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Multichannel Sampling of Pulse Streams at the Rate
of Innovation
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Abstract—We consider minimal-rate sampling schemes for methods require very high sampling rates. The main idea is
streams of delayed and weighted versions of a known pulse gh&  to exploit the fact that the pulse shape is known, in order to
Such signals belong to the class of finite rate of innovationFRI) characterize such signals by the time-delays and amptitatie

models. The minimal sampling rate for these parametric sigals, th . | T tina th t lowsltm
is the number of degrees of freedom per unit of time, referredo € various puises. largeting these parameters allow e

as the rate of innovation. Although sampling of pulse streamwas the sampling rate way beyond that dictated by the Shannon-
treated in previous works, either the rate of innovation wasnot Nyquist theorem.

achieyed, or the pulse shape was Iimited to dilracs and the ntead Following this parametric point of view, low rate single-
was ms_table for high rates of innovation. In this wor_k We propose  shannel sampling schemes were developed for periodic
a multichannel framework for pulse streams with arbitrary o

shape, operating at the rate of innovation. Our approach is hsed §treams of pu]sea [6].[7]. These m_ethods rely on the observf';l
on modu|a’[ing the input Signa| with a set of propeﬂy chosen tion that the time de|ayS and amphtudeS can be reCOVered n
waveforms, followed by a bank of integrators. We show that tie  the frequency domain, once a set of Fourier series coeftiien
pulse stream can be recovered from the proposed minimal-rat of the signal are known. This follows from the fact that in
samples using standard tools taken from spectral estimativin 6 frequency domain recovery translates into estimatieg t

a stable way even at high rates of innovation. In addition, we . . . .
address practical implementation issues, such as reductioof frgqqenmes and amplltpdes of a sum of complex. S|nu§0|ds
hardware complexity and immunity to failure in the sampling  (Cisoids), a problem which has been treated extensiveljen t

channels. The resulting scheme is flexible and exhibits bett context of spectral estimation][9].

noise robustness than previous approaches. In practical applications finite and infinite streams are
usually encountered, rather than periodic streams. For the
. INTRODUCTION finite case Gaussiafnl[6] and polynomial reproducing sargplin

- : oo . ketrnels [10] were introduced. Both methods exhibit indigbi
Digital processing has become ubiquitous, and is the most large numbers of pulses per unit time [8]. [10], [11]
common way to process analog signals. Processing of ana/k '

0 . : , !
signals by digital processing must be preceded by a sampll r?alternanve sampling scheme was presented fin [8], which

stage, carefully designed to retain the important featofé¢ise f?lﬂ)w_ed for a genera_l sampling filter. Specific choices of
. . : this filter recover previous approaches suchlas [6]. However
analog signal relevant for the signal processing task atl.ha i .
. . e general formulation developed allows the design of more
The well known Shannon-Nyquist theorem states that in order

to perfectly reconstruct an analog signal from its samgites practical time-limited filters, that exhibit superior neiso-

must be sampled at the Nyquist rate, i.e., twice its highe%lfsmess over former techniques even at very high rates of

frequency. This assumption is required when the only pri{%r}novatlon. Exploiting the compact support of the sampling

; . o - : ernels in[[8], [10], both methods were extended to the itdini
on the signal is that it is bandlimited. Other priors on Slgn%ase Unfortunately. neither approaches achieves thamaini
structure[[1], [2], which include subspace [3], sparsitl; [8], ) Y PP

o - .sampling rate, which is the rate of innovation.
or smoothness prior§1[1], can lead to more efficient sampling . .
schemes. All previous methods were composed of a single sam-

An interesting class of priors was suggested by Vetterli slem?ecehsanor;elf}g/leu;g(r::ayvﬂ?clr? ag:ﬂg:g Sacgﬁir:\iﬁ Oﬁareadrgﬂimal
al. [6], [7], who considered signals with a finite number o 9 9

degrees of freedom per unit ime, termed by the authors %asmpllng rate for the infinite setting. A simple multichahne

signals withfinite rate of innovation(FRI). For such models, SySte”.‘ was proposed in[12] fOT the case of a s_mglg pulse per
the goal is to design a sampling scheme operating at i mpllng perlod. However, our mFerest here is in hlgheesr.at
innovation rate, which is the minimal possible rate fromethi otinnovation. An alternative multichannel scheme corrgatis

perfect recovery is possible. A special case that was tidéate .Of a chain of integrators was proposed in[13]. As we show

; : o in simulations, this method is very instable in the presearfce
detail are signals consisting of streams of short pulselsePu " ° . . 4
: I S noise and for high rates of innovation. Moreover, both métho
streams are prevalent in applications such as bio-ima@hg [

neuronal activity and ultra-wideband communications.cSin[lzl’ [13] consider Dirac impulses only. To the best of our

the pulses are highly compact in time, standard samplir|§ owledge, a stable minimal rate sampling scheme for ifinit

pulse streams is still lacking.
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compact time interval. We derive conditions which guarantd. Problem Formulation

that the output of each channel is a mixture of the Fourier

coefficients of the signal. By properly choosing the mixing Consider the finite stream of pulses

parameters, we show that the Fourier coefficients can be

obtained from the samples. Once the set of Fourier coeffiien

is known, we use standard spectral estimation tools in order L

to recover the unknown times and amplitudes. As we show, a(t) = Zalh(t —t), welc[0,T) aeC (1)
the mixing scheme enables simple and practical generafion o =1

modulating waveforms. Furthermore, mixing the coefficgent

allows recovering the signal even when one or more sampliihere A(¢) is a known pulse shapét;, a;} =, are the un-
channels fails. known delays and amplitudes, ardis a continuous time

