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Abstract—Recent work has demonstrated that using a carefully is in the case of signals that are known to be drawn from
designed dictionary instead of a predefined one, can improve 3 union of a small number of subspacés][11].][12]. This

the sparsity in jointly representing a class of signals. Tt has
motivated the derivation of learning methods for designinga
dictionary which leads to the sparsest representation for aiven

set of signals. In some applications, the signals of interegan

have further structure, so that they can be well approximatel by

a union of a small number of subspaces (e.g., face recogniti@and

motion segmentation). This implies the existence of a dicthary

which enablesblock-sparse representations of the input signals
once its atoms are properly sorted into blocks. In this paperwe
propose an algorithm for learning a block-sparsifying dictionary
of a given set of signals. We daot require prior knowledge on the

association of signals into groups (subspaces). Insteadewevelop
a method that automatically detects the underlying block stuc-

ture. This is achieved by iteratively alternating between pdating

the block structure of the dictionary and updating the dictionary

atoms to better fit the data. Our experiments show that for bl@k-

sparse data the proposed algorithm significantly improves he
dictionary recovery ability and lowers the representation error

compared to dictionary learning methods that do not employ
block structure.

I. INTRODUCTION

occurs naturally, for example, in face recognition![13J4]1
motion segmentatior [15], multiband signdls][16],1[17I8]1
measurements of gene expression level$ [19], and more. For
such signals, sorting the dictionary atoms according to the
underlying subspaces leads to sparse representation$ whic
exhibit a block-sparse structure, i.e., the nonzero coeiffis
occur in clusters of varying sizes. Several methods, such as
Block BP(BBP) [11], [20], [21] andBlock OMP(BOMP) [22],

[23] have been proposed to take advantage of this struature i
recovering the block-sparse representaiormhese methods
typically assume that the dictionary is predetermined dned t
block structure is known.

In this paper we propose a method for designiniglack-
sparsifying dictionaryfor a given set of signals. In other
words, we wish to find a dictionary that provides block-
sparse representations best suited to the signals in a given
set. To take advantage of the block structure via blocksspar
approximation methods, it is necessary to know the block
structure of the dictionary. We do not assume that it is known
a-priori. Instead, we infer the block structure from theadat

The framework of sparse coding aims at recovering gfhile adapting the dictionary.
K i . . . .
unknown vecto¥ € ™ from an under-determined system of e start by formulating this task as an optimization prob-

linear equations: = D¢, whereD € RVN*X is a dictionary,

lem. We then present an algorithm for minimizing the pro-

andz € RY is an observation vector with’ < K. Since the posed objective, which iteratively alternates betweeratipd
system is under-determined,can not be recovered withoutthe plock structure and updating the dictionary. The block
additional information. The framework of compressed SESi srycture is inferred by the agglomerative clustering a- di
[11, [2] exploits sparsity off in order to enable recovery.iionary atoms that induce similar sparsity patterns. Ineoth
Specifically, wher? is known to be sparse so that it containgords, after finding the sparse representations of theitigin
few nonzero coefficients, and wheft is chosen properly, signals, the atoms are progressively merged accordingeto th
then can be recovered uniquely from= Df. Recovery is gimilarity of the sets of signals they represent. A variefy o
possible irrespectively of the locations of the nonzeraoiest segmentation methods through subspace modeling have been
of 6. This reSL_JIt has given rise. to a multitude of diﬁerenbroposed recentlyi [24][[25]( [26]. These techniques lesmn
recovery algorithms. Most prominent among them are Basiderlying collection of subspaces based on the assumption
Pursuit (BP)[[3], [1] and Orthogonal Matching Pursuit (OMPynat each of the samples lies close to one of them. However,

[41, [5]

Recent work [[B], [[7], [[8], 9], [10] has demonstrated th
adapting the dictionaryD to fit a given set of signal ex-

unlike our method, they do not treat the more general case

afvhere the signals are drawn from a union of several subspaces

The dictionary blocks are then sequentially updated to

amples leads to improved signal reconstruction. At theeprigyinimize the representation error at each step. The prapose
of being slow, these learning algorithms attempt to find @gorithm is an intuitive extension of the K-SVD algorithii |
dictionary that leads to optimal sparse representatioms {Qnich yields sparsifying dictionaries by sequentially afidg

a certain class of signals. These methods show impressifg dictionary atoms, to the case of block structures. Iemoth

results for representations with arbitrary sparsity gtrres.

