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Abstract—Recent work has demonstrated that using a carefully
designed dictionary instead of a predefined one, can improve
the sparsity in jointly representing a class of signals. This has
motivated the derivation of learning methods for designinga
dictionary which leads to the sparsest representation for agiven
set of signals. In some applications, the signals of interest can
have further structure, so that they can be well approximated by
a union of a small number of subspaces (e.g., face recognition and
motion segmentation). This implies the existence of a dictionary
which enablesblock-sparse representations of the input signals
once its atoms are properly sorted into blocks. In this paper, we
propose an algorithm for learning a block-sparsifying dictionary
of a given set of signals. We donot require prior knowledge on the
association of signals into groups (subspaces). Instead, we develop
a method that automatically detects the underlying block struc-
ture. This is achieved by iteratively alternating between updating
the block structure of the dictionary and updating the dictionary
atoms to better fit the data. Our experiments show that for block-
sparse data the proposed algorithm significantly improves the
dictionary recovery ability and lowers the representation error
compared to dictionary learning methods that do not employ
block structure.

I. I NTRODUCTION

The framework of sparse coding aims at recovering an
unknown vectorθ ∈ RK from an under-determined system of
linear equationsx = Dθ, whereD ∈ RN×K is a dictionary,
andx ∈ RN is an observation vector withN < K. Since the
system is under-determined,θ can not be recovered without
additional information. The framework of compressed sensing
[1], [2] exploits sparsity ofθ in order to enable recovery.
Specifically, whenθ is known to be sparse so that it contains
few nonzero coefficients, and whenD is chosen properly,
thenθ can be recovered uniquely fromx = Dθ. Recovery is
possible irrespectively of the locations of the nonzero entries
of θ. This result has given rise to a multitude of different
recovery algorithms. Most prominent among them are Basis
Pursuit (BP) [3], [1] and Orthogonal Matching Pursuit (OMP)
[4], [5].

Recent work [6], [7], [8], [9], [10] has demonstrated that
adapting the dictionaryD to fit a given set of signal ex-
amples leads to improved signal reconstruction. At the price
of being slow, these learning algorithms attempt to find a
dictionary that leads to optimal sparse representations for
a certain class of signals. These methods show impressive
results for representations with arbitrary sparsity structures.
In some applications, however, the representations have a
unique sparsity structure that can be exploited. Our interest
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is in the case of signals that are known to be drawn from
a union of a small number of subspaces [11], [12]. This
occurs naturally, for example, in face recognition [13], [14],
motion segmentation [15], multiband signals [16], [17], [18],
measurements of gene expression levels [19], and more. For
such signals, sorting the dictionary atoms according to the
underlying subspaces leads to sparse representations which
exhibit a block-sparse structure, i.e., the nonzero coefficients
occur in clusters of varying sizes. Several methods, such as
Block BP(BBP) [11], [20], [21] andBlock OMP(BOMP) [22],
[23] have been proposed to take advantage of this structure in
recovering the block-sparse representationθ. These methods
typically assume that the dictionary is predetermined and the
block structure is known.

In this paper we propose a method for designing ablock-
sparsifying dictionaryfor a given set of signals. In other
words, we wish to find a dictionary that provides block-
sparse representations best suited to the signals in a given
set. To take advantage of the block structure via block-sparse
approximation methods, it is necessary to know the block
structure of the dictionary. We do not assume that it is known
a-priori. Instead, we infer the block structure from the data
while adapting the dictionary.

We start by formulating this task as an optimization prob-
lem. We then present an algorithm for minimizing the pro-
posed objective, which iteratively alternates between updating
the block structure and updating the dictionary. The block
structure is inferred by the agglomerative clustering of dic-
tionary atoms that induce similar sparsity patterns. In other
words, after finding the sparse representations of the training
signals, the atoms are progressively merged according to the
similarity of the sets of signals they represent. A variety of
segmentation methods through subspace modeling have been
proposed recently [24], [25], [26]. These techniques learnan
underlying collection of subspaces based on the assumption
that each of the samples lies close to one of them. However,
unlike our method, they do not treat the more general case
where the signals are drawn from a union of several subspaces.

