ML estimator regard-
less of the “true” model. In fact, in many realistic EIV scenarios
in which the impractical asymptotic conditions do not hold and
the EIV-ML estimator loses its optimality property, our RV-ML
significantly outperforms it. A possible explanation is that our
proposed estimator can be interpreted as a reguralized EIV-ML
approach and in most practical scenarios regularization is in-
deed required.

This paper is organized as follows. In Section II, we intro-
duce the problem formulation. ML estimation of when the
variances are known is discussed in Section III. CRB analysis
under this setting is analyzed in Section IV. Next, we dedi-
cate Section V to the estimation of when the variances are
unknown nuisance parameters. A few numerical examples are
demonstrated in Section VI. Finally, in Section VII, we provide
concluding remarks.

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column vec-
tors, and standard lower case letters denote scalars. The super-
scripts , , , , and denote the transpose, ma-
trix inverse, Moore–Penrose pseudoinverse, and first and second
derivatives, respectively. The operators , , , ,
and denote the Kronecker matrix multiplication, the vector
obtained by stacking the columns of a matrix one over the other,
the trace operator, the standard Euclidean norm, and the Frobe-
nius matrix norm, respectively. The matrix denotes the iden-
tity, is the range space of the columns of , is
the minimum eigenvalue of , and means that is pos-
itive semidefinite.

II. PROBLEM FORMULATION

We consider the classical linear regression model in which

(1)

where is a length observed vector, is an linear
model matrix, is a length deterministic unknown vector,
and is a zero-mean Gaussian random vector with mutually
independent elements, each with variance .

Methods for estimating in (1) when is completely speci-
fied have been intensively studied. The problem becomes more
interesting and challenging when is not exactly known. There
are different mathematical models for describing the uncertainty
in . Specifically, in this paper, we model as a random ma-
trix with known mean given by

(2)

where is a random matrix of mutually independent, zero-
mean Gaussian elements with variance , independent of

. For simplicity, we assume that is full column rank.
Our problem is to estimate from the observations in the

models (1) and (2). We consider two problem formulations.
First, we assume that the variances and are known. Under
this assumption, we focus on ML estimation and CRB anal-
ysis. Second, we discuss the problem when the variances are
unknown nuisance parameters that must be estimated as well.

A. Comparison With EIV

Throughout this paper, we will compare our results with pre-
vious works on a very similar uncertainty model, namely, the
EIV model. We conclude each section with a comparison to this
classical setting. For simplicity, we slightly abuse the notations
so as to use the same notations for both formulations.

In the EIV problem, we model as a deterministic unknown
matrix, and assume that we are given a noisy observation on
in addition to the vector

(3)

where is a random matrix of mutually independent, zero-
mean Gaussian elements with variance , independent of

. For simplicity, we assume that is full column rank.
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Models (2) and (3) are closely related. In fact, one can easily
move from the right-hand side of (3) to its left-hand side, and
since the distribution of is invariant to a sign change, it may
initially seem that the two models are identical. One of the main
contributions of our work is to elucidate the mathematical–sta-
tistical differences between these two models. First, let us pro-
pose a practical example for the use of each. Consider a commu-
nication system over a multiple-input–multiple-output (MIMO)
channel denoted by . The RV model is appropriate when the
channel itself is random and time varying, with a known distri-
bution around some “nominal” . The cause of the uncertainty
is the randomness of the channel. On the other hand, the EIV
model is appropriate when the channel is unknown but fixed
(with no prior distribution) but some noisy estimate of the
channel is available (for example, in communication systems
using a training phase). The uncertainty is the result of the im-
perfect noisy estimation. Despite these differences, the models
are very similar. In most applications, it is not obvious which
reason is the cause of the uncertainty and it can often be a combi-
nation of both. Moreover, the models basically provide the same
information: we have access to and , and the true channel
is equal to plus some Gaussian noise. Yet, when we consider
statistical properties of the estimate, a key question is whether in
each realization of the data , remains constant and varies
(EIV) or remains constant and varies (RV).

III. MAXIMUM-LIKELIHOOD ESTIMATION

In this section, we discuss ML estimation of in (1) and (2)
from when , , and are known parameters. We charac-
terize the structure of the MLE and suggest efficient numerical
methods for the associated optimization problem.

