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Abstract—We consider minimal-rate sampling schemes for
streams of delayed and weighted versions of a known pulse shape.
Such signals belong to the class of finite rate of innovation (FRI)
models. The minimal sampling rate for these parametric signals,
is the number of degrees of freedom per unit of time, referredto
as the rate of innovation. Although sampling of pulse streams was
treated in previous works, either the rate of innovation wasnot
achieved, or the pulse shape was limited to diracs and the method
was instable for high rates of innovation. In this work we propose
a multichannel framework for pulse streams with arbitrary
shape, operating at the rate of innovation. Our approach is based
on modulating the input signal with a set of properly chosen
waveforms, followed by a bank of integrators. We show that the
pulse stream can be recovered from the proposed minimal-rate
samples using standard tools taken from spectral estimation in
a stable way even at high rates of innovation. In addition, we
address practical implementation issues, such as reduction of
hardware complexity and immunity to failure in the sampling
channels. The resulting scheme is flexible and exhibits better
noise robustness than previous approaches.

I. I NTRODUCTION

Digital processing has become ubiquitous, and is the most
common way to process analog signals. Processing of analog
signals by digital processing must be preceded by a sampling
stage, carefully designed to retain the important featuresof the
analog signal relevant for the signal processing task at hand.
The well known Shannon-Nyquist theorem states that in order
to perfectly reconstruct an analog signal from its samples,it
must be sampled at the Nyquist rate, i.e., twice its highest
frequency. This assumption is required when the only prior
on the signal is that it is bandlimited. Other priors on signal
structure [1], [2], which include subspace [3], sparsity [4], [5],
or smoothness priors [1], can lead to more efficient sampling
schemes.

An interesting class of priors was suggested by Vetterli et
al. [6], [7], who considered signals with a finite number of
degrees of freedom per unit time, termed by the authors as
signals withfinite rate of innovation(FRI). For such models,
the goal is to design a sampling scheme operating at the
innovation rate, which is the minimal possible rate from which
perfect recovery is possible. A special case that was treated in
detail are signals consisting of streams of short pulses. Pulse
streams are prevalent in applications such as bio-imaging [8],
neuronal activity and ultra-wideband communications. Since
the pulses are highly compact in time, standard sampling
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methods require very high sampling rates. The main idea is
to exploit the fact that the pulse shape is known, in order to
characterize such signals by the time-delays and amplitudes of
the various pulses. Targeting these parameters allows to reduce
the sampling rate way beyond that dictated by the Shannon-
Nyquist theorem.

Following this parametric point of view, low rate single-
channel sampling schemes were developed for periodic
streams of pulses [6], [7]. These methods rely on the observa-
tion that the time delays and amplitudes can be recovered in
the frequency domain, once a set of Fourier series coefficients
of the signal are known. This follows from the fact that in
the frequency domain recovery translates into estimating the
frequencies and amplitudes of a sum of complex sinusoids
(cisoids), a problem which has been treated extensively in the
context of spectral estimation [9].

In practical applications finite and infinite streams are
usually encountered, rather than periodic streams. For the
finite case Gaussian [6] and polynomial reproducing sampling
kernels [10] were introduced. Both methods exhibit instability
for large numbers of pulses per unit time [8], [10], [11].
An alternative sampling scheme was presented in [8], which
allowed for a general sampling filter. Specific choices of
this filter recover previous approaches such as [6]. However,
the general formulation developed allows the design of more
practical time-limited filters, that exhibit superior noise ro-
bustness over former techniques even at very high rates of
innovation. Exploiting the compact support of the sampling
kernels in [8], [10], both methods were extended to the infinite
case. Unfortunately, neither approaches achieves the minimal
sampling rate, which is the rate of innovation.

All previous methods were composed of a single sam-
pling channel. Multichannel sampling schemes offer additional
degrees of freedom which enable achieving the minimal
sampling rate for the infinite setting. A simple multichannel
system was proposed in [12] for the case of a single pulse per
sampling period. However, our interest here is in higher rates
of innovation. An alternative multichannel scheme comprised
of a chain of integrators was proposed in [13]. As we show
in simulations, this method is very instable in the presenceof
noise and for high rates of innovation. Moreover, both methods
[12], [13] consider Dirac impulses only. To the best of our
knowledge, a stable minimal rate sampling scheme for infinite
pulse streams is still lacking.

Our first contribution treats finite pulse streams. We design
a multichannel sampling system, based on oscillators, mixers
and integrators. In each channel the signal is modulated
by an appropriate waveform, followed by integration over a
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compact time interval. We derive conditions which guarantee
that the output of each channel is a mixture of the Fourier
coefficients of the signal. By properly choosing the mixing
parameters, we show that the Fourier coefficients can be
obtained from the samples. Once the set of Fourier coefficients
is known, we use standard spectral estimation tools in order
to recover the unknown times and amplitudes. As we show,
the mixing scheme enables simple and practical generation of
modulating waveforms. Furthermore, mixing the coefficients
allows recovering the signal even when one or more sampling
channels fails.

The integration over a finite interval enables a simple
extension to the infinite setting. Our infinite sampling approach
leads to perfect reconstruction of the signal, while sampling
at the rate of innovation. As we show in simulations, our
approach exhibits superior noise robustness compared to [13],
and allows sampling at very high rates of innovation. In
addition, we can accommodate general pulse shapes. We also
discuss a special case of infinite streams having a shift-
invariant structure, presented in [14], and point out some
advantages of our method in certain scenarios. Finally, we de-
scribe how to practically generate the modulating waveforms,
based on concepts presented in [15], [16] and derive conditions
on these waveforms which guarantee perfect reconstructionof
the signal.

Simulations show the advantage of our approach comparing
to the integrator scheme [13], in terms of estimation error in
the presence of noise. In addition, we demonstrate our prac-
tical sampling scheme, and show that shaping the waveforms
with analog Chebyshev filters [17], closely approaches ideal
performance. These results lead to practical sampling schemes
which achieve the rate of innovation in a robust way, even in
the presence of noise and high innovation rates.