The dictionary blocks are then sequentially updated to
minimize the representation error at each step. The proposed
algorithm is an intuitive extension of the K-SVD algorithm [6],
which yields sparsifying dictionaries by sequentially updating
the dictionary atoms, to the case of block structures. In other
words, when the blocks are of size1 our cost function and
the algorithm we propose reduce to K-SVD. Our experiments
show that updating the dictionary block by block is preferred
over updating the atoms in the dictionary one by one, as in
K-SVD.

We show empirically that both parts of the algorithm

http://arxiv.org/abs/1005.0202v1


2

are indispensable to obtain high performance. While fixing
a random block structure and applying only the dictionary
update part leads to improved signal reconstruction compared
to K-SVD, combining the two parts leads to even better results.
Furthermore, our experiments show that K-SVD often fails to
recover the underlying block structure. This is in contrastto
our algorithm which succeeds in detecting most of the blocks.

We begin by reviewing previous work on dictionary design
in Section II. In Section III-A we present an objective for
designing block-sparsifying dictionaries. We show that this
objective is a direct extension of the one used by K-SVD. We
then propose an algorithm for minimizing the proposed cost
function (Section III-B). In Section III-C we give a detailed
description of the algorithm for finding a block structure
and in Section III-D we describe the dictionary update part.
We evaluate the performance of the proposed algorithms and
compare them to previous work in Section IV.

Throughout the paper, we denote vectors by lowercase
letters, e.g.,x, and matrices by uppercase letters, e.g.,A. The
jth column of a matrixA is written asAj , and theith row
asAi. The sub-matrix containing the entries ofA in the rows
with indicesr and the columns with indicesc is denotedAr

c .

The Frobenius norm is defined by‖A‖F ≡
√

∑

j ‖Aj‖22. The

ith element of a vectorx is denotedx[i]. ‖x‖p is its lp-norm
and‖x‖0 counts the number of non-zero entries inx.

II. PRIOR WORK ON DICTIONARY DESIGN

The goal in dictionary learning is to find a dictionaryD and
a representation matrixΘ that best match a given set of vectors
Xi that are the columns ofX . In addition, we would like each
vectorΘi of Θ to be sparse. In this section we briefly review
two popular sparsifying dictionary design algorithms, K-SVD
[6], [27] and MOD (Method of Optimal Directions) [7]. We
will generalize these methods to block-sparsifying dictionary
design in Section III.

To learn an optimal dictionary, both MOD and K-SVD
attempt to optimize the same cost function for a given sparsity
measurek:

min
D,Θ

‖X −DΘ‖F

s.t. ‖Θi‖0 ≤ k, i = 1, . . . , L (1)

where X ∈ RN×L is a matrix containingL given input
signals,D ∈ RN×K is the dictionary andΘ ∈ RK×L is a
sparse representation of the signals. Note that the solution of
(1) is never unique due to the invariance ofD to permutation
and scaling of columns. This is partially resolved by requiring
normalized columns inD. We will therefore assume through-
out the paper that the columns ofD are normalized to have
l2-norm equal1.

Problem (1) is non-convex and NP-hard in general. Both
MOD and K-SVD attempt to approximate (1) using a relax-
ation technique which iteratively fixes all the parameters but
one, and optimizes the objective over the remaining variable.
In this approach the objective decreases (or is left unchanged)
at each step, so that convergence to a local minimum is
guaranteed. Since this might not be the global optimum both

approaches are strongly dependent on the initial dictionary
D(0). The convention is to initializeD(0) as a collection of
K data signals from the same class as the training signalsX .

The first step of thenth iteration in both algorithms opti-
mizesΘ given a fixed dictionaryD(n−1), so that (1) becomes:

Θ(n) = argmin
Θ

‖X −D(n−1)Θ‖F

s.t. ‖Θi‖0 ≤ k, i = 1, . . . , L. (2)

This problem can be solved approximately using sparse coding
methods such as BP or OMP for each column ofΘ, since the
problem is separable in these columns. Next,Θ(n) is kept fixed
and the representation error is minimized overD:

D(n) = argmin
D
‖X −DΘ(n)‖F . (3)

The difference between MOD and K-SVD lies in the choice of
optimization method forD(n). While K-SVD converges faster
than MOD, both methods yield similar results.