The ML method is one of the most common approaches in
estimation theory whereby the estimates are chosen as the pa-
rameters that maximize the likelihood of the observations

(4)

where is the probability density function of param-
eterized by . In our model, the vector is a Gaussian vector
with mean and covariance . Therefore, the
ML estimator can be found by solving

(5)
Problem (5) is a -dimensional, nonlinear, and nonconvex op-
timization problem and is therefore considered difficult. In the
following theorem, we characterize its solution using a simple
change of variables.

Theorem 1: Consider the estimation of in (5) under the
assumption that the norm of is upper bounded, say

, for some sufficiently large . Then, the ML estimator is a
(de)regularized LS, i.e.,

(6)

with squared norm . The parameters
and are a saddle point of the following concave–quasi-
convex optimization problem:

(7)

where

(8)

Before proving the theorem, we note that the bounded norm
assumption is a technical mathematical condition needed for the
proof. In practice, if is sufficiently large, then the saddle point
does not depend on it. Thus, the estimator is not assumed to
have knowledge of . Furthermore, the set is convex and
for all practical purposes is equivalent to .
The range constraint is again a technical condition that is almost
always satisfied.

Proof: Introducing an auxiliary variable into (5)
yields

(9)

where

(10)

In [18] and [19], it was shown that due to hidden convexity, (10)
can be solved via its Lagrange dual program

(11)

where and are defined in (8). Moreover, once we find
the optimal (for fixed ) the vector can be easily obtained as

(12)

Thus, we can rewrite the problem as

(13)

where is defined in (8). The objective is con-
cave in any for fixed since it originates in a
Lagrange dual program. In Appendix I, we prove that it is also
quasi-convex in for fixed . The feasible sets are
both convex and due to our assumption on the norm of , is
compact. Therefore, according to Sion’s quasi-concave–convex
minimax theorem [20], there exists a saddle point as expressed
in (7).

The theorem characterizes the structure of the MLE and re-
lates it to the class of (de)regularized LS solutions. Moreover, as
we will show, the concave–quasi-convex property allows for ef-
ficient numerical methods for finding the optimal regularization
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parameter. It is important to emphasize that Theorem 1 does not
claim that the original ML estimation problem in (5) is convex
in . The convexity is a result of our change in variables and
refers to and alone. In the following sections, we explain
how this property may be used to find the MLE numerically.

A. Minimax—Numerical Method

The first approach is to solve the minimax problem, i.e., to
minimize

(14)

with respect to . This requires two nested line searches. We
have an outer minimization with respect to and for each fixed

we need to solve (14) via (10). In fact, the inner maximization
can be easily implemented by solving for the unique in

. More details on this approach can
be found in our earlier letter [9].

In practice, the main computational complexity in this numer-
ical method is evaluating for different values of . Fortu-
nately, these could be easily implemented by utilizing the eigen-
value decomposition of .

B. Maximin—Numerical Method

The second approach is to solve the maximin problem, i.e.,
to maximize

(15)

with respect to . This technique leads to a single line
search as the inner minimization can be solved in closed form. It
is a convex minimization over a closed interval, and its solution
is either a stationary point or one of the extreme points. Setting
the derivative to zero results in

(16)

and solving for yields

(17)

Therefore

else.
(18)

The function is concave in since is concave in .
Therefore, any standard line search can easily find its maximum
which corresponds to a saddle point of .

Here too, the main computational complexity is evaluating
for different values of , which may be implemented by

utilizing the eigenvalue decomposition of . Nevertheless,
the maximin approach is more appealing than the minimax ver-
sion since it involves only one line search instead of two nested
searches.

C. EM—Numerical Method

We now provide an alternative numerical solution for the
ML problem in (4) based on the classical EM algorithm [14].

The EM method is an iterative approach for solving ML prob-
lems with missing data. It is known to converge to a stationary
point of the likelihood. We will apply the EM technique to our
problem and will show how Theorem 1 can be used to verify
whether a stationary point obtained by EM is indeed the correct
ML estimate.

At each iteration, the EM algorithm maximizes the expected
log likelihood of with respect to the missing (instead
of the log likelihood of itself). The result is the following
updating formula (see Appendix II):

(19)

where

(20)

The iterations are very simple to implement in practical fixed
point signal processors. In practice, there is no need to invert
the matrix , as can be found as a solution of a set
of linear equations (the matrix is always invertible).