words, when the blocks are of sidzeour cost function and

In some applications, however, the representations havgna algorithm we propose reduce to K-SVD. Our experiments
unique sparsity structure that can be exploited. Our isterghoyw that updating the dictionary block by block is prefdrre
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over updating the atoms in the dictionary one by one, as in
K-SVD.
We show empirically that both parts of the algorithm
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are indispensable to obtain high performance. While fixirgpproaches are strongly dependent on the initial dictionar
a random block structure and applying only the dictionarp(®). The convention is to initializeD(®) as a collection of
update part leads to improved signal reconstruction coetpark” data signals from the same class as the training sigkials
to K-SVD, combining the two parts leads to even better result The first step of theath iteration in both algorithms opti-
Furthermore, our experiments show that K-SVD often fails tmizes® given a fixed dictionanD ("), so that[(1) becomes:
recover the underlying block structure. This is in contriast (n) _ . (n—1)
our algorithm which succeeds in detecting most of the blocks O =argmin  [|X - D""V0|r

We begin by reviewing previous work on dictionary design s.t. 19:llo <k, i=1,..., L. (2)

in Section[I). In Sectiori 1A we present an objective for hi bi b ved , I Usi di
designing block-sparsifying dictionaries. We show thas th T is problem can be solved approximately using sparse godin

objective is a direct extension of the one used by K-SVD. V\ygethods_such as BP or OMP for each colun;r@ofsmce_ the

then propose an algorithm for minimizing the proposed coRfoPlem is separable in these columns. Néxt,) is kept fixed

function (Sectior TILR). In Sectiof TIEC we give a detadle and the representation error is minimized oy&r

description of the algorithm for finding a block structure D™ = argmin || X — DO ||p. (3)

and in Sectiod III-D we describe the dictionary update part. b

We evaluate the performance of the proposed algorithms ahie difference between MOD and K-SVD lies in the choice of

compare them to previous work in Section IV. optimization method foD (™. While K-SVD converges faster
Throughout the paper, we denote vectors by lowercadgn MOD, both methods yield similar results.

letters, e.g.x, and matrices by uppercase letters, e4qy.The The MOD algorithm treats the problem inl (3) directly. This

jth column of a matrixA is written asA;, and theith row problem has a closed form solution given by the pseudo-

as A'. The sub-matrix containing the entries 4fin the rows inverse:

with indicesr and the columns with indicesis denotedA’. D™ = xe'™ (@M M), (4)

The Frobenius norm is defined lyl|| » = | /3=, [ 4;13. The  Here we assume for simplicity th&@(™e’(™ is invertible.
ith element of a vector is denotedcl[i]. ||z[|, is its [,-norm  The K-SVD method solved(3) differently. The columns in

and||z||o counts the number of non-zero entrieszin D=1 are updated sequentially, along with the corresponding
non-zero coefficients i®(™). This parallel update leads to

Il. PRIOR WORK ON DICTIONARY DESIGN a significant speedup while preserving the sparsity pattern
o o _ o of ©™, Forj = 1,...,K, the update is as follows. Let
The goal in dictionary learning is to find a dictionabyand wi={iel,. .. L|®{ £ 0} be the set of indices correspond-

a representation matri® that best match a given set of vec:tor§ng to columns in©®™ that use the atonD.. i.e.. theirith
X; that are the columns of. In addition, we would like each row is non-zero. Denote bR, = X.,, — Z; (D;0}, ) the
: wj — wj i i,

vector®; of © to be sparse. In this section we briefly reviewgnresentation error of the signal§,,, excluding the contri-
two popular sparsifying dictionary design algorithms, KES 1, ;sion of the jth atom. The representation error of the signals