The MOD algorithm treats the problem in (3) directly. This
problem has a closed form solution given by the pseudo-
inverse:

D(n) = XΘ′(n)(Θ(n)Θ′(n))−1. (4)

Here we assume for simplicity thatΘ(n)Θ′(n) is invertible.
The K-SVD method solves (3) differently. The columns in
D(n−1) are updated sequentially, along with the corresponding
non-zero coefficients inΘ(n). This parallel update leads to
a significant speedup while preserving the sparsity pattern
of Θ(n). For j = 1, . . . ,K, the update is as follows. Let
ωj ≡ {i ∈ 1, . . . , L|Θj

i 6= 0} be the set of indices correspond-
ing to columns inΘ(n) that use the atomDj , i.e., their ith
row is non-zero. Denote byRωj

= Xωj
−
∑

i6=j(DiΘ
i
ωj
) the

representation error of the signalsXωj
excluding the contri-

bution of thejth atom. The representation error of the signals
with indicesωj can then be written as‖Rωj

−DjΘ
j
ωj
‖F . The

goal of the update step is to minimize this representation error,
which is accomplished by choosing

Dj = U1, Θj
ωj

= ∆1
1V

′
1 .

HereU∆V ′ is the Singular Value Decomposition (SVD) of
Rωj

. Note, that the columns ofD remain normalized after the
update. The K-SVD algorithm obtains the dictionary update
by K separate SVD computations, which explains its name.

III. B LOCK-SPARSIFYING DICTIONARY OPTIMIZATION

We now formulate the problem of block-sparsifying dic-
tionary design. We then propose an algorithm which can be
seen as a natural extension of K-SVD for the case of signals
with block sparse representations. Our method involves an
additional clustering step in order to determine the block
structure.

A. Problem definition

For a given set ofL signalsX = {Xi}
L
i=1 ∈ RN , we wish

to find a dictionaryD ∈ RN×K whose atoms are sorted in
blocks, and which provides the most accurate representation
vectors whose non-zero values are concentrated in a fixed
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Fig. 1. Two equivalent examples of dictionariesD and block structuresd
with 5 blocks, together with2-block-sparse representationsθ. Both examples
represent the same signal, since the atoms inD and the entries ofd and θ

are permuted in the same manner.

number of blocks. In previous works dealing with the block-
sparse model, it is typically assumed that the block structure
in D is known a-priori, and even more specifically, that the
atoms inD are sorted according to blocks [11], [20]. Instead,
in this paper we address the more general case where the block
structure is unknown and the blocks can be of varying sizes.
The only assumption we make on the block structure is that
the maximal block size, denoted bys, is known.

More specifically, suppose we have a dictionary whose
atoms are sorted in blocks that enableblock-sparserepresenta-
tions of the input signals. Assume that each block is given an
index number. Letd ∈ RK be the vector of block assignments
for the atoms ofD, i.e., d[i] is the block index of the atom
Di. We say that a vectorθ ∈ RK is k-block-sparse overd
if its non-zero values are concentrated ink blocks only. This
is denoted by‖θ‖0,d = k, where‖θ‖0,d is the l0-norm over
d and counts the number of non-zero blocks as defined byd.
Fig. 1 presents examples of two different block structures and
two corresponding block-sparse vectors and dictionaries.

Our goal is to find a dictionaryD and a block structured,
with maximal block sizes, that lead to optimalk-block sparse
representationsΘ = {Θi}

L
i=1 for the signals inX :

min
D,d,Θ

‖X −DΘ‖F

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L

|dj | ≤ s, j ∈ d (5)

where dj = {i ∈ 1, . . . ,K|d[i] = j} is the set of indices
belonging to blockj (i.e., the list of atoms in blockj).

The case when there is no underlying block structure or
when the block structure is ignored, is equivalent to setting s =
1 andd = [1, . . . ,K]. Substituting this into (5), reduces it to
(1). In this setting, the objective and the algorithm we propose
coincide with K-SVD. In Section IV we demonstrate through
simulations that when an underlying block structure exists,
optimizing (5) via the proposed framework improves recovery
results and lowers the representation errors with respect to (1).