The EM algorithm will converge to a stationary point of the
likelihood function [14]. However, since our problem is non-
convex, this may be a local maximum depending on the initial
conditions . Our experience with arbitrary parameters and LS
as the initial point, i.e.,

(21)

shows that the aforementioned iterations usually converge to the
correct ML estimate, but it is easy to find initial conditions that
converge to spurious local maxima. Nonetheless, using The-
orem 1, we can determine whether a given stationary point of
the EM algorithm is indeed the global maximum.

Theorem 2: Let be a stationary point of the EM algo-
rithm and define

(22)

(23)

Then, a necessary and sufficient condition for global optimality
of is , , ,
where and are defined in (8).

Proof: Any stationary point will satisfy the EM iteration
with . Rearranging the terms in the itera-
tions and plugging (20) into (19) yields

(24)
where

(25)
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Thus, is a (de)regularized LS with parameters and
plus possible additional terms in the null space. This sta-

tionary point will be globally optimal if and only if it is indeed
a (de)regularized LS that satisfies the conditions of Theorem 1.
It remains to show that if , then it is the solution to

, and that if , then it is the solution
to . The first property holds since for any
(de)regularized LS with parameters and , we
have

(26)

where we have used and
in the third equality. Combining (23) with (26)

yields

(27)

which can be easily seen to satisfy the condition in (16). The
second property holds since for any (de)regularized LS, the
equation

(28)

has a unique root in , which is the optimal solution to
(see [19] for more details).

D. Comparison With EIV

We now compare the previous results with the corresponding
results in the EIV model. The ML estimator in model (1) and
(3) estimates both and by solving

(29)

where is the joint probability density function
of and parameterized by and . Due to the Gaussian
assumption, (29) is equivalent to

(30)
where we intentionally insert the minimization with respect to

inside the objective in order to emphasize that is a nui-
sance parameter. In the signal processing literature, (30) is usu-
ally known as the (columnwise weighted) TLS estimator [13].
It is a generalization of the LS solution to the problem
when both and are subject to measurement errors. It tries
to find and that minimize the squared errors in and in
as expressed in (30).

It can be shown that under a simple condition, which is usu-
ally satisfied, the TLS estimator in (30) is a deregularized LS
solution [13]

(31)

where

(32)

Since our ML estimator is also a (de)regularized LS, it is in-
teresting to compare the two.

Proposition 1: The regularization parameters2 of the ML es-
timator in (6) and the TLS in (31) satisfy .

Proof: This relation holds since the objective in (5) is equal
to the objective in (30) plus an additional logarithmic regular-
ization term. In order to see this, we begin by minimizing (30)
with respect to first, and find that the TLS is the solution to

(33)

which is exactly (5) without the logarithmic penalty. Now, as-
sume to the contrary that . Then,

and

(34)

which is a contradiction to the optimality of .
Thus, the MLE can also be considered a regularized TLS es-

timator. Interestingly, the concept of regularizing the TLS esti-
mator is not new [21], [22]. It is well known that the TLS so-
lution is not stable when applied to ill-posed problems. It has
been shown that in many applications regularizing the TLS ob-
jective may significantly improve the performance of the TLS
estimator in terms of MSE. The ML estimator in the RV model
provides statistical reasoning to this phenomenon and suggests
an inherent logarithmic penalty scheme. More details on this
property can be found in [9], [22], and [23].

There is another interpretation for the difference between (5)
and (33). We obtained these two estimators by optimizing the
ML criterion in two different models. In turns out that the same
estimators can be obtained using the RV model but by choosing
two different optimization criteria. In particular, (33) can be in-
terpreted as the joint maximum a posteriori ML (JMAP-ML)
estimator in the RV model [24]. It has been shown in [24] that,
in the general Gaussian case, the difference between the ML
criterion and the JMAP-ML criterion is always a logarithmic
penalty. Thus, the logarithmic regularization can be interpreted
as a special case of the ML and JMAP-ML relation.