The remainder of this paper is organized as follows. In
Section II we derive a multichannel scheme for finite pulse
streams. Section III extends our results to the infinite case.
We discuss the generation of the modulating waveforms in
Section IV, and present a practical sampling scheme which
can be implemented in hardware. In Section V we discuss the
relations of our results to previous work. Finally, in Section VI
we present simulations demonstrating the performance of our
method, and near-ideal performance of our scheme using
practical analog filters.

II. F INITE STREAMS OFPULSES

A. Notations and Definitions

Matrices and vectors are denoted by bold font, with lower-
case letters corresponding to vectors and uppercase letters to
matrices. Thenth element of a vectora is written asan, and
Aij denotes theijth element of a matrixA. Superscripts(·)∗,
(·)

T and (·)
H represent complex conjugation, transposition

and conjugate transposition, respectively. The Moore-Penrose
pseudo-inverse of a matrixA is written asA†. We denote by
diag(a) a diagonal matrix having the elements of the vector
a on its diagonal. The continuous-time Fourier transform
(CTFT) of a continuous-time signalx (t) ∈ L2 is defined by
X (ω) =

∫∞

−∞
x (t) e−jωtdt.

B. Problem Formulation

Consider the finite stream of pulses

x(t) =
L
∑

l=1

alh(t− tl), tl ∈ I ⊂ [0, T ), al ∈ C, (1)

whereh(t) is a known pulse shape,{tl, al}Ll=1 are the un-
known delays and amplitudes, andI is a continuous time
interval contained in[0, T ). The pulse can be arbitrary as long
as

h(t− tl) = 0, ∀t /∈ [0, T ) l = 1 . . . L, (2)

i.e., the signalx(t) is confined to the time-window[0, T ).
Since there are only2L degrees of freedom in this model, at
least2L samples are required in order to represent the signal.
Our goal is to design a sampling and reconstruction method
which perfectly reconstructs the signalx(t) from a minimal
number of samples.

We now show that our sampling problem can be related to
the well known problem of model-based complex sinusoids
(cisoids) parameter estimation. This approach was originally
taken by Hou and Wu [18], who were the first to show that
time delay estimation can be converted into a problem of
frequency estimation of a sum of cisoids [9]. This follows
form noticing that the delays in the time domain are converted
into modulations in the frequency domain. However, their
method relied on Nyquist rate sampling of the signal, and their
derivations were only approximate. Vetterli et al. [6], were
the first to address this topic from an efficient sampling point
of view, and derived a low-rate sampling and reconstruction
scheme for periodic streams of Diracs. Their method was
based on the same fundamental relation between the delays
in the time domain, and the modulations in the frequency
domain, but this time in a precise way, using the Fourier
series coefficients of the signal. We follow a similar path, and
derive low-rate sampling schemes from a parametric point of
view. We first show that once a set of Fourier coefficients
of the signal are known, the problem is indeed a sinusoidal
parameter estimation problem. Following this derivation,we
design low-rate sampling schemes for obtaining the set of
Fourier coefficients.

Sincex(t) is confined to the intervalt ∈ [0, T ), it can be
expressed by its Fourier series

x(t) =
∑

k∈Z

X [k]ej
2π
T

kt, t ∈ [0, T ) (3)

where

X [k] =
1

T

∫ T

0

x(t)e−j 2π
T

ktdt. (4)
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Substituting (1) into (4) we obtain

X [k] =
1

T

L
∑

l=1

al

∫ T

0

h(t− tl)e
−j 2π

T
ktdt

=
1

T

L
∑

l=1

al

∫ ∞

−∞

h(t− tl)e
−j 2π

T
ktdt

=
1

T

L
∑

l=1

ale
j 2π

T
ktl

∫ ∞

−∞

h(t)e−j 2π
T

ktdt

=
1

T
H

(

2π

T
k

) L
∑

l=1

ale
j 2π

T
ktl , (5)

where the second equality stems from the condition in (2), and
H(ω) denotes the CTFT ofh(t).

Denote byK a set ofK consecutive indices for which
H

(

2π
T k

)

6= 0, ∀k ∈ K. We require that such a set exists,
which is usually the case for short time-support pulsesh(t).
Denote byH the K × K diagonal matrix withkth entry
1
T H

(

2π
T k

)

, and byV(t) theK ×L matrix with klth element
e−j 2π

T
ktl , wheret = {t1, . . . , tL} is the vector of the unknown

delays. In addition denote bya the length-L vector whoselth
element isal, and byx the length-K vector whosekth element
is X [k]. We may now write (5) in matrix form as

x = HV(t)a. (6)

The matrixH is invertible by construction, and therefore we
can definey = H−1x, which satisfies

y = V(t)a. (7)

Addressing thekth element of the vectory in (7) directly, we
obtain

yk =

L
∑

l=1

ale
−j 2π

T
ktl . (8)

It is now evident that given the vectorx, (7) conforms with the
standard problem of finding the frequencies and amplitudes of
a sum ofL cisoids. The time-delays can be estimated using
nonlinear techniques, e.g., the annihilating filter [6], MUSIC
[19], [20] or ESPRIT [21] (see [9] for a review of this topic),as
long asK ≥ 2L and the time-delays are distinct, i.e.,ti 6= tj
for all i 6= j. Once the time-delays are known, the linear set
of equations (7) may be solved via a least squares approach
for the unknown amplitudes. Due to the Vandermonde form
of V(t), it is left invertible as long asK ≥ L, therefore the
amplitudes may be obtained viaa = (

¯
V )†(t)y.

C. Direct Multichannel Sampling

As we have seen, given the vector ofK ≥ 2L Fourier
series coefficientsx, we may use standard tools from spectral
analysis to determine the set{tl, al}

L
l=1. In practice, the signal

is sampled in the time-domain, and therefore we do not have
direct access to samples ofx. Our goal now is to design a
sampling scheme which will allow us to obtain the vectorx

from time-domain samples.
For simplicity, we setK to be an odd number, and choose

the setK = {−⌊K/2⌋, . . . , ⌊K/2⌋}. However, our results may

be extended to any setK of consecutive indices, as long as
|K| ≥ 2L. In order to obtain the Fourier coefficients,X [k],
we propose the multichannel sampling scheme depicted in
Fig.1. Each channel consists of modulating the signal with
a complex exponential, followed by an integrator operating
over the window[0, T ). The sample taken by thekth channel
is exactlyX [k], as in (4).

x(t)

1

T

∫

T

0
(·)dt

1

T

∫

T

0
(·)dt

e
+j 2π

T
⌊K/2⌋t

X

[

−⌊K

2
⌋
]

e
−j 2π

T
⌊K/2⌋t

X

[

+⌊K

2
⌋
]

Fig. 1. Multichannel direct sampling of the Fourier series coefficients
X[k], k ∈ K.