B. Algorithm Preview

In this section, we propose a framework for solving (5).
Since this optimization problem is non-convex, we adopt the
coordinate relaxation technique. We initialize the dictionary
D(0) as the outcome of the K-SVD algorithm (using a random

collection of K signals leads to similar results, but slightly
slower convergence). Then, at each iterationn we perform
the following two steps:

1) Recover the block structure by solving (5) ford andΘ
while keepingD(n−1) fixed:

[d(n),Θ(n)] = min
d,Θ

‖X −D(n−1)Θ‖F (6)

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L

|dj | ≤ s, j ∈ d.

An exact solution would require a combinatorial search
over all feasibled andΘ. Instead, we propose a tractable
approximation to (6) in Section III-C, referred to as
Sparse Agglomerative Clustering (SAC). Agglomerative
clustering builds blocks by progressively merging the
closest atoms according to some distance metric [28],
[29]. SAC uses thel0-norm for this purpose.

2) Fit the dictionaryD(n) to the data by solving (5) forD
andΘ while keepingd(n) fixed:

[D(n),Θ(n)] = min
D,Θ

‖X −DΘ‖F (7)

s.t. ‖Θi‖0,d(n) ≤ k, i = 1, . . . , L.

In Section III-D we propose an algorithm, referred to as
Block K-SVD (BK-SVD), for solving (8). This technique
can be viewed as a generalization of K-SVD since the
blocks in D(n) are sequentially updated together with
the corresponding non-zero blocks inΘ(n).

In the following sections we describe in detail the steps
of this algorithm. The overall framework is summarized in
Algorithm 1.

Algorithm 1 Block-Sparse Dictionary Design
Input: A set of signalsX , block sparsityk and maximal block
sizes.
Task: Find a dictionaryD, block structured and the corre-
sponding sparse representationΘ by optimizing:

min
D,d,Θ

‖X −DΘ‖F

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L

|dj | ≤ s, j ∈ d.

Initialization: Set the initial dictionaryD(0) as the outcome of
K-SVD.
Repeat fromn = 1 until convergence:

1) Fix D(n−1), and updated(n) and Θ(n) by applying
Sparse Agglomerative Clustering.

2) Fix d(n), and updateD(n) andΘ(n) by applying BK-
SVD.

3) n = n+ 1.

C. Block Structure Recovery: Sparse Agglomerative Cluster-
ing

In this section we propose a method for recovering the block
structured given a fixed dictionaryD, as outlined in Fig. 2(a).
The suggested method is based on the coordinate relaxation



4

technique to solve (6) efficiently. We start by initializingd and
Θ. Since we have no prior knowledge ond it is initialized as
K blocks of size1, i.e. d = [1, . . . ,K]. To initialize Θ we
keep d fixed and solve (6) overΘ using OMP withk × s

instead ofk non-zero entries, since the signals are known to
be combinations ofk blocks of sizes. Based on the obtained
Θ, we first updated as described below and then againΘ
using BOMP [22]. The BOMP algorithm sequentially selects
the dictionary blocks that best match the input signalsXi, and
can be seen as a generalization of the OMP algorithm to the
case of blocks.

To updated we wish to solve (6) while keepingΘ fixed.
Although the objective does not depend ond, the constraints
do. Therefore, the problem becomes finding a block structure
with maximal block sizes that meets the constraint on the
block-sparsity ofΘ. To this end, we seek to minimize the
block-sparsity ofΘ over d:

min
d

L
∑

i=1

‖Θi‖0,d s.t. |dj | ≤ s, j ∈ d. (8)

Before we describe how (8) is optimized we first wish to
provide some insight. When a signalXi is well represented
by the unknown blockdj , then the corresponding rows inΘi

are likely to be non-zero. Therefore,rows of Θ that exhibit
a similar pattern of non-zeros are likely to correspond to
columnsof the same dictionary block. Therefore, grouping
dictionary columns into blocks is equivalent to grouping rows
of Θ according to their sparsity pattern. To detect rows with
similar sparsity patterns we next rewrite the objective of (8)
as a function of the pattern on non-zeros.