[6], [27] and MOD (Method of Optimal Directions) [7]. We yjth indicesw; can then be written a§R.,, — D;07, ||r. The
will generalize these methods to block-sparsifying ditiy 54 of the update step is to minimize this representaticorer

design in Sectiof DI. o which is accomplished by choosing
To learn an optimal dictionary, both MOD and K-SVD

attempt to optimize the same cost function for a given sparsi Dj=Uy, ©] =AV.
measurek: Here UAV’ is the Singular Value Decomposition (SVD) of
min |X — DO||r R,,,. Note, that the columns dD remain normalized after the
D.,® . update. The K-SVD algorithm obtains the dictionary update
st. |©io<k, i=1,...,L (1) by K separate SVD computations, which explains its name.

where X € RM*L is a matrix containingL given input
signals,D € RV*K is the dictionary and® € R¥*l is a I11. BLOCK-SPARSIFYING DICTIONARY OPTIMIZATION

sparse represe_ntation of the si_gnal_s. Note that the solpﬁo We now formulate the problem of block-sparsifying dic-
(@) is never unigue due to the invariance@fto permutation tionary design. We then propose an algorithm which can be
and scaling of columns. This is partially resolved by rem@ir seen as a natural extension of K-SVD for the case of signals
normalized columns iD. We will therefore assume through-yith plock sparse representations. Our method involves an
out the paper that the columns &f are normalized to have aqgitional clustering step in order to determine the block
lo-norm equall. structure.

Problem [(1) is non-convex and NP-hard in general. Both
MOD and K-SVD attempt to approximatg] (1) using a relax- o
ation technique which iteratively fixes all the parametess bA- Problem definition
one, and optimizes the objective over the remaining vagiabl For a given set of. signalsX = {X;}L , € RY, we wish
In this approach the objective decreases (or is left unaldingto find a dictionaryD € RV *X whose atoms are sorted in
at each step, so that convergence to a local minimum bkbcks, and which provides the most accurate representatio
guaranteed. Since this might not be the global optimum bothctors whose non-zero values are concentrated in a fixed
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M EEEEEEAEEEER o (EEEIEEELEEIEEEE o collection of K signals leads to similar results, but slightly

slower convergence). Then, at each iteratiorwe perform
the following two steps:
1) Recover the block structure by solvirig (5) fbrand ©
while keepingD (1) fixed:

D D
CARRCIRIE %1%1 | X — D Vo|p (6)
S.t. ||®i||0,d§k7 Z:L,L
|d;| <, j€d.
Fig. 1. Two equivalent examples of dictionariés and block structures
with 5 blocks, together witl2-block-sparse representatioAsBoth examples An exact solution would require a combinatorial search
represent the same signal, since the atom®iand the entries ofl and 6 over all feasiblel and®©. Instead, we propose a tractable

are permuted in the same manner. . - : .
approximation to [{6) in Sectioh 1IC, referred to as

Sparse Agglomerative Clustering (SA@pglomerative

number of blocks. In previous works dealing with the block-  clustering builds blocks by progressively merging the
sparse model, it is typically assumed that the block strectu closest atoms according to some distance metric [28],

in D is known a-priori, and even more specifically, that the _ [29]- SAC uses th%%;norm for this purpose.
atoms inD are sorted according to blocks [11],[20]. Instead, 2) Fit the dictionaryD (tno) the data by solvind {5) fob
in this paper we address the more general case where the block @nd© while keepingd'™’ fixed:

structure is unknown and the blocks can be of varying sizes. [D(n) @(n)] — min |X — DO p @)
The only assumption we make on the block structure is that ’ D,®
the maximal block size, denoted By is known. s.t. 1Gillo.ae <k, i=1,...,L.