The direct sampling scheme is straightforward, and may be
implemented using 3 basic building blocks: oscillators, mixers
and integrators. However, from a practical point of view this
approach has the disadvantage that it requires many oscillators,
having frequencies which must be exact multiples of some
common base frequency.

D. Mixing the Fourier Coefficients

We now generalize our framework, towards a more prac-
tical sampling scheme by mixing several Fourier coefficients
together, rather than limiting ourselves to one coefficientper
channel. The additional degrees of freedom offered by this
extension will allow us to design waveforms that are easy
to implement. In addition, in real-life scenarios one or more
channels might fail, due to malfunction or noise corruption,
and therefore we lose the information stored in that channel.
When using the direct scheme we lose one Fourier coefficient,
preventing us from recovering the unknown signal parameters.
In contrast, when mixing the coefficients we distribute the
information about each Fourier coefficient between several
sampling channels. Consequently, when one or more channels
fail, the required Fourier coefficients may still be recovered
from the remaining operating channels. We discuss this feature
more thoroughly in Section IV.

Consider a multichannel sampling scheme withp channels.
In each channel, we modulate the signal using a weighted sum
of cisoids given by

si(t) =
∑

k∈K

sike
−j 2π

T
kt, (9)

where the weightssik vary from channel to channel. The
resulting sample of theith channel is

ci =

∫ T

0

x(t)
∑

k∈K

sike
−j 2π

T
ktdt

=
∑

k∈K

sikX [k], (10)
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where we used our prior derivation (5). The resulting scheme
is depicted in Fig. 2.

x(t)

s1(t) =
∑

k∈K

s1ke
−j 2π

T
kt

c1

cp

sp(t) =
∑

k∈K

spke
−j 2π

T
kt

1

T

∫ T
0

(·)dt

1

T

∫ T
0

(·)dt

Fig. 2. Mixing the Fourier coefficients differently in each channel.

To relate the samples and the Fourier coefficients, we define
the p×K matrix S with sik as itsikth element, and byc the
length-p sample vector withith elementci. We may now write
(10) in matrix form as

c = Sx. (11)

As long asS has full column rank, wherep ≥ K is a
necessary condition, we can recoverx from the samples by
x = S†c. The direct sampling scheme presented earlier is a
special case of this more general approach, withp = K and
S = I. In Section IV we exploit the degrees of freedom this
general scheme offers, and present sampling schemes which
can simplify the hardware design, and are more robust to
malfunctions in the sampling channels.

We summarize this result in the following theorem.

Theorem 1. Consider a finite stream of pulses given by

x(t) =

L
∑

l=1

alh(t− tl), tl ∈ I ⊂ [0, T ), al ∈ C, l = 1 . . . L,

where h(t) is a known pulse shape, and condition(2) is
satisfied. Choose a setK of consecutive indices for which
H(2πk/T ) 6= 0, ∀k ∈ K. Consider the multichannel sampling
scheme depicted in Fig. 2, for some choice of coefficients
{sik}k∈K, i = 1, . . . , p. Then, the signalx(t) can be perfectly
reconstructed from the samples{ci}

p
i=1 with

ci =

∫ T

0

x(t)
∑

k∈K

sike
−j 2π

T
ktdt, (12)

as long asp ≥ |K| ≥ 2L, and the coefficients matrixS in
(11) is left invertible.

As we discuss in Section V-A, the method in [8] can be
viewed as a special case of Fig. 2. Since our work is a
generalization of [8], it benefits from the high noise robustness
exhibited by [8], in contrast to previous work [6], [10]. It
should be noted that Theorem 1 holds for a periodic pulse
stream as well, since it can be similarly represented by a
Fourier series, and all derivations remain intact.

We now demonstrate several useful modulating waveforms.

1) Cosine and Sine waveforms:First we setp = K. Then,
we choose the first⌊K/2⌋ waveforms to be cos

(

2π
T kt

)

, the
next ⌊K/2⌋ to be sin

(

2π
T kt

)

, and the last to be the constant
function1. Clearly, these waveforms fit the form in (9), since
cosine (sine) waves can be expressed as the sum (subtraction)
of two complex exponentials. It is easily verified that this
choice yields an invertible matrixS. The practical advantage
of the mixing scheme is already evident, since sine and cosine
waves are real valued, whereas the direct multichannel scheme
requires complex exponentials.

2) Periodic Waveforms:Every periodic waveform can be
expanded into a Fourier series. Transferring such a waveform
through some shaping filter, e.g., a low-pass filter, we can
reject most of the coefficients, leaving only a finite set intact.
Consequently, such a scheme meets the form of (9). In
Section IV we elaborate on this concept, discuss design con-
siderations, and show that properly chosen periodic waveforms
yield a left invertible matrixS.

One simple choice is periodic streams of rectangular pulses
modulated by±1 [15]. The strength of the mixing scheme
over the direct one will be emphasized in Section IV-B. We
show that one periodic stream is sufficient for all channels,
while each channel uses a delayed version of this common
waveform. Therefore, the requirement for multiple oscillators
and the need for accurate multiples of the basic frequency,
are both removed. In addition, periodic streams are easily
designed and implemented digitally, rather than somewhat
complicated analog design of oscillators combined with analog
circuits intended to create exact frequency multiples. Finally,
if the periodT changes, the analog circuit has to be modified
substantially, whereas the flexibility of the digital design
allows simple modifications.

III. I NFINITE STREAMS OFPULSES

A. General Model

We now consider an infinite stream of pulses defined by

x(t) =
∑

l∈Z

alh(t− tl), tl ∈ R, al ∈ C. (13)

We assume that there are no more thanL pulses in any interval
Im , [(m− 1)T,mT ] , m ∈ Z. We further assume that
within each interval condition (2) holds, and consequently, the
intervals are independent of one another. The maximal number
of degrees of freedom per unit time, also known as the rate of
innovation [6], [7], is2L/T . We now present a multichannel
sampling and reconstruction scheme which operates at the
minimal rate possible, i.e., the rate of innovation.