Let ωj(Θ, d) denote the list of columns inΘ that have
non-zero values in rows corresponding to blockdj , i.e.,
ωj(Θ, d) = {i ∈ 1, . . . , L| ‖Θ

dj

i ‖2 > 0}. Problem (8) can
now be rewritten as:

min
d

∑

j∈d

|ωj(Θ, d)| s.t. |dj | ≤ s, j ∈ d (9)

where|ωj | denotes the size of the listωj . We propose using a
sub-optimal tractable agglomerative clustering algorithm [29]
to minimize this objective. At each step we merge the pair
of blocks that have the most similar pattern of non-zeros in
Θ, leading to the steepest descent in the objective. We allow
merging blocks as long as the maximum block sizes is not
exceeded.

More specifically, at each step we find the pair of blocks
(j∗1 , j

∗
2 ) such that:

[j∗1 , j
∗
2 ] = arg max

j1 6=j2
|ωj1 ∩ ωj2 | s.t. |dj1 |+ |dj2 | ≤ s.

We then mergej∗1 and j∗2 by setting∀i ∈ dj2 : d[i] ← j1,
ωj1 ← {ωj1 ∪ ωj2}, and ωj2 ← ø. This is repeated until
no blocks can be merged without breaking the constraint
on the block size. We do not limit the intersection size
for merging blocks from below, since merging is always
beneficial. Merging blocks that have nothing in common may
not reduce the objective of (8); however, this can still lower
the representation error at the next BK-SVD iteration. Indeed,
while the number of blocksk stays fixed, the number of atoms

that can be used to reduce the error increases.
Fig. 2(b) presents an example that illustrates the notation

and the steps of the algorithm. In this example the maximal
block size iss = 2. At initialization the block structure is set
to d = [1, 2, 3, 4], which implies that the objective of (8) is
∑L

i=1 ‖Θi‖0,d = 2 + 1 + 2 + 2 = 7. At the first iteration,ω1

andω3 have the largest intersection. Consequently, blocks1
and3 are merged. At the second iteration,ω2 andω4 have the
largest intersection, so that blocks2 and 4 are merged. This
results in the block structured = [1, 2, 1, 2] where no blocks
can be merged without surpassing the maximal block size.
The objective of (8) is reduced to

∑L

i=1 ‖Θi‖0,d = 4, since
all 4 columns inΘ are1-block-sparse. Note that since every
column contains non-zero values, this is the global minimum
and therefore the algorithm succeeded in solving (8).

While more time-efficient clustering methods exist, we have
selected agglomerative clustering because it provides a simple
and intuitive solution to our problem. Partitional clustering
methods, such as K-Means, require initialization and are
therefore not suited for highly sparse data and thel0-norm
metric. Moreover, since oversized blocks are unwanted, it is
preferable to limit the block size rather than the number of
blocks. It is important to note that due to the iterative nature
of our dictionary design algorithm, clustering errors can be
corrected in the following iteration, after the dictionaryhas
been refined.

D. Block K-SVD Algorithm

We now propose the BK-SVD algorithm for recovering the
dictionaryD and the representationsΘ by optimizing (8) given
a block structured and input signalsX .

Using the coordinate relaxation technique, we solve this
problem by minimizing the objective based on alternatingΘ
and D. At each iterationm, we first fix D(m−1) and use
BOMP to solve (8) which reduces to

Θ(m) = argmin
Θ

‖X −D(m−1)Θ‖F

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L. (10)

Next, to obtainD(m) we fix Θ(m), d andX , and solve:

D(m) = argmin
D
‖X −DΘ(m)‖F . (11)

Inspired by the K-SVD algorithm, the blocks inD(m−1) are
updated sequentially, along with the corresponding non-zero
coefficients inΘ(m). For every blockj ∈ d, the update is as
follows. Denote byRωj

= Xωj
−
∑

i6=j Ddi
Θdi

ωj
the represen-

tation error of the signalsXωj
excluding the contribution of

the jth block. Hereωj anddj are defined as in the previous
subsection. The representation error of the signals with indices
ωj can then be written as‖Rωj

− Ddj
Θ

dj

ωj‖F . Finally, the
representation error is minimized by settingDdj

Θ
dj

ωj equal to
the matrix of rank|dj | that best approximatesRωj

. This can
obtained by the following updates:

Ddj
= [U1, . . . , U|dj|]

Θdj

ωj
= [∆1

1V1, . . . ,∆
|dj|

|dj|
V|dj |]