IV. CRAMÉR–RAO BOUND

In Section III, we discussed the MLE and numerical algo-
rithms for finding it. Unfortunately, analytic performance eval-
uation may be intractable. Instead, we now provide an indica-

2That is of course under the technical assumption in [13] required for (31).
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tion of performance using the CRB. The CRB is a lower bound
for the MSE of any unbiased estimator [1], [2]. Moreover, it
is well known that under a number of regularity conditions the
MSE of the MLE asymptotically attains this bound. Therefore,
the CRB is a reasonable metric for shedding more light on the
performance of our estimators (and on the models themselves).
A closed-form expression of the CRB in our problem setting is
provided in the following theorem (see, also, [25]).

Theorem 3: Consider the estimation of in the model (2)
when and are known. Then, the MSE of any unbiased
estimator is lower bounded by

(35)

where is given by

(36)

with

(37)

Proof: The CRB is defined as

(38)

where is the Fisher information matrix (FIM) for esti-
mating given . Fortunately, we can exploit a closed-form
expression for the FIM in the case of a jointly Gaussian distri-
bution of the observations.

Lemma 1 [2]: Let be a Gaussian vector with mean and
covariance . Then, the elements of the FIM for estimating

from are

(39)

In our setting, and . Thus, ,
, and

(40)

The CRB is then obtained by applying the matrix inversion
lemma.

Theorem 3 allows us to compare the CRB in our uncertainty
model with the CRB in a model where is known. In the latter
case, the CRB for estimating is given by [2]

(41)

Indeed, substituting in (35) yields

(42)

which is consistent with (41) since implies that .
An important difference between (35) and (42) is that, unlike the
known- case, the CRB under uncertainty conditions depends
on the specific value of . Thus, some ’s are more difficult to
estimate in this model than others, depending on .

Surprisingly, it is not trivial to compare the RV CRB with the
known- CRB. Examining the bounds carefully reveals that

(43)

i.e., there exist parameters such that the RV CRB is lower than
the known- CRB. For example, if , then ap-
proaches zero much faster than . Although this may
seem like a mistake, it is actually a feature of our model. In-
creasing the randomness in via has two effects: it accounts
for the uncertainty in , but it also affects the relation between
and . As we will now show, the increased uncertainty in de-
grades the MSE, but the random perturbation itself can be ben-
eficial in some scenarios. Thus, the overall performance may be
improved.

To better understand these effects and decouple the contribu-
tion of each, let us first derive the CRB when is random but
known. Recall that when is random, the bound is given by
(38). Therefore, in order to take into account the knowledge of

, all we need to do is add as an additional observation

(44)

The variables and are jointly Gaussian, and the bound can
be derived in a straightforward manner using Lemma 1. Alter-
natively, the derivations can be simplified by conditioning on

(45)

since the distribution of does not depend on . Thus

(46)

where the first equality is due to (45), the third equality is given
by the inverse of (41), and the last equality is obtained by taking
the expectation with respect to . From (46), we see that if
were known, its randomness would improve the performance

(47)

since the additional term in (46) decreases its inverse. An
intuitive explanation is that since the performance depends on



2200 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 6, JUNE 2008

, the squared effect of the random perturbations in im-
plies that realizations of with increased are more dom-
inant, on the average, than realizations with decreased .
Thus, the effect of known perturbations is equivalent to an in-
creased signal to noise ratio.

On the other hand, when the perturbation in is random, the
uncertainty degrades the performance

(48)

The proof of (48) is trivial by comparing the closed-form ex-
pressions for the bounds in (35) and (46), or by comparing the
FIMs in (38) and (44) and noting that additional observations
provide more information.

Thus, known random perturbations always improve the per-
formance in our model, as can be intuitively explained. Surpris-
ingly, unknown random perturbations may also be beneficial as
expressed in (43). Nonetheless, here the relation is unclear and
there is no simple ordering between the two bounds. Moreover,
there is an important difference: unlike known randomness that
improves the performance uniformly in , the improvement due
to unknown randomness depends on the specific value of .
Roughly speaking, when is known, the additional informa-
tion on is available through the mean of , whereas when

is unknown, additional information originates from the co-
variance matrix of ( takes the role of multiplicative noise).
This covariance contains information only on and not on

itself. Practically, we can only use the covariance informa-
tion for estimating , or (if we are fortunate enough) use the
combined (mean and covariance) information to improve upon
the mean-only-based estimate of other specific functions of
with gradient components in the direction of . Other
functions will not gain much from the unknown randomness.
Furthermore, in Section V, we will discuss another reservation
that distinguishes the known perturbations case from the case of
unknown perturbations.