Consider an extension of the sampling scheme presented
in Section II-D, where we sample everyT seconds. Upon
each sample we reset the integrator, so that themth sample
results from the integral over the intervalIm. The resulting
sampling scheme is depicted in Fig. 3. Since themth sample
is influenced by the intervalIm only, the infinite problem may
be reduced into a sequence of finite streams of pulses. The
resulting samples are given by

c[m] = Sx[m], (14)
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x(t)

1

T

∫
Im

(·)dt c1[m]
t = mT

cp[m]
t = mT

s1(t) =
∑
k∈K

s1ke
−j 2π

T
kt

sp(t) =
∑
k∈K

spke
−j 2π

T
kt

1

T

∫
Im

(·)dt

Fig. 3. Extended sampling scheme using modulating waveforms for an
infinite pulse stream.

where the vectorx[m] contains the Fourier series coefficients
of the signal within themth interval, Im. As long asS is
chosen so that it is left invertible, we can obtain the sequence
of Fourier series coefficients byx[m] = S†c[m]. Extending
(7) to the infinite case we obtain:

y[m] = H−1x[m] = V(t[m])a[m], (15)

where t[m] and a[m] are the times and amplitudes of the
pulses in the intervalIm, respectively, and the matrixV
remains as in (6). For eachm, equation (15) is a sum of
cisoids problem, and thus may be solved as long asK ≥ 2L.
By choosingp = K = 2L we present a sampling scheme
which operates at the rate of innovation, and allows for perfect
reconstruction of an infinite stream of pulses.

We state our result in a theorem.

Theorem 2. Consider an infinite stream of pulses given by

x(t) =
∑

l∈Z

alh(t− tl), tl ∈ R, al ∈ C.

where h(t) is a known pulse shape. Assume that there
are no more thanL pulses within any intervalIm ,

[(m− 1)T,mT ] , m ∈ Z, and that condition(2) holds for all
intervals Im, m ∈ Z. Choose a setK of consecutive indices
for whichH(2πk/τ) 6= 0, ∀k ∈ K. Consider the multichannel
sampling scheme depicted in Fig. 3, for some choice of
coefficients{sik}k∈K, i = 1, . . . , p. Then, the signalx(t) can
be perfectly reconstructed from the samples{ci[m]}pi=1 with

ci[m] =

∫

Im

x(t)
∑

k∈K

sike
−j 2π

T
ktdt, m ∈ Z, (16)

as long asp ≥ |K| ≥ 2L, and the coefficients matrixS in
(11) is left invertible.

To the best of our knowledge Theorem 2 presents the
first sampling scheme for pulse streams with arbitrary shape,
operating at the rate of innovation. Furthermore, as we show
in simulations, our method is more stable than previous
approaches.

B. Stream of Pulses with Shift-Invariant Structure

We now focus on a special case of the infinite model (13),
where the signal has an additional shift-invariant (SI) structure.
This structure is expressed by the fact that in each periodT ,

the delays are constant relative to the beginning of the period.
Such signals can be described as

x(t) =
∑

m∈Z

L
∑

ℓ=1

aℓ[m]h(t− tℓ −mT ), tℓ ∈ I ⊂ [0, T ), (17)

whereaℓ[n] ∈ ℓ2 denotes theℓth pulse amplitude on themth
period. This model was first considered in [14]. We explore
the relation to this work in Section V.

Assuming condition (2) holds here as well, (15) can be
rewritten as

y[m] = V(t)a[m], (18)

since now the relative delays in each period are constant. Here,
a[m] denotes the length-L vector whoseℓth element is given
by aℓ[m].

The question arising here, is what is the minimal number of
sampling channels which allows unique recovery of the delays
t from the samples. Clearly, the condition for the general
model p ≥ 2L is a sufficient condition here also, however
as we show next, the additional prior we have on the signal’s
structure can relax this condition.

To answer this question, we rely on results obtained in [14],
which treated the uniqueness conditions for a set of equations
similar to (18). Following these results, a sufficient condition
for unique recovery of the delays and vectorsa[m] from (18)
is given by:

K ≥ 2L− η + 1, (19)

where

η = dim(span({a[m],m ∈ Z})) (20)

denotes the dimension of the minimal subspace containing the
vector set{a[m],m ∈ Z}. This condition implies that in some
casesK, and eventually the number of channelsp (sincep ≥
K), can be reduced beyond the lower limit2L for the general
model, depending on the value ofη.

In a similar way to [14], the recovery of the delays from
(18) can be performed using the ESPRIT [21] or MUSIC [19]
algorithms. These approaches, which are known as subspace
methods, require thatη = L. In this case they achieve the
lower bound of condition (19), namely recover the delays
using only p ≥ L + 1 sampling channels. In cases where
η < L, an additional smoothing [22] stage is required prior
to the use of the subspace methods, andp ≥ 2L sampling
channels are required.

To conclude this point, when the amplitudes of the pulses
vary sufficiently from period to period, which is expressed
by the conditionη = L, the common information about the
delays can be utilized in order to reduce the sampling rate to
(L+1)/T . Moreover, the approach presented here can improve
the delays estimation compared to the one used for the general
model, since it uses the mutual information between periods,
rather than recovering the delays for each periodT separately.

This result is summarized in the following theorem.
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Theorem 3. Consider a stream of pulses given by

x(t) =

Np−1
∑

m=0

L
∑

ℓ=1

aℓ[m]h(t− tℓ −mT ), tl ∈ I ⊂ [0, T )

where h(t) is a known pulse shape. Assume that condition
(2) holds. Choose a setK of consecutive indices for which
H(2πk/τ) 6= 0, ∀k ∈ K. Consider the multichannel sampling
scheme depicted in Fig. 3, for which the samples in theith
channel are given by

ci[m] =

∫

Im

x(t)
∑

k∈K

sike
−j 2π

T
ktdt, m ∈ Z, (21)

for some choice of coefficients{sik}k∈K, i = 1, . . . , p. Then,
the signalx(t) can be perfectly reconstructed from the samples
{ci[m]}pi=1, m ∈ Z as long as the coefficients matrixS in (11)
is left invertible and

p ≥ |K|

{

≥ L+ 1 whenη = L

≥ 2L whenη < L,

where

η = dim(span({a[m],m ∈ Z})) (22)

denotes the dimension of the minimal subspace containing the
vector set{a[m],m ∈ Z}.