The integration over a finite interval enables a simplgterval contained irf0, T'). The pulse can be arbitrary as long
extension to the infinite setting. Our infinite sampling agg@h 55

leads to perfect reconstruction of the signal, while sangpli
at the rate of innovation. As we show in simulations, our
approach exhibits superior noise robustness comparédip [1
and allows sampling at very high rates of innovation. In
addition, we can accommodate general pulse shapes. We @80 the signalz(¢) is confined to the time-windowo, 7).
discuss a special case of infinite streams having a shifince there are onlgL degrees of freedom in this model, at
invariant structure, presented in_[14], and point out somegast2L samples are required in order to represent the signal.
advantages of our method in certain scenarios. Finally, eve dyr goal is to design a sampling and reconstruction method

scribe how to practically generate the modulating waveirmyhich perfectly reconstructs the signaft) from a minimal
based on concepts presented in [15]! [16] and derive comditi number of samples.

on these waveforms which guarantee perfect reconstrucfion
the signal.

ht—t)=0,v¢[0,T) I=1...L, @)

We now show that our sampling problem can be related to
the well known problem of model-based complex sinusoids
'&%oids) parameter estimation. This approach was ofiigina

aken by Hou and WuU_[18], who were the first to show that
fre delay estimation can be converted into a problem of

Fr@quency estimation of a sum of cisoids [9]. This follows

with analog Chebyshev filters [17], clos_ely approgcheslidef%rm noticing that the delays in the time domain are conskrte
performance. These results lead to practical samplingsehe into modulations in the frequency domain. However, their

which achieve the rate of innovation in a robust way, even Nethod relied on Nyquist rate sampling of the signal, anit the

the presence of noise and high innovation rates. derivations were only approximate. Vetterli et all [6], wer

Th.e remamder.of this Paper 15 organized as TO.HOWS' ltrP1e first to address this topic from an efficient sampling poin
Section[l] we derive a multichannel scheme for finite PUISS \iew and derived a low-rate sampling and reconstruction
streams. Sectioh1ll extends our results to the infinite ca '

. . . Ttheme for periodic streams of Diracs. Their method was
We discuss the generation of the modulating waveforms

X X . Dased on the same fundamental relation between the delays
Schon[_ﬂ, and pres_ent a practical sampling scheme whi the time domain, and the modulations in the frequency
can be implemented in hardware. In Secfidn V we discuss thgmain but this time in a precise way, using the Fourier
relations of our results to previous work. Finally, in SenfVI § '

X ! . series coefficients of the signal. We follow a similar patigl a
we present simulations demonstrating the performance of Yerive low-rate sampling schemes from a parametric point of

methpd, and near-ldeal performance of our scheme US\A8w. We first show that once a set of Fourier coefficients
practical analog filters. of the signal are known, the problem is indeed a sinusoidal
parameter estimation problem. Following this derivatiom,
Il. FINITE STREAMS OF PULSES design low-rate sampling schemes for obtaining the set of
A. Notations and Definitions Fourier coefficients.

Matrices and vectors are denoted by bold font, with lower- Sincez(t) is confined to the interval € [0,7'), it can be
case letters corresponding to vectors and uppercaseslétterexpressed by its Fourier series
matrices. Theath element of a vectoa is written asa,,, and
Ai% denotes thé;jth element of a matriA. Superscripts-)”,
()" and (~)H represent complex conjugation, transposition
and conjugate transposition, respectively. The Mooreré&n
pseudo-inverse of a matriX is written asAf. We denote by
diagla) a diagonal matrix having the elements of the vectavhere
a on its diagonal. The continuous-time Fourier transform

(CTFT) of a continuous-time signal (¢t) € L, is defined by 17 _j2m
X (@) = [ o (1) e-sott Xl = 5 [ e Frar @

to the integrator schemé [13], in terms of estimation ermor

o(t) = > X[Kle/FH 1 ef0,T) ©)
keZ



Substituting[(1L) into[{4) we obtain be extended to any séf of consecutive indices, as long as
L T || > 2L. In order to obtain the Fourier coefficient[%],
X[k] = lzal/ h(t_tl)efj%‘ktdt we propose the multichannel sampling scheme depicted in
Tl 1 0 Fig[l. Each channel consists of modulating the signal with
a complex exponential, followed by an integrator operating

L oo
= %Zal/ h(t — t)e 7 Frqt over the windovv[O,_T). The sample taken by théh channel
=1 VY- is exactly X [k], as in [3).
L
1 2m e _i2n
=7 > el T k“/ h(t)e 7 F*at L0 e [-(]]
=1 o
L +j 2| K /2]t
1 27T 27 ¢ ! *
_ = = j<Ekt
=7 (T’“) ;”le T & 2(t) e :
where the second equality stems from the conditiofilin (2), an i
H(w) denotes the CTFT of(¢). 7o ()dt X [+ %]
Denote by a set of K consecutive indices for which ’
H (%k) # 0,Vk € K. We require that such a set exists, eI LK/2)t

which is usually the case for short time-support pulsés.
y . . pp. X (ﬂlS) Fig. 1.  Multichannel direct sampling of the Fourier seriezefficients
Denote byH the K x K diagonal matrix withkth entry X[k], k € K.

+H (22k), and byV (t) the K x L matrix with kith element
e~k wheret = {t1,..., ¢} is the vector of the unknown  The direct sampling scheme is straightforward, and may be
delays. In addition denote by the lengthi vector whosdth  implemented using 3 basic building blocks: oscillatorsxerns
element isz;, and byx the length# vector whoséth element and integrators. However, from a practical point of viewsthi
is X [k]. We may now write[(b) in matrix form as approach has the disadvantage that it requires many dscslja

x = HV(t)a. ©) having frequencies which must be exact multiples of some

common base frequency.
The matrixH is invertible by construction, and therefore we
can definey = H™'x, which satisfies D. Mixing the Fourier Coefficients
y = V(t)a. (7) We now generalize our framework, towards a more prac-

) _ ) tical sampling scheme by mixing several Fourier coeffident
Addressing theith element of the vectay in (7) directly, we together, rather than limiting ourselves to one coefficigert

obtain I channel. The additional degrees of freedom offered by this
Vi = Zale—j%ﬂktl_ 8) extension will allow us to_de&gn_waveforms that are easy
= to implement. In addition, in real-life scenarios one or eor

channels might fail, due to malfunction or noise corruption
and therefore we lose the information stored in that channel
When using the direct scheme we lose one Fourier coefficient,
r]ﬂeventing us from recovering the unknown signal paramseter
In contrast, when mixing the coefficients we distribute the
information about each Fourier coefficient between several
sampling channels. Consequently, when one or more channels
fail, the required Fourier coefficients may still be recadr
the remaining operating channels. We discuss thisifeat
thoroughly in Section V.