The previous discussion demonstrates that using the CRBs in
the presence of random nuisance parameters is nontrivial. For
completeness, we now provide a brief review on the literature in
this context. First, the expression in (46) can also be derived as
an approximation of the CRB with unknown random nuisance
parameters [26]. This approximation is useful when the CRB is
too complicated to compute. This is not the case here. Indeed,
we have already derived the CRB and it is given by
in (35). Furthermore, it is tempting to compare with

where is given in (41) and the ex-
pectation is taken with respect to . The idea is that for each re-
alization of bounds the MSE (with respect to the
additive noise ) conditioned on , and the averaged MSE is
bounded by its expected value. However, here too, the ordering
is nontrivial and it is easy to find specific parameters for which

. A possible explanation is that the
left-hand side is a bound on the MSE of estimators, which are
unbiased for each , whereas the right-hand side bounds esti-
mators, which are only unbiased “on the average” with respect
to . Clearly, the latter constraint is less strict and allows for a
larger set of estimators. Again, the same approach is discussed
in the context of bounding the MSE in the presence of unknown

random nuisance parameters [27]. A comprehensive discussion
on these bounds and their relations may be found in [28], [29],
and references within.

A. Comparison With EIV

We now turn to compare the previous results with the CRB
in the EIV model. Here too the derivation of the CRB is rather
straightforward using Lemma 1. The only difference is that we
need to derive the CRB for estimating both and and then
quantify the degradation in performance due to the uncertainty
in using the matrix inversion lemma (see Appendix III). The
final result is

(49)

This bound has already appeared in [30] and [31]. Moreover,
small error analysis of the TLS estimator proved that it is tight
when is sufficiently small.

Particularizing the bound to the known- case
yields (41). Unlike our previous results in the RV model, it is
easy to see that the uncertainty in always degrades the per-
formance in the EIV model

(50)

This is expected as when we increase we add uncertainty
but do not change the relation between and ( does not de-
pend on in the EIV model). In fact, the bound for the EIV
model can be interpreted as the bound for a standard known-
model suffering from an additional independent noise term with
variance . It is interesting to note a duality with the RV
model in this context: in the RV model, this additional noise
term is indeed part of the data generation model, hence its in-
formation content (on ) can be exploited to improve the
mean-based estimate of , as explained previously. However,
in the EIV model this additional noise term is not actually part
of the measurement—it merely serves to decrease the bound, as
if it did not contain any information on .

Another difference between the RV and EIV formulations is
that the performance in the RV model is a function of (the
mean channel) whereas the performance in the EIV model is a
function of (the true channel). Thus, it is not fair to compare
them directly. Nonetheless, if we ignore this fact for the moment
and let and play the same role, it is easy to see that (49)
is similar to (35) except for the term. Thus, in some way, the
estimation of is easier in the RV model than in the EIV setting.
This is easy to explain in view of the previous discussion since
both models introduce uncertainty in but the randomness in
the RV formulation can also be beneficial.

V. ESTIMATION WITH UNKNOWN VARIANCES

In the previous sections, we discussed the estimation of
when the variances and are known deterministic parame-
ters, and derived the associated ML estimator and CRB. In prac-
tice, it is not clear whether this information is always available.
Therefore, we now focus on the more difficult case in which
the variances are unknown nuisance parameters. As before, we
begin with ML estimation and then analyze the inherent perfor-
mance limitations using the CRB.
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The main result is summarized in the following theorem.
Theorem 4: Consider the estimation of in (2) when and
are unknown deterministic nuisance parameters. Then, the

ML estimator of is the standard LS solution to

(51)

and the CRB for estimating reduces to

(52)

Proof: See Appendixes III and IV.
Thus, when the variances are unknown, the ML estimator in

the RV model coincides with the standard LS estimator, whereas
the CRB is simplified to the expression of the known- CRB
with an effective noise variance of . The lack
of knowledge of the variances causes the correction term in
(35) to disappear. There is a simple intuitive explanation for
these properties. As we already explained, the randomness in

has a negative effect but also a positive effect as it provides
more information on through the covariance of given by

. However, the positive effect can only be real-
ized if we know and and can somehow estimate the con-
tribution of to this covariance. This is another difference
between the case of known perturbations and unknown pertur-
bations, as in order to utilize the known perturbations, we do not
need any knowledge of the variances (the information is com-
pletely contained in the mean of rather than in its covariance).