IV. M ODULATION WAVEFORMS

In this section we treat thoroughly the example given in
Section II-D of generating the modulation waveforms using
periodic signals. We first address the case of general periodic
waveforms, and then we focus on the special case of pulse
sequences.

A. General Periodic Waveforms

Our aim is to show how to obtain the required modulating
waveforms (9) using a set ofp periodic functions, given by
pi(t). Such waveforms can be expressed using their Fourier
series expansion as

pi(t) =
∑

k∈Z

di[k]e
j 2π

T
kt, (23)

where thekth Fourier series coefficient ofpi(t) is given by

di[k] =
1

T

∫ T

0

pi(t)e
−j 2π

T
ktdt. (24)

The sum in (23) is generally infinite, in contrast to the finite
sum in (9). Therefore, we propose filteringpi(t) with a filter
g(t) which rejects the unwanted elements in the sum (23). The
filtered waveforms at the output ofg(t) are given by

p̃i(t) = pi(t) ∗ g(t), (25)

and are also periodic. Therefore they can be written as

p̃i(t) =
∑

k∈Z

d̃i[k]e
j 2π

T
kt, (26)

where it can be easily verified that

d̃i[k] = di[k] ·G

(

2π

T
k

)

. (27)

HereG(ω) denotes the CTFT ofg(t). From (27), the shaping
filter g(t) has to satisfy

G(ω) =











nonzero ω = 2π
T k, k ∈ K

0 ω = 2π
T k, k /∈ K

arbitrary elsewhere,

(28)

so thatd̃i[k] = 0 for k /∈ K. This condition is similar to the
one obtained in [8] for single channel sampling. Therefore,
the class of filters developed there, can also be used here as a
shaping filter.

Note that (28) implies that the frequency response of the
filter g(t) is specified only on the set of discrete points
2π
T k, k ∈ Z, offering large freedom when designing a practical
analog filter. For instance, when implementing a lowpass
filter (LPF) this requirement allows a smooth transition band
between the passband and the stopband of the filter, with a
width of 2π

T .
The resulting scheme is depicted in Fig. 4. The elements of

x(t)

c1

cp

1

T

∫
T

0
(·)dt

1

T

∫
T

0
(·)dt

g(t)p1(t)

g(t)pp(t)

Fig. 4. Proposed sampling scheme, using modulating waveforms.

the mixing matrixS, obtained from the proposed scheme are
given by

Sik = d̃i[−(k − ⌊K/2⌋)]. (29)

The invertibility of the matrixS can be ensured, by proper
selection of the periodic waveformspi(t). In the next subsec-
tion we discuss one special case, which allows simple design
of a left invertible mixing matrixS.

B. Pulse Sequence Modulation

We follow practical modulation implementation ideas pre-
sented in [15], [16], and consider a set of waveforms given
by

pi(t) =
∑

m∈Z

N−1
∑

n=0

αi[n]p(t− nT/N −mT ), i = 1, . . . , p

(30)

where p(t) is some pulse shape andαi[n] is a length-N
sequence. Our aim is to calculate the mixing matrixS, when
using the filtered version of (30) as modulating waveforms. To
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this end, we first calculate the Fourier series coefficientsdi[k]
of pi(t) as

di[k] =
1

T

∑

m∈Z

N−1
∑

n=0

αi[n]

∫ T

0

p(t− nT/N −mT )e−j 2π
T

ktdt

=
1

T

N−1
∑

n=0

αi[n]
∑

m∈Z

∫ −(m−1)T

−mT

p(t− nT/N)e−j 2π
T

ktdt

=
1

T

N−1
∑

n=0

αi[n]

∫ ∞

−∞

p(t− nT/N)e−j 2π
T

ktdt

=
1

T

N−1
∑

n=0

αi[n]P

(

2π

T
k

)

e−j 2π
N

kn, (31)

whereP (ω) denotes the CTFT ofp(t).
Combining (31) with (29) and (27), theikth element ofS

can be expressed as

Sik =
1

T

N−1
∑

n=0

αi[n]P

(

2π

T
k′
)

G

(

2π

T
k′
)

e−j 2π
N

k′n, (32)

where we definedk′ = −(k − ⌊K/2⌋). This matrix can be
decomposed as

S = AWΦ, (33)

whereA is a p×N matrix with inth element equal toαi[n],
W is anN ×K matrix with nkth element equal toe−j 2π

N
k′n,

andΦ is aK×K diagonal matrix withkth diagonal element

Φkk =
1

T
P

(

2π

T
k′
)

G

(

2π

T
k′
)

. (34)

From this decomposition it is clear that each one of these
matrices has to be left invertible, in order to guarantee the
invertibility of S. We now examine each one of these matrices.

We start with the matrixΦ. From (28),G
(

2π
T k

)

6= 0 for
k ∈ K. Therefore, we only need to require thatP

(

2π
T k

)

6= 0
for k ∈ K in order forΦ to be invertible. The matrixW is
a Vandermonde matrix, and therefore has full column rank as
long asN ≥ K [23]. The last matrixA, can be designed to
be left invertible, by proper selection of the sequencesαi[n],
where a necessary condition is thatp ≥ N .

We summarize our results in the following proposition:

Proposition 1. Consider the system depicted in Fig. 4, where
the modulation waveforms are given by(30). If the following
conditions hold

1) p ≥ N ≥ K
2) The frequency response of the shaping pulseg(t) satis-

fies (28),
3) The frequency response of the pulsep(t) satisfies

P
(

2π
T k

)

6= 0 for k ∈ K,
4) The sequencesαi[n] are chosen such that the matrixA,

whoseinth element is given byαi[n], has full column
rank,

then the mixing matrixS in (11) is left invertible.

We now give two useful configurations of pulse sequence
modulation schemes, that satisfy the conditions of Proposi-
tion 1.