Consider a multichannel sampling scheme witbhannels.
In each channel, we modulate the signal using a weighted sum
of cisoids given by

si(t) =D sipe I T, )

keK

It is now evident that given the vectar (4) conforms with the
standard problem of finding the frequencies and amplitufles
a sum of L cisoids. The time-delays can be estimated usi
nonlinear techniques, e.g., the annihilating filler [6], BIC
[19], [20] or ESPRITI[21] (see [9] for a review of this topigs
long asK > 2L and the time-delays are distinct, i.€;# ¢;
for all ¢ # j. Once the time-delays are known, the linear s
of equations[{[7) may be solved via a least squares appro
for the unknown amplitudes. Due to the Vandermonde formore
of V(t), it is left invertible as long ag< > L, therefore the
amplitudes may be obtained via= (V)1 (t)y.

C. Direct Multichannel Sampling

As we have seen, given the vector &f > 2L Fourier
series coefficientg, we may use standard tools from spectral .
analysis to determine the s, a;} ;. In practice, the signal wherg the weightss;y vary from ghannel to channel. The
is sampled in the time-domain, and therefore we do not ha(fesultmg sample of theth channel is
direct access to samples &f Our goal now is to design a T BRI
sampling scheme which will allow us to obtain the vector G = /0 z(t) Z siwe T dt
from time-domain samples.

For simplicity, we setX” to be an odd number, and choose = s X[k], (10)
the setC = {—| K/2],...,|K/2]}. However, our results may kek

keKx



where we used our prior derivationl (5). The resulting schemel) Cosine and Sine waveformEirst we setp = K. Then,
is depicted in Fig[2. we choose the firstK /2| waveforms to be cof?Zkt), the
next | K/2| to be sin(2:kt), and the last to be the constant

LTOd e function 1. Clearly, these waveforms fit the form inl (9), since

cosine (sine) waves can be expressed as the sum (subtjaction
si(t) = 3 spe TR, of two complex exponentials. It is easily verified that this
kex choice yields an invertible matri$. The practical advantage
z(t) T : of the mixing scheme is already evident, since sine and eosin
. waves are real valued, whereas the direct multichannehsehe
A requires complex exponentials.
' ? rh (4 = 2) Periodic Waveforms:Every periodic waveform can be
sp(t) = 3 spe T FH expanded into a Fourier series. Transferring such a wawvefor
kex through some shaping filter, e.g., a low-pass filter, we can

reject most of the coefficients, leaving only a finite setdhta
Consequently, such a scheme meets the form[6f (9). In

Section IV we elaborate on this concept, discuss design con-

To relate the_ samples and th_e Fourier coefficients, we def@aerations, and show that properly chosen periodic wanefo
thep x K matrix S with s;; as itsikth element, and by the yield a left invertible matrixS.

lengthp sample vector withth element;. We may now write One simple choice is periodic streams of rectangular pulses

(10) in matrix form as modulated by+1 [15]. The strength of the mixing scheme
over the direct one will be emphasized in Secfion IV-B. We
show that one periodic stream is sufficient for all channels,
while each channel uses a delayed version of this common
waveform. Therefore, the requirement for multiple ostilia

Fig. 2. Mixing the Fourier coefficients differently in eachamnel.

c = Sx. (12)

As long asS has full column rank, where > K is a
necessary condition, we can recowerfrom the samples by . )
x = Sfc. The direct sampling scheme presented earlier isaQd the need for accurate_ rnultmles_ Of the basic frequenc_:y,
special case of this more general approach, with K and are.both remoyed. In addltloq, .perlodlc streams are easily
S — I. In Sectior(IV we exploit the degrees of freedom thi§€signed and implemented digitally, rather than somewhat
general scheme offers, and present sampling schemes wifigiPlicated analog design of oscillators combined withama

can simplify the hardware design, and are more robust ('EHCUitS intended to create exact frequency multiplesalyn
malfunctions in the sampling channels if the periodT' changes, the analog circuit has to be modified

We summarize this result in the following theorem substantially, whereas the flexibility of the digital desig
' allows simple modifications.

Theorem 1. Consider a finite stream of pulses given by
I I1I. I NFINITE STREAMS OF PULSES

z(t) = Zalh(t_ t), telcC|0,T),qeC,l=1...L, A. General Model
=1

We now consider an infinite stream of pulses defined by
where h(t) is a known pulse shape, and conditi®) is
satisfied. Choose a séf of consecutive indices for which a(t) = Zalh(t —t), t1eR, aq€C. (13)
H(27k/T) # 0, Yk € K. Consider the multichannel sampling lez
scheme depicted in Fidl 2, for some choice of coefficiefe assume that there are no more tiigoulses in any interval
A

{Siktrer, i =1,...,p. Then, the signat(t) can be perfectly 1, = [(m —1)T,mT], m € Z. We further assume that

reconstructed from the sampl¢s; }”_; with within each interval conditioi{2) holds, and consequeriig
. intervals are independent of one another. The maximal numbe
o = / (1) Z Sike—jz%ktdt’ (12) pf degr(_ees o‘f frgedpm per unit time, also known as_the rate of
0 Pt innovation [6], [7], is2L/T. We now present a multichannel

sampling and reconstruction scheme which operates at the
as long asp > |K| > 2L, and the coefficients matri8 in minimal rate possible, i.e., the rate of innovation.
(@1) is left invertible. Consider an extension of the sampling scheme presented