More specifically, suppose we have a dictionary whose
atoms are sorted in blocks that enableck-sparseepresenta-
tions of the input signals. Assume that each block is given an
index number. Letl € R¥ be the vector of block assignments
for the atoms ofD, i.e., d[i] is the block index of the atom
D;. We say that a vectof € R¥ is k-block-sparse oved
if its non-zero values are concentratedkiblocks only. This
is denoted byi|0|o,« = k, where||||o.4 is thelp-norm over
d and counts the number of non-zero blocks as defined. by
Fig.[d presents examples of two different block structures a: - — -
two corresponding block-sparse vectors and dictionaries. Algorithm 1 quck-Sparse chtlonar.y Design i

Our goal is to find a dictionary and a block structure, MPUt A set of signals¥, block sparsityk and maximal block

with maximal block sizes, that lead to optimak-block sparse S!2€5- o
representation® = {©;}_, for the signals inX: Task Find a dictionaryD, block structured and the corre-

sponding sparse representatiorby optimizing:

In SectionIII-0 we propose an algorithm, referred to as
Block K-SVD (BK-SVD)or solving [8). This technique
can be viewed as a generalization of K-SVD since the
blocks in D™ are sequentially updated together with
the corresponding non-zero blocks @™,
In the following sections we describe in detail the steps
of this algorithm. The overall framework is summarized in
Algorithm 1.

min |X —DO|r
Vot min  [|X — DO|r
s.t. 19:llo.a <k, i=1,...,L D,d,® |
ldj| <s, jed (5) st |©loa <k, i=1,...,L
J1I =

|dj| < s, jed.
whered; = {i € 1,...,K|[d[i] = j} is the set of indices = S 0
belonging to blockj (i.e., the list of atoms in block). Initialization: Set the initial dictionaryD(?) as the outcome of

The case when there is no underlying block structure ErSVD. ]

when the block structure is ignored, is equivalent to sgttie=  R€P€at fromn = 1 until convergence
1 andd = [1,..., K]. Substituting this into[{5), reduces it to 1) Fix D=1, and updated™ and ©") by applying
@). In this setting, the objective and the algorithm we s Sparse Agglomerative Clustering.
coincide with K-SVD. In SectiofiTV we demonstrate through 2) Fix d", and updateD(™) and©(™) by applying BK-
simulations that when an underlying block structure exists SVD.
optimizing [8) via the proposed framework improves recgver 3) n=n+ 1.
results and lowers the representation errors with respefdt

B. Algorithm Preview C. Block Structure Recovery: Sparse Agglomerative Cluster

In this section, we propose a framework for solvifig (5)"9
Since this optimization problem is non-convex, we adopt the In this section we propose a method for recovering the block
coordinate relaxation technique. We initialize the dictioy structured given a fixed dictionanyD, as outlined in Fig. 2().
D) as the outcome of the K-SVD algorithm (using a randofhe suggested method is based on the coordinate relaxation



technique to solvd (6) efficiently. We start by initializidgand that can be used to reduce the error increases.
0. Since we have no prior knowledge dfit is initialized as Fig. [2(B) presents an example that illustrates the notation
K blocks of sizel, i.e.d = [1,...,K]. To initialize © we and the steps of the algorithm. In this example the maximal
keepd fixed and solve[{6) ove® using OMP withk x s block size iss = 2. At initialization the block structure is set
instead ofk non-zero entries, since the signals are known to d = [1,2, 3, 4], which implies that the objective of](8) is
be combinations of blocks of sizes. Based on the obtained > ||©;[0.a =2+ 1+ 2+ 2 = 7. At the first iterationw,
O, we first updated as described below and then ag&n andws; have the largest intersection. Consequently, blacks
using BOMP [22]. The BOMP algorithm sequentially selectand3 are merged. At the second iteratiom, andw, have the
the dictionary blocks that best match the input sigdéjsand largest intersection, so that blocRsand 4 are merged. This
can be seen as a generalization of the OMP algorithm to theults in the block structuré = [1,2,1,2] where no blocks
case of blocks. can be merged without surpassing the maximal block size.
To updated we wish to solve[(6) while keepin® fixed. The objective of[(B) is reduced t§:f:1 19;:]l0,a = 4, since
Although the objective does not depend @nthe constraints all 4 columns in© are 1-block-sparse. Note that since every
do. Therefore, the problem becomes finding a block structutelumn contains non-zero values, this is the global minimum
with maximal block sizes that meets the constraint on theand therefore the algorithm succeeded in solvidg (8).
block-sparsity of©. To this end, we seek to minimize the While more time-efficient clustering methods exist, we have

block-sparsity of© over d: selected agglomerative clustering because it providesplsi