1) Single Generator:We create the sequence on theith
channel, by taking a cyclic shift of one common sequence
α[n] as

αi[n] = α[n− i+ 1 modN ]. (35)

Clearly, the corresponding waveforms can be created by using
only one pulse generator, where the waveform at theith
channel is a delayed version of the generator output, delayed
by (i − 1)T/N time units. This suggests, that in contrast to
the direct scheme in Fig. 1, which requires multiple frequency
sources, here only one pulse generator is required which
simplifies the hardware design. It is easy to see that with this
choice,A will be a circulant matrix. Such a matrix can be
decomposed [24] as

A = FHdiag(Fα)F, (36)

whereF is aN ×N unitary discrete Fourier transform (DFT)
matrix, andα is a length-N vector containing the elements of
the sequenceα[n]. Therefore, forA to be invertible the DFT
of the sequenceα[n] can not take on the value zero.

We now give an example for such a selection of the system’s
parameters. We setp = N = K, and choose

p(t) =

{

1 t ∈
[

0, T
N

]

0 t /∈
[

0, T
N

]

.
(37)

The frequency response of this pulse satisfies

P (ω) =
T

N
e−j T

2N
ω · sinc

(

T

2πN
ω

)

. (38)

Therefore,
∣

∣

∣

∣

P

(

2π

T
k

)∣

∣

∣

∣

=
T

N
sinc

(

k

N

)

, (39)

which is non-zero fork ∈ K. In addition we choose the
sequencesαi[n] as a sequences of±1s, created from cyclic
shifts of one basic sequence, in a way that yields an invertible
matrix A. Such rectangular pulses with alternating signs can
be easily implemented in hardware [16]. In Figs. 5 and 6,
one modulating waveform is shown in the time and frequency
domains, forp = N = K = 7. The original time-domain
waveform is comprised of rectangular pulses, whereas lowpass
filtering results in a smooth modulating waveform. Switching
to the frequency domain, the Fourier series coefficients are
shaped byP (ω), the CTFT of the pulse shape. The shaping
filter frequency response,G(ω), is designed to transfer only
the Fourier coefficients whose index is a member of the set
K = {−3, . . . , 3}, suppressing all other coefficients.

2) Robustness to Sampling Channels Failure:Next we
provide a setup which can overcome failures in a given
number of the sampling channels. The identification of the
malfunctioning channels is assumed to be performed by some
external hardware.

We considerp sampling channels, and maximal number
of malfunctioning channels which is denoted bype. Since
disregarding ofpe channels is equivalent to the deletion ofpe
rows in the matrixA, it is required to have at leastp ≥ N+pe
sampling channels. In addition the new submatrixÃ, which
is obtained fromA by omitting of the corresponding rows
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Fig. 5. Modulating waveform in the time domain, before and after filtering.
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Fig. 6. Modulating waveform in the frequency domain.

should be left invertible. This has to be satisfied for every
possible selection ofpe rows, therefore, we require that the
matrix A should be designed, such that anyp − pe rows
will form a rank-N matrix. Following our ideas from the
previous discussion, we demonstrate how to reduce the number
of required generators, for the current setting. For simplicity,
we assumep ≥ 2pe and that two different generators are used.
The first half of the sampling channels use delayed versions
of the first generator output, and the second half uses the
second generator. By proper selection of the two sequences,
the condition mentioned above can be satisfied.

We now give a numerical example for a such choice. We
set N = K = 9 and usep = 18 sampling channels, which
are based on two generators only. Each generator produces
a different sequence of±1, which are chosen randomly. In
Fig. 7 we plot the log of the maximal condition number ofÃ,
obtained when going over all possible options for omittingpe

rows fromA, i.e

max
Ã

log(cond(Ã)) s.t Ã ∈ {p− pe rows submatrices ofA} .

(40)

It can be seen that forpe ≤ 6 a relatively low condition number
of the matrix Ã is achieved in the worst case, suggesting
that its rank isN as required and̃A† is not ill-conditioned.
Therefore, we can overcome failure in up to6 sampling
channels, using this system.
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Fig. 7. Robustness to sampling channels failure example,N = K = 9,
p = 18, two pulse generators.

V. RELATED WORK

A. Single-channel Sampling with the SoS Filter

The work in [8] considered single-channel sampling
schemes for pulse streams. The proposed sampling scheme
is based on a filter which is comprised of a Sum of Sincs
(SoS) in the frequency domain. This filter can be expressed in
the time domain as

g(t) = rect

(

t

T

)

∑

k∈K

bke
j 2π

T
kt, (41)

whereK is the chosen index set, and the coefficients{bk}k∈K

can be chosen to be arbitrary nonzero values.
We first focus on periodic streams of pulses, with period

T , for which the signal is filtered by the SoS filter prior to
uniform sampling, as depicted in Fig. 8. The resulting samples
are given by

c[n] =
∑

k∈K

bkX [k]ej
2π
T

knTs , n = 0, . . . , p− 1, (42)

whereTs = T/p is the sampling period. Using the matrixV
defined in (6) only now with parameterts = {0, Ts, . . . , (p−
1)Ts}, and defining the diagonal matrixB with kth diagonal
elementbk, (42) can be written in matrix form as

c = V(−ts)Bx. (43)

Therefore, this is a special case of our mixing multichannel
sampling scheme in (11) with mixing matrixS = V(−ts)B.
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The matrixB is invertible by construction, andV(−ts) is
a Vandermonde matrix with distinct times, so thatS is left-
invertible as long asp ≥ K. In that case, thep samples taken
over one period in [8], are equal to the samples at the output
of the p channels in our scheme.

SoS Filterx(t) c[n]
t = nT

Fig. 8. Single-channel sampling scheme using the SoS filter.

Exploiting the compact support of the SoS filter, the method
was extended to the finite and infinite settings as well [8]. The
extension is based on using anr-fold periodic continuation
of the SoS filterg(t), where the parameterr depends on
the support of the pulse-shapeh(t). However, the infinite
scheme does not achieve the rate of innovation. In addition,
implementing anr-fold periodic continuation of the filterg(t)
is harder to implement than the scheme we present in this
paper.