. . . ‘ in Section[1[-D, where we sample evef§j seconds. Upon
.AS we discuss n Section VA, the mgthod n [8] Can_bgach sample we reset the integrator, so thatrttie sample
viewed as a special case of Fig. 2. Since our work is

rBsults from the integral over the interval,. The resultin
generalization of [8], it benefits from the high noise robests g B, J

o ) . sampling scheme is depicted in Fig. 3. Since it sample
exhibited by [, in contrast to previous work][6L.]10]. Itis influenced by the intervdl,, only, the infinite problem may

should be noted t.hat Theore{ﬁh 1 hol_ds for a periodic puIB% reduced into a sequence of finite streams of pulses. The
stream as well, since it can be similarly represented byr@sulting samples are given by

Fourier series, and all derivations remain intact.
We now demonstrate several useful modulating waveforms. c[m] = Sx[m], (14)



t=mT . L .
1 Y e m) the delays are constant relative to the beginning of theogeri

’ @ o7, O Such signals can be described as

s1(t) = Z slkc’jLTﬁkf

L
ke
() —— . 2(t) = Y afmlh(t—t, —mT), t, € I C[0,T), (17)
. meZ =1
T / o jfi e whereay[n] € ¢5 denotes theth pulse amplitude on thenth
4’@—' T, " P period. This model was first considered In|[14]. We explore
sp(t) = 3 sppe I FH the relation to this work in Sectidn]V.
kek Assuming condition[(2) holds here as wel_](15) can be

Fig. 3. Extended sampling scheme using modulating wavefofon an rewritten as

infinite pulse stream.

ylm] = V(t)a[m], (18)

where the vectok[m] contains the Fourier series coefficient§INCe Now the relative delays in each period are constame,He
of the signal within themth interval, I,,. As long as$ is a[m] denotes the lengtli-vector whose/th element is given

chosen so that it is left invertible, we can obtain the seqeenon aclm]. ) . . ) o
of Fourier series coefficients by[m] = S'c[m]. Extending ~ The question arising here, is what is the minimal number of

(@) to the infinite case we obtain: sampling channels which allows unique recovery of the delay
) t from the samples. Clearly, the condition for the general
ylm] = H™ "x[m] = V(t[m])a[m], (15) modelp > 2L is a sufficient condition here also, however

where t[m] and a[m] are the times and amplitudes of theftS we show next, the.additiolnlal prior we have on the signal’s
pulses in the intervall,,, respectively, and the matri¥ structure can rglax th|s. condition. ) ]
remains as in[{6). For each, equation [(I5) is a sum of To answer this question, we rely on results obtained. in [14],
cisoids problem, and thus ma;/ be solved as londcas 2. which treated the uniqueness conditions for a set of equatio
By choosingp _ K — 2L we present a sampling_scheméim”ar to [18). Following these results, a sufficient cdiodi
which operates at the rate of innovation, and allows forgumrf fOr unique recovery of the delays and vectafs:] from (18)
reconstruction of an infinite stream of pulses. is given by:

We state our result in a theorem. K>2L—n+1, (19)

Theorem 2. Consider an infinite stream of pulses given by

where
.”L'(t) = Zalh(t - tl), tieR, aq €C.
lEZ n = dim(span({a[m|,m € Z})) (20)
where h(t) is a known pulse _shape. As_sume that Athe[?enotes the dimension of the minimal subspace containig th
are no more thanl pulses within any intervall,, = hi dition implies that i
((m — 1YT,mT], m € Z, and that condition@@) holds for all vector sef{alm|, m € Z}. This condition implies t atin some
' ’ ' casesk, and eventually the number of channglésincep >

intervals I,,,, m € Z. Choose a sek of consecutive indices .
for which H(2nk/T) # 0, Vk € K. Consider the multichannel K), can be redgced beyond the lower lirait for the general
r&odel, depending on the value of

sampling scheme depicted in Figl 3, for some choice In a similar way to [14], the recovery of the delays from

coefficients{six Jex, i =1, .., p. Then, the mgna;&(t) can (@I8) can be performed using the ESPRIT![21] or MUSIC| [19]
be perfectly reconstructed from the samp{egm|};_, with : .
¢ algorithms. These approaches, which are known as subspace
lm] = " eI ER Gy cZ 16 methods, require thay = L. In this case they achieve the
cilm] / #(t) ZS ke e (16) lower bound of condition[(19), namely recover the delays
o o using onlyp > L + 1 sampling channels. In cases where
as long asp > |K| > 2L, and the coefficients matri® in ,, 7 an additional smoothind [22] stage is required prior
(1) is left invertible. to the use of the subspace methods, ang 2L sampling

To the best of our knowledge Theorelh 2 presents tgannels are required. _
first sampling scheme for pulse streams with arbitrary shape To conclude this point, when the amplitudes of the pulses
operating at the rate of innovation. Furthermore, as we sha@ry sufficiently from period to period, which is expressed

in simulations, our method is more stable than previol®y the conditionn = L, the common information about the
approaches. delays can be utilized in order to reduce the sampling rate to

(L+1)/T. Moreover, the approach presented here can improve

the delays estimation compared to the one used for the denera

i o model, since it uses the mutual information between periods
We now focus on a special case of the infinite mofel (13hther than recovering the delays for each pefitseparately.

where the signal has an additional shift-invariant (Siycture. This result is summarized in the following theorem.

This structure is expressed by the fact that in each pefiod

Im keK

B. Stream of Pulses with Shift-Invariant Structure



Theorem 3. Consider a stream of pulses given by where it can be easily verified that

Np—1 L ~ 27
o) = 3 S aulmlh(t —to—mT), telc0,T) dilk] = dilk] - G (ﬂ) | (€0
m.:() - _. HereG(w) denotes the CTFT qj(¢). From [2T), the shaping
where h(t) is a known pulse shape. Assume that conditig{jer g(t) has to satisfy

(2) holds. Choose a sét of consecutive indices for which
H(2nk/T) # 0, VK € K. Consider the multichannel sampling nonzero w= 2k, k€K
scheme depicted in Fi@] 3, for which the samples inithe Gw)=+¢0 w = 2%/{, k¢ K (28)

channel are given by arbitrary elsewhere

cilm] = /1 2(t) > siwe I THAL, m e Z, (21)  so thatd;[k] = 0 for k ¢ K. This condition is similar to the

" kek one obtained in[[8] for single channel sampling. Therefore,
for some choice of coefficienfs;i }rex, i = 1,...,p. Then, the class of filters developed there, can also be used here as a

the signalz(t) can be perfectly reconstructed from the sampleéshaping filter.