A. Comparison With EIV

There are many results in the literature on the EIV model
with unknown noise variances. This is a very difficult estimation
problem and there are still many open questions regarding it. In-
terestingly, it was shown that, under this setting, the log-likeli-
hood function does not have a maximum and the ML estimator
does not exist ([17] and references within). In fact, to our knowl-
edge, there is no consistent estimator of in this model unless

, , or some other instrumental variable is known [12].
In our view, this means that our ML estimator, which reduces to
the standard LS method, is a practical approach for avoiding the
problematic (and nonexisting) EIV ML estimator using a dif-
ferent mathematical model.

In Appendix III, we obtain the following CRB for estimating
in the EIV model when and are unknown nuisance

parameters:

(53)

As before, in the EIV model, the performance is a function of
rather than . Yet, bearing this in mind, it is tempting to

compare (52) with (53) and conclude that when the variances
are unknown nuisance parameters the two bounds are similar.

VI. NUMERICAL RESULTS

We now provide a few numerical examples illustrating the
behavior of the proposed ML estimator.

Example I: In the first example, we consider the classical
linear regression problem of fitting a line to noisy measurements

Fig. 1. MSE in estimating the slope of a straight line in the RV model.

[32]. Let be a vector with uniformly spaced samples on the
interval , and assume that are noisy observations
of a line with an unknown slope . We are interested in esti-
mating given . If is exactly known and only is noisy,
then the ML method coincides with the standard LS estimator

(54)

with . In the following examples, we consider this
problem under uncertainty conditions on .

First, we concentrate on the RV model. We assume that
consists of the mean values of the true samples, rather than the
samples themselves. Thus, and is a random matrix.
The parameters are , , and . We provide
the empirical MSEs over 200 trials of four estimators: the clair-
voyant LS in (54), the mismatched LS with replaced by ,
the ML in (4) solved by the minimax approach in Section III-A,
and the EIV-ML (TLS) in (29) implemented using the EVD as
expressed in (31). The MSEs are then compared to .
The results are plotted in Fig. 1. The first observation is that the
CRB is noninformative in this case. As expected, the RV-ML es-
timator performs better than the mismatched LS estimator. The
performance of the EIV-ML estimator is very poor and it is clear
that it is not appropriate for estimation in the RV model in this
example.

Next, we focus on the EIV model and assume that
consists of the unknown samples, and is a noisy observa-
tion on . We consider the same parameters and estimators as
before. The estimated MSEs along with are plotted
in Fig. 2. Unlike the previous case, the CRB in the EIV model
appears to be reasonably tight. The two LS estimators perform
as expected but the performance of the ML estimators is sur-
prising. The mismatched RV-ML performs considerably better
than the more appropriate EIV-ML estimator. In fact, this ex-
ample demonstrates the instability of the EIV-ML estimator in
low signal-to-noise ratios.

Example II: We examine the asymptotic performance of the
estimators in the RV model. The parameters in our simulation
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Fig. 2. MSE in estimating the slope of a straight line in the EIV model.

Fig. 3. Approaching the asymptotic MSE in the RV model.

are as follows. The matrix is chosen as a concatenation of
matrices of size with unit diagonal elements and 0.5

off-diagonal elements. We expect the ML estimator to attain its
asymptotic performance as increases, therefore we choose

. The vector was chosen as the normalized eigen-
vector of associated with its minimal eigenvalue.3 We
present the empirical MSEs of the four estimators defined pre-
viously in Fig. 3 for . As before, the MSEs of the mis-
matched EIV-ML estimator were significantly worse than the
others and were, therefore, omitted from the graph. It is easy to
see the advantage of the RV-ML estimator over the mismatched
LS estimator. As expected, the MSE of the RV-ML estimator
approaches the CRB when is sufficiently low.