L and intuitive solution to our problem. Partitional clusher
minZH@iHo,d st |dj| <s, jed (8) methods, such as K-Means, require initialization and are

d = therefore not suited for highly sparse data and ihe@orm

Before we describe how[](8) is optimized we first wish t(gnetric. Moreover, since oversized blocks are unwanted it i
provide some insight. When a signal; is well represented preferable to limit the block size rather than the number of
. "

by the unknown blocki;, then the corresponding rows @ blocks. IF i§ important. to note Fhat due to the iterative matu
are likely to be non-zero. Thereforepws of © that exhibit Of our dictionary design algorithm, clustering errors can b
a similar pattern of non-zeros are likely to correspond 1_((‘)orrecte(_j in the following iteration, after the dictionamgas
columnsof the same dictionary block. Therefore, groupin§€en refined.

dictionary columns into blocks is equivalent to grouping/so

of © according to their sparsity pattern. To detect rows with pgiock K-SVD Algorithm

similar sparsity patterns we next rewrite the objectivel@f ( ) )
as a function of the pattern on non-zeros. We now propose the BK-SVD algorithm for recovering the

Let w;(©,d) denote the list of columns i® that have dictionaryD and the representgtio@sby optimizing [8) given
non-zero values in rows corresponding to blodk, i.e., @ Plock structurel and input signals.

wj(0,d) = {i € 1,...,L| ||®;7lj||2 > 0}. Problem [(B) can Using the c_oprdinate reIaxqtiop technique, we solve this
now be rewritten as: problem by minimizing the objective based on alternatihg
and D. At each iterationm, we first fix D™~ and use
Indinz lw;j(©,d)| st |dj| <s, jed (9) BOMP to solve [[B) which reduces to
jed

_ _ _ 0™ —argmin || X — D™ YO|
where|w;| denotes the size of the list;. We propose using a S

sub-optimal tractable agglomerative clustering algonitf29] st [[Oiloa <k, i=1,...,L. (10)

to minimize this objective. At e_ac;h step we merge the pa['\fext, to obtainD(™ we fix O

of blocks that have the most similar pattern of non-zeros in

O, leading to the steepest descent in the objective. We allow D™ = arg min |X — DO™)| k. (11)

merging blocks as long as the maximum block sizes not

exceeded. Inspired by the K-SVD algorithm, the blocks (™~ are

More specifically, at each step we find the pair of blockgpdated sequentially, along with the corresponding nan-ze

(jt, %) such that: coefficients in@(™). For every blockj € d, the update is as
T follows. Denote byR,,, = Xu, —>_, Ddieg; the represen-
ltsd2] = arg max Wi Nwio| St |dj, [+ [djy | < s. tation error of the signals(,,, excluding the contribution of

. » . ) ] ] the jth block. Herew; andd; are defined as in the previous

We then mergeji and j; by settingVi € d;, = d[i] < ji, gynsection. The representation error of the signals willcés

wjy « {wj Uwj,}, and wg, < o. This is repeated until | = then pe written a$R, — Dd,.®ﬁ§||F. Finally, the
no blocks can be merged without breaking the constraint . LY S d;
on the block size. We do not limit the intersection siz epresentation error is minimized by settify, ©.; equal to

for merging blocks from below, since merging is alway e matrix of rankld; | t_hat best apPrOXImateB“’j' This can
beneficial. Merging blocks that have nothing in common ma(g})tamed by the following updates:
not reduce the objective of1(8); however, this can still lowe Dg; = [Uy,...,Uq,)]
the representation error at the next BK-SVD iteration. bdle \d; |

while the number of blocks stays fixed, the number of atoms 955@ =[AlVA, .., A|dj‘V\dj\]'

™) d and X, and solve:
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Fig. 2. (a) A flow chart describing the SAC algorithm. (b) Aalktd example
of the decision making process in the SAC algorithm.

where thejd;| highest rank components &,,, are computed
using the SVDR,,, = UAV'. The updatedD,, is now an
orthonormal basis that optimally represents the signath wi
indicesw;. Note that the representation error is also minimized
when multiplying D4, on the right by and @ﬁ”ﬂl on the
left by W1, whereW e RI%!xI4l is an invertible matrix.
However, if we require the dictionary blocks to be orthonalm
subspaces, the solution is unique up to the permutation of
the atoms. It is also important to note that|if;| > |w,|,
then|d;| — |w;| superfluous atoms in blockcan be discarded
without any loss of performance.