{c:i[m]}*_,, m € Z as long as the coefficients matfin (11) Note that [2B) implies that the frequency response of the
is left invertible and filter g(¢t) is specified only on the set of discrete points

Q%k, k € Z, offering large freedom when designing a practical
p> K| {2 L+1 whenp=1L analog filter. For instance, when implementing a lowpass
= > 2L whenn < L, filter (LPF) this requirement allows a smooth transition dan
between the passband and the stopband of the filter, with a
where width of 2T

1 = dim(span({a[m], m € Z})) 22) The resulting scheme is depicted in Aiy. 4. The elements of

denotes the dimension of the minimal subspace containing th ® LEOd gy
vector set{a[m],m € Z}.
pi(t) > g(t) .
IV. MODULATION WAVEFORMS 2(t) —>f— .
In this section we treat thoroughly the example given in .
Section[1-D of generating the modulation waveforms using T
periodic signals. We first address the case of general pgeriod ) Tl ()t —>cp
waveforms, and then we focus on the special case of pulse

(T t
sequences. Polt) > 90)
Fig. 4. Proposed sampling scheme, using modulating wawefor
A. General Periodic Waveforms
@e mixing matrixS, obtained from the proposed scheme are

Our aim is to show how to obtain the required modulatin
ven by

waveforms [[P) using a set qf periodic functions, given by 9'
p;i(t). Such waveforms can be expressed using their Fourier S = Ji[—(k — |K/2]). (29)
series expansion as
. The invertibility of the matrixS can be ensured, by proper
pi(t) = Z di[k)e? T, (23)  selection of the periodic waveforms(t). In the next subsec-
kez tion we discuss one special case, which allows simple design

where thekth Fourier series coefficient ¢f;(¢) is given by  of a left invertible mixing matrixS.

1 [T -
d;[k] = —/ pi(t)e I F qt. (24) B. Pulse Sequence Modulation
0

T
We follow practical modulation implementation ideas pre-

The sum in[(2B) is generally infinite, in contrast to the ﬁnit%ented in[[15], [16], and consider a set of waveforms given
sum in [9). Therefore, we propose filteripg(t) with a filter RX e

g(t) which rejects the unwanted elements in the sum (23). T

filtered waveforms at the output gft) are given by Nl .
) pi(t) = Z Zai[n]p(t—nT/N—mT), i=1,...,p
Di (t) = Pi (t) * g(t)v (25) meZ n=0

30
and are also periodic. Therefore they can be written as (30)
where p(t) is some pulse shape ang;[n] is a lengthAV

pi(t) = Zczi[k]ej%ﬂkt, (26) sequence. Our aim is to calculate the mixing ma§jwhen
kez using the filtered version of (B0) as modulating wavefornes. T



this end, we first calculate the Fourier series coefficiepns] 1) Single Generator:We create the sequence on tith

of p;(t) as channel, by taking a cyclic shift of one common sequence
. N—1 - N aln] as
d;[k] =7 Z a;[n] /0 p(t —=nT/N —mT)e 7/ F dt a;[n] = afn — i+ 1 mod N]. (35)
meZ n=0
1 Ni —(m—-1)T Clearly, the corresponding waveforms can be created byusin
=_ Z ai[n] Z/ p(t_nT/N)e—j%Wtdt only one pulse generator, where the waveform at ithe
T n=0 mez? —mT channel is a delayed version of the generator output, delaye
| Nl o . by (i — 1)T/N time units. This suggests, that in contrast to
=— a;[n] / p(t —nT/N)e I T dt the direct scheme in Figl 1, which requires multiple fregquen
T n=0 —00 sources, here only one pulse generator is required which
1 Nt o - simplifies the hardware design. It is easy to see that with thi
=7 2 cilnlP <?/€> eI, (31) choice, A will be a circulant matrix. Such a matrix can be
n=0 decomposed [24] as

where P(w) denotes the CTFT of(¢).

- , A =F"diag(Fa) F 36
Combining [31) with [2B) and (27), thith element ofS lag(Fo) F, (36)
can be expressed as whereF is a N x N unitary discrete Fourier transform (DFT)

N—1 matrix, ande is a length/V vector containing the elements of

_ 1 2m 2m —j 2 k'n the sequence(n]. Therefore, forA to be invertible the DFT
Si. = — Z a;[n]P <?k’) G <?k’) o= . (32) q [n)]

of the sequence[n] can not take on the value zero.
We now give an example for such a selection of the system’s
parameters. We set= N = K, and choose

n=0
where we defined’ = —(k — | K/2]). This matrix can be
decomposed as

T
S = AWS, 33) =1t t€0x] 37)
| . P 0 t¢[0,L].
whereA is ap x N matrix with inth element equal tey;[n], ) -
W is an N x K matrix with nkth element equal to— I kn, The frequency response of this pulse satisfies
and® is a K x K diagonal matrix withkth diagonal element T _. . T
x g g P(w) = e Iaww -smc(—w) . (38)
o= <P () o (g (34) N e
T\ T T ) Therefore,
From this decomposition it is clear that each one of these p 2—7Tk _ zsinc k. (39)
matrices has to be left invertible, in order to guarantee the T N N)’

invertibility of S. We now examine each one of these matrice§nich is non-zero fork c K.

| - In addition we choose the
We start with the matrix®. From [28),G (25k) # 0 for