VII. CONCLUSION

We considered the problem of linear regression in a Gaussian
uncertainty model. We focused on ML estimation and proved
that it is a (de)regularized LS. We characterized the optimal reg-
ularization parameter using saddle point theory and provided

3Other simulations with arbitrary choices of � resulted in similar behavior.

efficient numerical methods for finding it. In addition, we ana-
lyzed the traditional EM solution to our problem using this new
characterization. Next, we addressed the inherent performance
limitations using the CRB. We quantified the degradation in per-
formance due to the uncertainty, and showed that it is less se-
vere than expected. We explained this property by noting that
our model introduces uncertainty into but also randomness.
The uncertainty is clearly undesirable, but under some reserva-
tions the randomness itself may be beneficial. Next, we con-
sidered ML estimation and CRB analysis when the variances of
the random variables are unknown nuisance parameters. Finally,
using a few simple numerical results, we demonstrated the insta-
bility of the EIV-ML estimator and the advantage of the RV-ML
estimator (in both models).

We note in addition that the numerical algorithms, as well as
some of the CRB results, are firmly based on the assumption
of independent, identically distributed perturbations in the ele-
ments of the model matrix (as well as in the additive noise term

). Some results on the generalization of this work to correlated
elements may be found in [25]. However, in realistic situations,
these assumption may not be valid, and adaptation of some of
our results to different distributions (even within the Gaussian
framework) may be nontrivial, if at all possible.

In our view, the main contribution of this paper is in providing
more insight into the different uncertainty models. Estimation
under uncertainty conditions is an important problem in modern
statistical signal processing. Our results show that the first step
in such problems is to properly define the setting. Different un-
certainty models give rise to different algorithms and different
performance measures. We believe that in order to decide which
model fits a specific application, one must fully understand the
theoretical differences between these models and the advantages
and disadvantages of each.

APPENDIX I
PROOF OF QUASI-CONVEXITY OF IN

The proof is based on the following result.
Lemma 2 [18]: If implies for any ,

then is unimodal in .
The condition is given in (16). Multiplying

it by yields

(55)

The second derivative is

(56)

Plugging in the left-hand side of (55) yields

(57)

which concludes the proof.
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APPENDIX II
EM SOLUTION OF THE ML PROBLEM

In this appendix, we provide the derivation of the EM algo-
rithm in (19) and (20). At each iteration, the algorithm maxi-
mizes the expected log likelihood of the complete data
(with respect to given )

(58)

where

(59)

Fortunately enough, the expectations in (59) can be easily evalu-
ated based on jointly Gaussian optimal minimum MSE (MMSE)
estimation theory [2]. Using the Kronecker product, we have

(60)

where . The Bayesian MMSE estimator of given
in (60) satisfies

(61)

and

(62)

where is the corresponding covariance matrix. Using
(61), (62), and straightforward algebraic manipulations yields
the first and second moments of given in (19) and (20).

APPENDIX III
DERIVATIONS OF THE CRBS

A. Proof of (49)

In the EIV model, and , where
and . Therefore

(63)

the CRB is given by the top left subblock of in Lemma
1. Using a well-known matrix inversion relation, we obtain

(64)

where

(65)

Using the properties of the Kronecker product, we obtain

(66)

and

(67)

as required.

B. Proof of (52)

In this scenario, the unknown parameters are
and , .

Applying Lemma 1 yields

(68)

The CRB is given by the top left subblock of , which is
equivalent to

(69)
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where

(70)

Plugging (70) into (69) yields (52).
Note that we have applied the CRB of singular FIMs [1],

[33]. The practical meaning of the singularity in (69) and (70)
is that it is impossible to differentiate between and in the
model. Fortunately, this is not crucial for the estimation of
since all we are interested in is an estimate of the effective vari-
ance .

C. Proof of (53)

Here, and and and
are defined in (63). It is easy to see that the cross terms

between and in the FIM are all zero. Therefore,
the lack of knowledge of the variances does not change the CRB
which is equal to (49).

APPENDIX IV
PROOF OF THEOREM 4

The ML estimator of in the RV model when and are
unknown deterministic nuisance parameters is the solution to

(71)
First, we use a change of variables and replace by the effec-
tive variance . Problem (71) is then

(72)

Now, the optimal is any nonnegative number satisfying
, and does not effect the objective function. Without loss

of generality, we choose and obtain

(73)

Simple differentiation yields the optimal

(74)

Plugging (74) back into (73) results in

(75)

which is equivalent to

(76)
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