′
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(a)

(b)

Fig. 2. (a) A flow chart describing the SAC algorithm. (b) A detailed example
of the decision making process in the SAC algorithm.

where the|dj | highest rank components ofRωj
are computed

using the SVDRωj
= U∆V ′. The updatedDdj

is now an
orthonormal basis that optimally represents the signals with
indicesωj. Note that the representation error is also minimized
when multiplyingDdj

on the right byW and Θ
dj

ωj on the
left by W−1, whereW ∈ R|dj|×|dj| is an invertible matrix.
However, if we require the dictionary blocks to be orthonormal
subspaces, the solution is unique up to the permutation of
the atoms. It is also important to note that if|dj | > |ωj |,
then|dj |− |ωj| superfluous atoms in blockj can be discarded
without any loss of performance.

This dictionary update minimizes the representation error
while preserving the sparsity pattern ofΘ(m), as in the K-SVD
dictionary update step. However, the update step in the BK-
SVD algorithm converges faster thanks to the simultaneous
optimization of the atoms belonging to the same block. Our
simulations show that it leads to smaller representation errors
as well. Moreover, the dictionary update step in BK-SVD
requires abouts times less SVD computations, which makes
the proposed algorithm significantly faster than K-SVD.

We next present a simple example illustrating the advantage
of the BK-SVD dictionary update step, compared to the K-
SVD update. LetD1 and D2 be the atoms of the same
block, of size 2. A possible scenario is thatD2 = U1

and Θ2
ωj

= −∆(1, 1)V ′
1 . In K-SVD, the first update of

D is D1 ← U1 and Θ1
ωj
← ∆(1, 1)V ′

1 . In this case the
second update would leaveD2 and Θ2

ωj
unchanged. As a

consequence, only the highest rank component ofRωj
is

removed. Conversely, in the proposed BK-SVD algorithm, the
atomsD1 andD2 are updated simultaneously, resulting in the
two highest rank components ofRωj

being removed.

IV. EXPERIMENTS

In this section, we evaluate the contribution of the proposed
block-sparsifying dictionary design framework empirically.
We also examine the performance of the SAC and the BK-
SVD algorithms separately.

For each simulation, we repeat the following procedure50
times: We randomly generate a dictionaryD∗ of dimension
30× 60 with normally distributed entries and normalize its
columns. The block structure is chosen to be of the form:

d∗ = [1, 1, 1, 2, 2, 2, . . . , 20, 20, 20]

i.e. D∗ consists of20 subspaces of sizes = 3. We generate
L = 5000 test signalsX of dimensionN = 30, that
have 2-block sparse representationsΘ∗ with respect toD∗

(i.e. k = 2). The generating blocks are chosen randomly
and independently and the coefficients are i.i.d. uniformly
distributed. White Gaussian noise with varying SNR was
added toX .

We perform three experiments:

1) Given D∗ and X , we examine the ability of SAC to
recoverd∗.

2) Givend∗ andX , we examine the ability of BK-SVD to
recoverD∗.

3) We examine the ability of BK-SVD combined with SAC
to recoverD∗ andd∗ given onlyX .



6

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

SNR

e
(a)

SAC
oracle

−10 0 10 20 30 40
0

50

100

SNR

p

(b)

−10 0 10 20 30 40
2

3

4

5

6

SNR

b

(c)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

k

e

(d)

1 2 3 4 5 6
0

50

100

k
p

(e)

1 2 3 4 5 6
0

5

10

15

k

b
(f)

Fig. 3. Simulation results of the SAC algorithm. The graphs show e, p and
b as a function of the SNR of the data signals fork = 2 (a, b, c), and as a
function of k in a noiseless setting (d, e, f).

We use two measures to evaluate the success of the simu-
lations based on their outputsD, d andΘ:

• The normalized representation errore = ‖X−DΘ‖F

‖X‖F
.

• The percentagep of successfully recovered blocks. For
every block inD, we match the closest block inD∗ with-
out repetition, where the (normalized) distance between
two blocksS1 andS2 (of sizess1 and s2) is measured
by:

Dist(S1, S2) ≡

√

(

1−
‖S′

1S2‖2F
max(s1, s2)

)

assuming that both blocks are orthonormalized. If the
distance between the block inD and its matched block
in D∗ is smaller than0.01, we consider the recovery of
this block as successful.