' ! sequencesy;[n] as a sequences afls, created from cyclic
k € K. Therefore, we only need to require th@t(?’?) # 0 shifts of one basic sequence, in a way that yields an invertib
for k € K in order for® to be invertible. The matrbW is 44y A Such rectangular pulses with alternating signs can
a Vandermonde matrix, and therefpre has full column rank Ba easily implemented in hardware [16]. In Figs. 5 ahd 6,
long agN > _K [23]. The last matrle, can be designed to one modulating waveform is shown in the time and frequency
be left invertible, by proper selection of the sequenegs], domains, forp = N = K = 7. The original time-domain
where a necessary condition is thab N. o waveform is comprised of rectangular pulses, whereas lssipa
We summarize our results in the following proposition:  fiyering resuits in a smooth modulating waveform. Switchin
Proposition 1. Consider the system depicted in Fig. 4, whert® the frequency domain, the Fourier series coefficients are
the modulation waveforms are given 80). If the following shaped byP(w), the CTFT of the pulse shape. The shaping

conditions hold filter frequency response&7(w), is designed to transfer only
1) p>N>K the Fourier coefficients whose index is a member of the set
2) The frequency response of the shaping pylgg satis- © = {=3;--,3}, suppressing all other coefficients.
fies (28), 2)_R0bustness to _Samplmg Channels Fallurldgxt we
3) The frequency response of the pulsé) satisfies provide a setup which can overcome failures in a given
P (Q_Wk) £0fork ek number of the sampling channels. The identification of the
T 1

4) The sequences;|n] are chosen such that the matd malfunctioning channels is assumed to be performed by some

whoseinth element is given by;[n], has full column external hardware. , ,
rank We considerp sampling channels, and maximal number

of malfunctioning channels which is denoted py. Since
disregarding o). channels is equivalent to the deletionyof
We now give two useful configurations of pulse sequencews in the matrixA, it is required to have at leagt> N +p.
modulation schemes, that satisfy the conditions of Preposampling channels. In addition the new submatkix which
tion . is obtained fromA by omitting of the corresponding rows

then the mixing matrix$ in (IT) is left invertible.



15 . . . . rows fromaA, i.e

1 N e maxlog(cond A)) s.t A € {p — p. rows submatrices oA} .
\ s A
N\ 40
o5t \ / / 1 . . o
\ / / It can be seen that for. < 6 a relatively low condition number
0 \ y \ / of the matrix A is achieved in the worst case, suggesting
\ / \ that its rank isN as required and\f is not ill-conditioned.
05} o \ / 1 Therefore, we can overcome failure in up 6osampling
! \ [ channels, using this system.
\ /
-15 v 18
@
-2t original modulating waveform Qo 16t
= = filtered modulating waveform g
-2.5 : : : : € 4y
' c
0 0.2 0.4 0.6 0.8 1 S 12}
time [T] =
S 10f
Fig. 5. Modulating waveform in the time domain, before angrafiltering. o 8
= 8f
IS
E 6l
0.6 - € 4}
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Fig. 7. Robustness to sampling channels failure examples= K = 9,
p = 18, two pulse generators.

V. RELATED WORK
A. Single-channel Sampling with the SoS Filter

The work in [8] considered single-channel sampling
schemes for pulse streams. The proposed sampling scheme

frequency [21UT] is based on a filter which is comprised of a Sum of Sincs
(SoS) in the frequency domain. This filter can be expressed in
Fig. 6. Modulating waveform in the frequency domain. the time domain as
t ;2T
g(t) = rect (T) Z bkej%kt, (42)
ke

should be left invertible. This has to be satisfied for ever : . -
possible selection of. rows, therefore, we require that the\xherelC is the chosen index set, and the coefficieflis .c

. . can be chosen to be arbitrary nonzero values.
matrix A should be designed, such that apy- p. rows ' o . .
) . : . We first focus on periodic streams of pulses, with period
will form a rank-N matrix. Following our ideas from the

. . ) for which the signal is filtered by the SoS filter prior to
previous discussion, we demonstrate how to reduce the numbé. . ; : )
; : .~ = uniform sampling, as depicted in FIg. 8. The resulting saspl
of required generators, for the current setting. For siaityli re given b
we assume > 2p. and that two different generators are used'® 9 y
The first half of the sampling channels use delayed versions c[n] = Z ka[k]ej%"knTs’ n=0,...,p—1, (42)
of the first generator output, and the second half uses the ke

second generator. By proper selection of the two sequenGifierer, — T/p is the sampling period. Using the matik

the condition mentioned above can be satisfied. defined in [(8) only now with parameteg = {0, T, ..., (p —
We now give a numerical example for a such choice. W8T}, and defining the diagonal matrB with kth diagonal

set N = K = 9 and usep = 18 sampling channels, which elementb, (42) can be written in matrix form as

are based on two generators only. Each generator produces _

a different sequence of1, which are chosen randomly. In ¢ =V(-t:)Bx. (43)

Fig.[d we plot the log of the maximal condition number&af Therefore, this is a special case of our mixing multichannel

obtained when going over all possible options for omitting sampling scheme in_-(11) with mixing matr& = V(—t,)B.