We now examine which modulation waveforms are obtained
when using the mixing matrix from [8]. By substituting the
elements of this matrix into (9) we get

si(t) =
∑

k∈K

bke
−j 2π

T
k(t−iT/p). (44)

It is easily shown that these waveforms can be expressed as

si(t) = g̃(−(t− iT/p)), (45)

whereg̃(t) is the periodic continuation of the SoS filterg(t).
Therefore, in each channel the signal is modulated by a
delayed version of the periodic SoS filter. The equivalence
of the schemes is easy to explain: sampling the convolution
between the input signal and the SoS filter in [8], is equiva-
lent to performing inner products (multiplication followed by
integration) with delayed and reflected versions of this filter.
This relation provides us another valid class of modulation
waveforms.

B. Chain of Integrators

Sampling schemes for infinite streams of pulses have al-
ready been presented [8], [10], however, they do not achieve
the minimal sampling rate, i.e., the rate of innovation. A recent
work [13] presented a sampling scheme operating at the rate of
innovation. The proposed method was based on multichannel
sampling, similar to our approach. However, the signal model
is limited to streams of Dirac impulses, whereas our scheme
supports more general pulse shapes.

The method in [13] is based on the observation that themth
integral over a Diracδ(t−tl) on the interval[0, T ], is given by
(T − tl)

m−1. Following this observation, a sampling scheme
based on successive integration of the signal is proposed, i.e.,
the sample at themth channel is anm-fold integration of the
signal. The resulting sample at the output of themth channel
is given by

ym =

L
∑

l=1

al(T − tl)
m−1 m = 0, 1, . . . , p− 1. (46)

Recovering the delaystl from ym is a problem commonly
encountered in spectral analysis, which is closely relatedto
the sum of cisoids topic. It may be solved by the same
methods, e.g., the annihilating filter, as long as the number
of integrations,p, satisfiesp ≥ 2L. Under the infinite model
in (13) with h(t) = δ(t), this sampling scheme allows perfect
reconstruction while operating at the rate of innovation.

However, as we will show in simulations, our method
exhibits much higher noise robustness than the integrator
approach. Moreover, for high rates of innovation, typically
L ≥ 4, the integrator scheme is unstable, whereas our
approach remains stable even for very high values ofL.

In addition, each integration enlarges the dynamic range of
the output signal. As a result, the resolution of the analog to
digital converters (ADC) has to grow rapidly when advancing
through the channels. This imposes very strong requirements
on the ADC converters in use. In contrast, our scheme is well-
balanced, i.e., the dynamic range stays approximately the same
throughout all channels, imposing no restricting requirements
on the ADC converters used in the system.

C. Multichannel Schemes for Shift-Invariant Pulse Streams

Another related work is the one presented in [14] which
treats the SI signal model (17) presented in Section III-B. The
model considered in [14], is more general than the one in
this work, since condition (2) is not required. However, as
we see next, when (2) holds, the proposed method has some
advantages over [14].

The sampling scheme proposed in [14] is depicted in Fig. 9.
In each channel, the input signal is filtered by a band-
limited sampling kernels∗ℓ (−t) followed by a uniform sampler
operating at a rate of1/T . After the sampling process, a prop-
erly designed digital filter correction bank, whose frequency
response in the DTFT domain is denoted here byM(eωT ), is
applied on the sampling sequences. The exact form of this filter
bank is detailed in [14]. It was shown in [14], that the ESPRIT
algorithm can be applied on the new corrected samples, in
order to recover the unknown delays.

s∗
1
(−t)

...x (t)

t = nT

t = nT

...

c1 [n]

s∗
p
(−t)

cp [n]

M

(

ejωT
)

d1 [n]

dp [n]

Fig. 9. Proposed sampling scheme in [14].

The sampling rate achieved by the method in [14] is
generally2L/T , where for certain signals it can be reduced to
(L+1)/T . Such signals satisfy dim(span({b[m],m ∈ Z})) =
L, where the vectorsb[m] are related to the vectorsa[m]
through some filtering operations that are defined in [14]. This
condition is different than the one obtained here, which di-
rectly depends on the vectorsa[n] and not on a filtered version
of them. Therefore the sampling rate, when using the scheme
in [14], can be reduced to(L + 1)/T for different signals.
However, this fact is not surprising, since each approach has
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a different analog sampling stage, and therefore coresponds
to a different sampling operator. Each of these operators has
a different invertibility condition. However, in any case,the
worst-case minimal sampling rate for both methods is2L/T .

The proposed method has several advantages over the one
presented in [14]. First the equivalent stage for the digital
correction in [14], is replaced by the inversion of the matrices
H andS, since

y[m] = (SH)−1c[m]. (47)

This can be viewed as a one-tap digital correction filter bank,
in contrast to the filterM(eωT ), which generally has a larger
number of taps. Therefore, the correction stage of the proposed
method, is much simpler, and requires lower computational
complexity, than the one in [14].

An additional advantage of our method, is that the approach
of [14] requires collection of an infinite number of samples,
even in the case where the input signal contains a finite number
of periods. Moreover, if one is interested only in a finite
time interval of the signal, the method in [14] does not allow
processing it separately. This is in contrast to the proposed
scheme, which integrates on finite time intervals, and can
collect samples only from the relevant periods.

D. Modulated Wideband Converter

As mentioned before, the concept of using modulation
waveforms, is based on ideas which were presented in [15]
for a different signal model. In the sequel, we briefly present
the sampling problem treated in [15] and its relation to our
setup. As we show the practical hardware implementation of
both systems is similar.

The model in [15] is of multiband signals: signals whose
CTFT is concentrated onNbands frequency bands, and the
width of each band is no greater thanB. The location of the
bands is unknown in advance. An example of such a signal
is depicted in Fig. 10. A low rate sampling scheme allowing
recovery of such signals, at a rate of4BNbandswas proposed in
[5]. This scheme exploits the sparsity of the multiband signals
in the frequency domain, to reduce the sampling rate well
below the traditional Nyquist rate.

fmax0

B

· · ·

Fig. 10. Multiband signal model.

Later in [15], this sampling scheme was extended to a more
practical one, which uses a modulation stage and referred
to as the Modulated Wideband Converter (MWC). In each
channel of the proposed multichannel sampling scheme, the
input signal is modulated with some periodic waveform, and
then sampled using a LPF followed by a low rate uniform
sampler. The main idea here is that in each channel, the
spectrum of the signal is scrambled, such that a portion of the
energy of all bands appears at baseband. Therefore, the input
to the sampler contains a mixture of all the bands. Mixing of

the frequency bands in [15] is analogous to mixing the Fourier
coefficients in our scheme.