A. Evaluating SAC

To evaluate the performance of the SAC algorithm, we
assume thatD∗ is known, and use SAC to reconstructd∗

and then BOMP to approximateΘ∗. The SAC algorithm is
evaluated as a function of the SNR of the signalsX for k = 2,
and as a function ofk in a noiseless setting. In addition to
e and p, Fig. 3 also shows the objective of (8), which we
denote byb. We compare our results with those of an “oracle”
algorithm, which is given as input the true block structured∗.
It then uses BOMP to findΘ. The oracle’s results provide a
lower bound on the reconstruction error of our algorithm (we
cannot expect our algorithm to outperform the oracle). It can
be seen that for SNR higher than−5[dB], the percentagep of
successfully recovered blocks quickly increases to100% (Fig.
3.(b)), the representation errore drops to zero (Fig. 3.(a)) and
the block-sparsityb drops to the lowest possible valuek = 2
(Fig. 3.(c)). Fig. 3.(e) shows that the block structured∗ is
perfectly recovered fork < 6. However, fork = 6, SAC fails
in reconstructing the block structured∗, even though the block
sparsityb reaches the lowest possible value (Fig. 3.(f)). This is
a consequence of the inability of OMP to recover the sparsest
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Fig. 4. Simulation results of the BK-SVD and (B)K-SVD algorithms. The
graphs show the reconstruction errore and the recovery percentagep as a
function of the SNR of the data signals fork = 2 and after250 iterations (a,
b), as a function of the number of iterations fork = 2 in a noiseless setting
(c, d), and as a function ofk in a noiseless setting after250 iterations (e, f).

approximation of the signalsX with k × s = 12 nonzero
entries. In terms ofe andb, our algorithm performs nearly as
good as the oracle.

B. Evaluating BK-SVD

To evaluate the performance of the BK-SVD algorithm we
assume that the block structured∗ is known. We initialize
the dictionaryD(0) by generating20 blocks of size3 where
each block is a randomly generated linear combination of
2 randomly selected blocks ofD∗. We then evaluate the
contribution of the proposed BK-SVD algorithm. Recall that
dictionary design consists of iterations between two steps,
updatingΘ using block-sparse approximation and updating the
blocks inD and their corresponding non-zero representation
coefficients. To evaluate the contribution of the latter step,
we compare its performance with that of applying the same
scheme, but using the K-SVD dictionary update step. We refer
to this algorithm as (B)K-SVD. The algorithms are evaluated
as a function of the SNR of the signalsX for k = 2 after
250 iterations, as a function of the number of iterations for
k = 2 in a noiseless setting, and as a function ofk in a
noiseless setting after250 iterations. It is clear from Fig. 4
that the simultaneous update of the atoms in the blocks of
D is imperative and does not only serve as a speedup of the
algorithm.

C. Evaluating the overall framework

To evaluate the performance of the overall block-sparsifying
dictionary design method, we combine SAC and BK-SVD. At
each iteration we only run BK-SVD once instead of waiting
for it to converge, improving the ability of the SAC algorithm
to avoid traps. Our results are compared with those of K-SVD
(with a fixed number of8 coefficients) and with those of BK-
SVD (with a fixed block structure) as a function of the SNR,
as a function of the number of iterations. The algorithms are
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Fig. 5. Simulation results of our overall algorithm (BK-SVD+SAC), the BK-
SVD algorithm and the K-SVD algorithm. The graphs show the reconstruction
error e and the recovery percentagep as a function of the SNR of the data
signals fork = 2 after 250 iterations (a, b), as a function of the number of
iterations fork = 2 in a noiseless setting (c, d), and as a function ofk in a
noiseless setting after250 iterations (e, f).

evaluated as a function of the SNR of the signalsX for k = 2
after 250 iterations, as a function of the number of iterations
for k = 2 in a noiseless setting, and as a function ofk in a
noiseless setting after250 iterations (Fig. 5).