The matrix B is invertible by construction, an& (—t;) is Recovering the delays from y,, is a problem commonly

a Vandermonde matrix with distinct times, so ti#ats left- encountered in spectral analysis, which is closely related

invertible as long ap > K. In that case, the samples taken the sum of cisoids topic. It may be solved by the same

over one period in[[8], are equal to the samples at the outpuethods, e.g., the annihilating filter, as long as the number

of the p channels in our scheme. of integrationsp, satisfiesp > 2L. Under the infinite model

in [@3) with h(¢) = 4(¢), this sampling scheme allows perfect

reconstruction while operating at the rate of innovation.
However, as we will show in simulations, our method

exhibits much higher noise robustness than the integrator

Fig. 8. Single-channel sampling scheme using the Sos filter. approach. Moreover, for high rates of innovation, typigall

L > 4, the integrator scheme is unstable, whereas our

Exploiting the compact support of the SoS filter, the methaghproach remains stable even for very high values.of

was extended to the finite and infinite Settings as well [SP Th In addition, each integration en|arges the dynamic range of

extension is based on using arfold periodic continuation the output signal. As a result, the resolution of the anatog t

of the SoS filterg(t), where the parameter depends on digital converters (ADC) has to grow rapidly when advancing

the support of the pulse-shagdt). However, the infinite through the channels. This imposes very strong requiresnent

scheme does not achieve the rate of innovation. In additiqfh the ADC converters in use. In contrast, our scheme is well-

implementing an-fold periodic continuation of the filteg(t) palanced, i.e., the dynamic range stays approximatelyetime s

is harder to implement than the scheme we present in tiigoughout all channels, imposing no restricting requizata

paper. on the ADC converters used in the system.
We now examine which modulation waveforms are obtained

when using the mixing matrix from_[8]. By substituting the

z(t) —» SoS Filter — c[n]
t=nT

elements of this matrix intd(9) we get C. Multichannel Schemes for Shift-Invariant Pulse Streams
2T (i Another related work is the one presented [in] [14] which
(4) — J 3 k(t—iT/p) p
si(t) ;{bke ! : (44) treats the Sl signal modél{117) presented in Sedfion]lll{Be T

) _ model considered in_[14], is more general than the one in
It is easily shown that these waveforms can be expressed ggs work, since condition[{2) is not required. However, as
si(t) = §(—(t —iT/p)), (45) We see next, wheri{2) holds, the proposed method has some

advantages over [14].

whereg(t) is the periodic continuation of the SoS filtgft). The sampling scheme proposediinl[14] is depicted in[Fig. 9.

Therefore, in each channel the signal is modulated by|Q each channel, the input signal is filtered by a band-

delayed version of the periodic SoS filter. The equivalenggited sampling kernes: (—t) followed by a uniform sampler

of the schemes is easy to explain: sampling the convolutigBerating at a rate df/T. After the sampling process, a prop-

between the input signal and the Sos filterlin [8], is equivarly designed digital filter correction bank, whose frequen

lent to performing inner products (multiplication follodidoy response in the DTFT domain is denoted herévbe«7), is

integration) with delayed and reflected versions of thigfilt applied on the sampling sequences. The exact form of trés filt

This relation provides us another valid class of modulatigfynk is detailed in [14]. It was shown in [14], that the ESPRIT

waveforms. algorithm can be applied on the new corrected samples, in
order to recover the unknown delays.

B. Chain of Integrators

Sampling schemes for infinite streams of pulses have al-
ready been presented [8], ]10], however, they do not achieve
the minimal sampling rate, i.e., the rate of innovation. Aenet z (1)
work [13] presented a sampling scheme operating at the fate o
innovation. The proposed method was based on multichannel
sampling, similar to our approach. However, the signal rhode
is limited to streams of Dirac impulses, whereas our scherfiig. 9. Proposed sampling scheme[ini[14].
supports more general pulse shapes.

The method in[[13] is based on the observation thattlie The sampling rate achieved by the method [in] [14] is
integral over a Dirad (¢ —t;) on the interval0, T, is given by generally2L /T, where for certain signals it can be reduced to
(T —t;)™~ L. Following this observation, a sampling scheméL +1)/T'. Such signals satisfy ditspar{{b[m],m € Z})) =
based on successive integration of the signal is proposed, iL, where the vectorb[m] are related to the vectors[m)]
the sample at theath channel is ann-fold integration of the through some filtering operations that are defined.in [14]sTh
signal. The resulting sample at the output of thia channel condition is different than the one obtained here, which di-
is given by rectly depends on the vectaif:| and not on a filtered version

I of them. Therefore the sampling rate, when using the scheme
Y = ZQZ(T —t)™ 1t m=0,1,....,p— 1. (46) in [14], can be reduced t¢L + 1)/T for different signals.
=1

— F—d; [n]
M (5]“’1')

o ol e, [n]

t=nT

However, this fact is not surprising, since each approach ha



10

a different analog sampling stage, and therefore corespotite frequency bands in [15] is analogous to mixing the Fourie
to a different sampling operator. Each of these operatoss faefficients in our scheme.
a different invertibility condition. However, in any castae Using the method in[15] on our signal model is highly in-
worst-case minimal sampling rate for both method84igT. efficient, since our signal model is generally non-bandkahj

The proposed method has several advantages over the ane does not have a sparse structure in the frequency domain.
presented in[[14]. First the equivalent stage for the digitdherefore, we choose a different path presented in thisrpape
correction in[[14], is replaced by the inversion of the s exploiting the sparse structure of the signal in the time a@iom
H andS, since Nevertheless the modulation concepts introduced_in [15] is

used here as well, and eventually the sampling stages of both

(47)  methods are similar.
This can be viewed as a one-tap digital correction filter bank e note here some differences between the schemes. First,

in contrast to the filteM(e*“T), which generally has a |argerfollowing the mixing stage, we use an integrator in contrast

number of taps. Therefore, the correction stage of the mego ©© the LPF used in[[15]. This difference, of course, is a
method, is much simpler, and requires lower computatiorf&@Sult of the different signal quantities measured, i.eyrfer
complexity, than the one i [14]. coefﬂments in our work as opposed to .the. frequency bands
An additional advantage of our method, is that the approaffntent in [15]. The second difference is in the purpose of
of [14] requires collection of an infinite number of sampled® mixing procedure. In_[15] the mixing is done in order to
even in the case where the input signal contains a finite numbgduce the sampling rate relatively to the Nyquist rate.un o
of periods. Moreover, if one is interested only in a finit§€ting. the mixing is used in order to simplify the hardware

time interval of the signal, the method in [14] does not allodNPlémentation and to improve the robustness to failurena o

processing it separately. This is in contrast to the proposgf the sampling channels. o »
scheme, which integrates on finite time intervals, and CanNonetheIess, the hardware considerations in the mixing

collect samples only from the relevant periods. stage in both systems is similar. Recently, a prototype ef th
MWC has been implemented in hardwdrel[16]. This design is

composed ofp = 4 sampling channels, where the repetition

D. Modulated Wideband Converter rate of the modulating waveforms 197 =~ 20 MHz. In each

As mentioned before, the concept of using modulatigperiod there aréV = 108 rectangular pulses. This prototype,
waveforms, is based on ideas which were presented_in [M8h certain modifications, can be used in order to implement
for a different signal model. In the sequel, we briefly prése@ur sampling scheme as well.
the sampling problem treated in_|15] and its relation to our
setup. As we show the practical hardware implementation of VI. SIMULATIONS
both systems is similar. We now demonstrate the performance of our proposed