This dictionary update minimizes the representation error
while preserving the sparsity pattern@f”, as in the K-SVD
dictionary update step. However, the update step in the BK-
SVD algorithm converges faster thanks to the simultaneous
optimization of the atoms belonging to the same block. Our
simulations show that it leads to smaller representatioorer
as well. Moreover, the dictionary update step in BK-SVD
requires abous times less SVD computations, which makes
the proposed algorithm significantly faster than K-SVD.

We next present a simple example illustrating the advantage
of the BK-SVD dictionary update step, compared to the K-
SVD update. LetD; and D, be the atoms of the same
block, of size 2. A possible scenario is thal, = U,
and ©2, = —A(1,1)V{. In K-SVD, the first update of
Dis D; «+ Up and ©} « A(1,1)V]. In this case the
second update would leavP, and @3], unchanged. As a
consequence, only the highest rank componentigf is
removed. Conversely, in the proposed BK-SVD algorithm, the
atomsD; and D, are updated simultaneously, resulting in the
two highest rank components &f,,, being removed.

IV. EXPERIMENTS

In this section, we evaluate the contribution of the propose
block-sparsifying dictionary design framework empirlgal
We also examine the performance of the SAC and the BK-
SVD algorithms separately.

For each simulation, we repeat the following procedife
times: We randomly generate a dictionay of dimension
30 x 60 with normally distributed entries and normalize its
columns. The block structure is chosen to be of the form:

d* =1[1,1,1,2,2,2,...,20,20,20]

i.e. D* consists of20 subspaces of size = 3. We generate
L = 5000 test signalsX of dimension N = 30, that
have 2-block sparse representatio®s” with respect toD*
(i.,e. k = 2). The generating blocks are chosen randomly
and independently and the coefficients are i.i.d. uniformly
distributed. White Gaussian noise with varying SNR was
added toX.
We perform three experiments:
1) Given D* and X, we examine the ability of SAC to
recoverd®.
2) Givend* and X, we examine the ability of BK-SVD to
recoverD*.
3) We examine the ability of BK-SVD combined with SAC
to recoverD* andd* given only X.
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Fig. 3. Simulation results of the SAC algorithm. The graphevée, p and  Fig. 4. Simulation results of the BK-SVD and (B)K-SVD algbrins. The

b as a function of the SNR of the data signals koe= 2 (a, b, c), and as a graphs show the reconstruction errorand the recovery percentageas a

function of k£ in a noiseless setting (d, e, f). function of the SNR of the data signals fer= 2 and after250 iterations (a,
b), as a function of the number of iterations for= 2 in a noiseless setting
(c, d), and as a function df in a noiseless setting aft@s0 iterations (e, f).

We use two measures to evaluate the success of the simu-

lations based on their output3, d and ©: Delr approximation of the signalX with k£ x s = 12 nonzero

| X—
« The normalized representation ereor e entries. In terms of andb, our algorithm performs nearly as
o The percentage of successfully recovered blocks For good as the oracle.

every block inD, we match the closest block ib* with-
out repetition, where the (normalized) distance between

two blocks S; and Ss (of sizess; and ss) is measured B. Evaluating BK-SVD

by: To evaluate the performance of the BK-SVD algorithm we
11545512 assume that the block structur® is known. We initialize
Dist(S1, S2) (1 - (7%) the dictionaryD(®) by generating20 blocks of size3 where
maxis, s2 each block is a randomly generated linear combination of

assuming that both blocks are orthonormalized. If th randomly selected blocks oD*. We then evaluate the
distance between the block i and its matched block contribution of the proposed BK-SVD algorithm. Recall that
in D* is smaller thar0.01, we consider the recovery of dictionary design consists of iterations between two steps

this block as successful. updating® using block-sparse approximation and updating the
blocks in D and their corresponding non-zero representation
A. Evaluating SAC coefficients. To evaluate the contribution of the latterpste