Our experiments show that for SNR> 10[dB], the proposed
block-sparsifying dictionary design algorithm yields lower
reconstruction errors (see Fig. 5.(a)) and a higher percentage
of correctly reconstructed blocks (see Fig. 5.(b)), compared
to K-SVD. Moreover, even in a noiseless setting, the K-SVD
algorithm fails to recover the sparsifying dictionary, while our
algorithm succeeds in recovering93% of the dictionary blocks,
as shown in Fig. 5.(d).

For SNR≤ 10[dB] we observe that K-SVD reaches lower
reconstruction error compared to our block-sparsifying dictio-
nary design algorithm. This is since when the SNR is low the
block structure is no longer present in the data and the use of
block-sparse approximation algorithms is unjustified. To verify
this is indeed the cause for the failure of our algorithm, we
further compare our results with those of an oracle algorithm,
which is given as input the true dictionaryD∗ and block
structured∗. It then uses BOMP to findΘ. Fig. 5 shows that
for all noise levels, our algorithm performs nearly as good
as the oracle. Furthermore, for SNR≤ 10[dB] we observe
that K-SVD outperforms the oracle, implying that the use of
block-sparsifying dictionaries is unjustified. Fork <= 3, in a
noiseless setting, the performance of our algorithm lies close
to that of the oracle, and outperforms the K-SVD algorithm.
However, we note that this is not the case fork >= 4.

Finally, we wish to evaluate the contribution of the SAC
algorithm to the overall framework. One could possibly fix an
initial block structure and then iteratively update the dictionary
using BK-SVD, in hope that this will recover the block struc-
ture. Fig. 5 shows that the representation errore is much lower
when including SAC in the overall framework. Moreover, BK-
SVD consistently fails in recovering the dictionary blocks.

D. Choosing the maximal block size

We now consider the problem of setting the maximal block
size in the dictionary, when all we are given is that the sizesof
the blocks are in the range[sl sh]. This also includes the case
of varying block sizes. Choosing the maximal block sizes to
be equal tosl will not allow to successfully reconstruct blocks
containing more thansl atoms. On the other hand, setting
s = sh will cause the initial sparse representation matrixΘ,
obtained by the OMP algorithm, to contain too many non-
zero coefficients. This is experienced as noise by the SAC
algorithm, and may prevent it from functioning properly. Itis
therefore favorable to use OMP withk × sl non-zero entries
only, and setting the maximal block sizes to besh.

In Fig. 6(a), we evaluate the ability of our block sparsifying
dictionary design algorithm to recover the optimal dictionary,
which contains12 blocks of size3, and12 blocks of size2. As
expected, better results are obtained when choosingsl = 2. In
Fig. 6(b), the underlying block subspaces are all of dimension
2, but sh is erroneously set to be3. We see that whensl = 2,
we succeed in recovering a considerable part of the blocks,
even though blocks of size3 are allowed. In both simulations,
K-SVD usesk × sh non-zero entries, which explains why it
is not significantly outperformed by our algorithm in terms of
representation error. Moreover, the percentage of reconstructed
blocks by our algorithm is relatively low compared to the
previous simulations, due to the small block sizes.

V. CONCLUSIONS

In this paper, we proposed a framework for the design of
a block-sparsifying dictionary given a set of signals and a
maximal block size. The algorithm consists of two steps: a
block structure update step (SAC) and a dictionary update step
(BK-SVD). When the maximal block size is chosen to be1,
the algorithm reduces to K-SVD.

We have shown via experiments that the block structure
update step (SAC) provides a significant contribution to the
dictionary recovery results. We have further shown that for
s > 1 the BK-SVD dictionary update step is superior to the
K-SVD dictionary update. Moreover, the representation error
obtained by our dictionary design method lies very close to the
lower bound (the oracle) for all noise levels. This suggeststhat
our algorithm has reached its goal in providing dictionaries
that lead to accurate sparse representations for a given setof
signals.

To further improve the proposed approach one could try and
make the dictionary design algorithm less susceptible to local
minimum traps. Another refinement could be replacing blocks
in the dictionary that contribute little to the sparse representa-
tions (i.e. “unpopular blocks”) with the least representedsignal
elements. This is expected to only improve reconstruction
results. Finally, we may replace the time-efficient BOMP
algorithm, with other block-sparse approximation methods. We
leave these issues for future research.
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