Using the method in [15] on our signal model is highly in-
efficient, since our signal model is generally non-bandlimited,
and does not have a sparse structure in the frequency domain.
Therefore, we choose a different path presented in this paper,
exploiting the sparse structure of the signal in the time domain.
Nevertheless the modulation concepts introduced in [15] is
used here as well, and eventually the sampling stages of both
methods are similar.

We note here some differences between the schemes. First,
following the mixing stage, we use an integrator in contrast
to the LPF used in [15]. This difference, of course, is a
result of the different signal quantities measured, i.e., Fourier
coefficients in our work as opposed to the frequency bands
content in [15]. The second difference is in the purpose of
the mixing procedure. In [15] the mixing is done in order to
reduce the sampling rate relatively to the Nyquist rate. In our
setting, the mixing is used in order to simplify the hardware
implementation and to improve the robustness to failure in one
of the sampling channels.

Nonetheless, the hardware considerations in the mixing
stage in both systems is similar. Recently, a prototype of the
MWC has been implemented in hardware [16]. This design is
composed ofp = 4 sampling channels, where the repetition
rate of the modulating waveforms is1/T ≈ 20 MHz. In each
period there areN = 108 rectangular pulses. This prototype,
with certain modifications, can be used in order to implement
our sampling scheme as well.

VI. SIMULATIONS

We now demonstrate the performance of our proposed
method, in the presence of noise. We compare our results to
those achieved by the integrators method [13]. We examine
three modulation waveforms which are supported by our
method: cosine and sine waveform (tones), filtered rectangular
alternating pulses (rectangular) and waveforms obtained from
delayed versions of the SoS filter (SoS). Note that, as discussed
in Section V-A, the samples obtained by the third configuration
(SoS) are exactly equal to the samples of the single channel
method in [8], and therefore both setups provide the same per-
formance. For the rectangular pulses scheme, the modulation
waveforms are generated using a single generator, as discussed
in Section IV-B. The shaping filterg(t) is taken as an ideal
LPF with transition band of width2π/T . White gaussian noise
is added to the samples.

We first consider a finite stream ofL = 2 Diracs with
t = [0.256T, 0.38T ]T , and amplitudesa = [1, 0.8]T . We set
the system parameters asp = K = N = 5. The estimation
error of the time-delays versus the SNR is depicted in Fig. 11,
for the various approaches. Evidently, our approach outper-
forms the integrators method in terms of noise robustness,
for all configurations. There is a slight advantage of2dB for
the schemes based on tones and SoS, over the scheme which
uses alternating pulses, where the first two configurations have
similar performance.

Turning to higher order problems, in Fig. 12 we show the
results forL = 10 Diracs with times randomly distributed in
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Fig. 11. Performance in the presence of noise: time estimation error of our
method vs. integrators approach [13]. The signal consists of L = 2 pulses.

the interval [0, T ) and amplitudes equal one, where we set
N = p = K = 21. The instability of the integrator method
becomes apparent in this simulation on the one hand where, on
the other hand, our approach achieves good estimation results.
This demonstrates that our method is stable even for high
model order.

The performance advantage of the tones and SoS based
schemes is now around3.5dB. We conclude that from a
noise robustness point of view, using multiple frequency
sources or SoS waveforms is preferable over the use of a
single pulse generator. However, as discussed in Section II-D,
pulse sequences based schemes have advantages from practical
implementation considerations, and reduce the hardware com-
plexity. In addition, the performance degradation is reasonable,
and the estimation error is still significantly lower than that
of the integrators approach [13]. Therefore, the flexibility of
our approach, allows the system designer to decide between
better performance in the presence of noise, or lower hardware
complexity.

We now explore the use of practical shaping filters, for
the rectangular pulses scheme, rather than the ideal ones
used above. Once practical filters are used, the rejection of
coefficients whose index is not in the setK is not perfect.
We set the shaping filterg(t) to be a Chebyshev (Type I)
LPF [17] of various orders, with ripple3 dB. The Chebyshev
filter is a good choice for our requirements since it has a
steeper roll-off than other filters, resulting in better rejection
of the undesired coefficients. The rapid transition betweenthe
pass-band and stop-band of the Chebyshev filter comes at the
expense of larger ripple in the pass-band, however, ripple is
of minor concern for our method since it is digitally corrected
when inverting the matrixS. The cutoff frequency was set
to 2π

T ⌊K/2⌋. The frequency response of the various filters is
shown in Fig. 13.

The estimation error of the time-delays versus the SNR is
depicted in Fig. 14, for various filter orders. The simulation
consists ofL = 2 Diracs with t = [0.256T, 0.46T ]T , and
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Fig. 12. Our method vs. integrators approach [13], forL = 10 pulses.
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Fig. 13. Frequency responses of the shaping filters: ideal shaping filter vs.
practical Chebyshev filters.

amplitudesa = [1, 0.8]T . Clearly, a Chebyshev filter of order
10 closely approaches the performance of an ideal LPF. In
addition, for SNR levels below50dB, using a Chebyshev
filter of order 6 provides good approximation. Therefore,
the modulation waveform generation stage of our proposed
method can be implemented using practical analog filters.

VII. C ONCLUSION

In this work, we proposed a new class of sampling schemes
for pulse streams. The proposed method allows recovery
of the delays and amplitudes defining such a signal, while
operating at the rate of innovation. In contrast to previous
works [12], [13] which achieved the rate of innovation, our
approach supports general pulse shapes, rather than diracs
only. In addition, as we demonstrate by simulations, our
method exhibits better noise robustness than the one presented
in [13], and can accommodate high rates of innovation.
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Fig. 14. Performance of practical shaping filters of variousorders vs. ideal
filtering.

The proposed scheme is based on multiple channels, each
one comprised of mixing with a properly chosen waveform
followed by an integrator. We exploit the degrees of freedom
in the waveforms selection, and provide several useful config-
urations, which allow simplified hardware implementation and
robustness to channel failure. Using simulations we further ex-
plored practical issues, and showed that standard analog filters
could be used in the waveform generation stage. Moreover, we
draw connections with the work in [15], [16] and show that
the hardware prototype implemented there, can be used for
our scheme, with certain modifications.
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