we compare its performance with that of applying the same
scheme but using the K-SVD dictionary update step. We refer
to this algorithm as (B)K-SVD. The algorithms are evaluated

as a function of the SNR of the signal§ for &k = 2 after

250 iterations, as a function of the number of iterations for

To evaluate the performance of the SAC algorithm,
assume thatD* is known, and use SAC to reconstruét
and then BOMP to approximat®*. The SAC algorithm is
evaluated as a function of the SNR of the signsl$or & = 2,
and as a function of: in a noiseless setting. In addition tok — 2 in a noiseless setting, and as a functionfoin a
e and p, Fig.[3 also shows the objective dfl(8), which we X

denote byb. We compare our results with those of an Oraclenmseless setting afte?50 iterations. It is clear from Fig.4
: T . that the simultaneous update of the atoms in the blocks of
algorithm, which is given as input the true block structdte

It then uses BOMP to fin®®. The oracle’s results provide aD Is imperative and does not only serve as a speedup of the

lower bound on the reconstruction error of our algorithm (weIgorlthm

cannot expect our algorithm to outperform the oracle). it ca )

be seen that for SNR higher thar5[dB], the percentage of C- Evaluating the overall framework

successfully recovered blocks quickly increasest@ (Fig. To evaluate the performance of the overall block-sparnsifyi
[B.(b)), the representation errerdrops to zero (Fid.]3.(a)) and dictionary design method, we combine SAC and BK-SVD. At
the block-sparsityp drops to the lowest possible valke= 2 each iteration we only run BK-SVD once instead of waiting
(Fig. [3.(c)). Fig.[B.(e) shows that the block structuteis for it to converge, improving the ability of the SAC algorith
perfectly recovered fok < 6. However, fork = 6, SAC fails to avoid traps. Our results are compared with those of K-SVD
in reconstructing the block structu#, even though the block (with a fixed number o8B coefficients) and with those of BK-
sparsityb reaches the lowest possible value (Eig. 3.(f)). This 8VD (with a fixed block structure) as a function of the SNR,
a consequence of the inability of OMP to recover the sparsest a function of the number of iterations. The algorithms are



© © . © D. Choosing the maximal block size

0.7 0.5 04g=
— K-SVD el
o O - VI P B ""'v'q. We now consider the problem of setting the maximal block
0aN, T meicima] 03 K size in the dictionary, when all we are given is that the safes
® 03 ® o © 02 ;o the blocks are in the rande; s;]. This also includes the case
02 b o.l‘N—j 4 of varying block sizes. Choosing the maximal block siz&
°'; i . teenaeaaas s 0" be equal tos; will not allow to successfully reconstruct blocks
0 20 40 50 100 150 200 250 2 3 4 N 1
NR forotion p contalnlng more than;% _a_toms. On the other h_and, sethg
® @ o s = s, Will cause the initial sparse representation matix
100 T - 1°°"---.‘ obtained by the OMP algorithm, to contain too many non-
8 ' sof 17 8 * zero coefficients. This is experienced as noise by the SAC
I 1 . . - . . -
_® ' oo _® Y algorithm, and may prevent it from functioning properlyidt
0 : aof 40 ‘\ therefore favorable to use OMP withx s; non-zero entries
A} . . .
2 ! 2 204 s only, and setting the maximal block sizeto be sy,.
N S - S s — In Fig.[6(@), we evaluate the ability of our block sparsifyin
SNR lterations K dictionary design algorithm to recover the optimal diction

which containg 2 blocks of size3, and12 blocks of size2. As

Fig. 5. Simulation results of our overall algorithm (BK-S¥BAC), the BK-  expected, better results are obtained when choasirg?2. In

SVD algorithm and the K-SVD algorithm. The graphs show tlenstruction Fig @ the underlying block subspaces are all of di si

error e and the recovery percentageas a function of the SNR of the data _
signals fork = 2 after 250 iterations (a, b), as a function of the number of2, but s;, is erroneously set to b& We see that wheg; = 2,

iterations fOI’k.Z 2in a n_oiselgss setting (c, d), and as a functionkdéh a \we succeed in recovering a considerable part of the blOCkS,
noiseless setting aftes0 terations (e, ). even though blocks of sizeare allowed. In both simulations,
K-SVD usesk x s, hon-zero entries, which explains why it

. . is not significantly outperformed by our algorithm in ternfs o
e}/talu;;gqtas ‘? function 0; thet_SNRfotLthe S|ggﬁ I%; /f[ - f representation error. Moreover, the percentage of renarist
? elz - 2' erations, alls a untf lon o q N nur]p ertlonlleiir]a 'ONBlocks by our algorithm is relatively low compared to the
or & =2 1n a noiseless setling, and as a functionoin a previous simulations, due to the small block sizes.
noiseless setting afte@s0 iterations (Fig[h).

Our experlrr_]ents §hpw that for SNR 10[d|_3], the proposed V. CONCLUSIONS

block-sparsifying dictionary design algorithm vyields lkew ) )
reconstruction errors (see FIg. 5.()) and a higher peagent [N this paper, we proposed a framework for the design of
of correctly reconstructed blocks (see Fig. 5.(b)), coragar@ prck-sparsﬁymg dictionary given a set of signals and a
to K-SVD. Moreover, even in a noiseless setting, the K-Svfiaximal block size. The algorithm consists of two steps: a
algorithm fails to recover the sparsifying dictionary, vehpur Plock structure update step (SAC) and a dictionary updafe st

algorithm succeeds in recoverifig% of the dictionary blocks, (BK-SVD). When the maximal block size is chosen to he
as shown in Fig5.(d). the algorithm reduces to K-SVD.

For SNR< 10[dB] we observe that K-SVD reaches lower We have shown via experiments that the block structure
reconstruction error compared to our block-sparsifyirgidi UPdate step (SAC) provides a significant contribution to the

nary design algorithm. This is since when the SNR is low trictionary recovery results. We have further shown that for
block structure is no longer present in the data and the useSof ! theé BK-SVD dictionary update step is superior to the

block-sparse approximation algorithms is unjustified. &dfy K-SVD dictionary update. Moreover, the representatiomrerr

this is indeed the cause for the failure of our algorithm, wePtained by our dictionary design method lies very closéiéo t
further compare our results with those of an oracle algorjth 10Wer bound (the oracle) for all noise levels. This suggtsis

which is given as input the true dictiona®* and block OUr algorithm has reached its goal in providing dictionsirie
structured*. It then uses BOMP to fin®. Fig.[3 shows that that lead to accurate sparse representations for a giveof set
jgnals.

for all noise levels, our algorithm performs nearly as good i
as the oracle. Furthermore, for SNR 10[dB] we observe To further improve the proposed approach one could try and

that K-SVD outperforms the oracle, implying that the use dpgke the dictionary design.algorithm less susceptit_)le tallo
block-sparsifying dictionaries is unjustified. For<= 3, in a Minimum traps. Another refinement could be replacing blocks

noiseless setting, the performance of our algorithm liesel in the dictionary that contribute little to the sparse repréa-

to that of the oracle, and outperforms the K-SVD algorithnfions (i-€. “unpopular blocks”) with the least represersigmal
However, we note that this is not the case for— 4. elements. This is expected to only improve reconstruction

Finally, we wish to evaluate the contribution of the SA¢eSults. Finally, we may replace the time-efficient BOMP
algorithm to the overall framework. One could possibly fix aﬁlgonthm, with other block-sparse approximation methtfis
initial block structure and then iteratively update thetidigary '€2ve these issues for future research.
using BK-SVD, in hope that this will recover the block struc-

ture. Fig[% shows that the representation eerisrmuch lower
when including SAC in the overall framework. Moreover, BK- The research of Lihi Zelnik-Manor is supported by Marie

SVD consistently fails in recovering the dictionary blocks Curie IRG-208529.
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Simulation results of our overall algorithm (BK-S¥BAC) and

the K-SVD algorithm, with maximal block size;, = 3. The graphs show
the reconstruction errar and the recovery percentageas a function of the
number of iterations. (a) contain blocks of size2 and 12 block of size

3. (b) contains30 blocks of size2.
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