The model in [[15] is of multiband signals: signals whoseethod, in the presence of noise. We compare our results to
CTFT is concentrated orVpangs frequency bands, and thethose achieved by the integrators methiod [13]. We examine
width of each band is no greater th&h The location of the three modulation waveforms which are supported by our
bands is unknown in advance. An example of such a sigmakthod: cosine and sine waveform (tones), filtered rectangu
is depicted in Fig[7l0. A low rate sampling scheme allowinglternating pulses (rectangular) and waveforms obtainemu f
recovery of such signals, at a ratedd® Npangswas proposed in delayed versions of the SoS filter (SoS). Note that, as disclis
[B]. This scheme exploits the sparsity of the multiband algn in Sectiorf V-4, the samples obtained by the third configorati
in the frequency domain, to reduce the sampling rate wé$oS) are exactly equal to the samples of the single channel

y[m] = (SH)™"e[m].

below the traditional Nyquist rate. method in[[8], and therefore both setups provide the same per
formance. For the rectangular pulses scheme, the modulatio
B, waveforms are generated using a single generator, as séstus
! - in Section[IV-B. The shaping filtey(t) is taken as an ideal
; . LPF with transition band of widtR7 /T". White gaussian noise

is added to the samples.
Fig. 10. Multiband signal model. We first consider a finite stream df = 2 Diracs with

t = [0.2567,0.387]7, and amplitudesa = [1,0.8]7. We set

Later in [15], this sampling scheme was extended to a mdiee system parameters as= K = N = 5. The estimation

practical one, which uses a modulation stage and referredor of the time-delays versus the SNR is depicted in[Eip. 11
to as the Modulated Wideband Converter (MWC). In eadbr the various approaches. Evidently, our approach outper
channel of the proposed multichannel sampling scheme, foems the integrators method in terms of noise robustness,
input signal is modulated with some periodic waveform, anfdr all configurations. There is a slight advantage2dB for
then sampled using a LPF followed by a low rate uniforrthe schemes based on tones and SoS, over the scheme which
sampler. The main idea here is that in each channel, thses alternating pulses, where the first two configuratiams h
spectrum of the signal is scrambled, such that a portionef thimilar performance.
energy of all bands appears at baseband. Therefore, the inpdurning to higher order problems, in Fig.]12 we show the
to the sampler contains a mixture of all the bands. Mixing a&sults for, = 10 Diracs with times randomly distributed in
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Fig. 11. Performance in the presence of noise: time estimagfror of our Fig. 12. Our method vs. integrators approach| [13], foe= 10 pulses.
method vs. integrators approach[13]. The signal consists & 2 pulses.

1
the interval[0,7") and amplitudes equal one, where we set —a fji[k] _
N = p = K = 21. The instability of the integrator method .| ideal filter
b . R . . Chebyshev order 3
ecomes apparent in this simulation on the one hand where, on

. . . Chebyshev order 10
the other hand, our approach achieves good estimatiortsesul
This demonstrates that our method is stable even for high o6} T T
model order.

The performance advantage of the tones and SoS based
schemes is now around.5dB. We conclude that from a 0.4r
noise robustness point of view, using multiple frequency
sources or SoS waveforms is preferable over the use of a
single pulse generator. However, as discussed in SdcHDh
pulse sequences based schemes have advantages fromapractic
implementation considerations, and reduce the hardware co
plexity. In addition, the performance degradation is reatde, B 0 5
and the estimation error is still significantly lower tharatth frequency [21VT]
of the integrators approach [13]. Therefore, the flexiibf Frequency responses of the shaping filters: idesdisp filter vs.
our approach, allows the system designer to decide betw%é}tlcal Chebyshev filters.
better performance in the presence of noise, or lower haslwa
complexity.

We now explore the use of practical shaping filters, faimplitudesa = [1,0.8]7. Clearly, a Chebysheuv filter of order
the rectangular pulses scheme, rather than the ideal omgsclosely approaches the performance of an ideal LPF. In
used above. Once practical filters are used, the rejectiongefdition, for SNR levels belows0dB, using a Chebyshev
coefficients whose index is not in the s€tis not perfect. filter of order 6 provides good approximation. Therefore,
We set the shaping filtey(¢) to be a Chebyshev (Type I)the modulation waveform generation stage of our proposed
LPF [17] of various orders, with rippld dB. The Chebyshev method can be implemented using practical analog filters.
filter is a good choice for our requirements since it has a
steeper roll-off than other filters, resulting in betterejon
of the undesired coefficients. The rapid transition betwiben
pass-band and stop-band of the Chebyshev filter comes at thin this work, we proposed a new class of sampling schemes
expense of larger ripple in the pass-band, however, ripplefor pulse streams. The proposed method allows recovery
of minor concern for our method since it is digitally cormtt of the delays and amplitudes defining such a signal, while
when inverting the matriXS. The cutoff frequency was setoperating at the rate of innovation. In contrast to previous
to 2X| K/2|. The frequency response of the various filters iworks [12], [13] which achieved the rate of innovation, our
shown in Fig[1B. approach supports general pulse shapes, rather than diracs

The estimation error of the time-delays versus the SNR agly. In addition, as we demonstrate by simulations, our
depicted in Fig[[I4, for various filter orders. The simulatiomethod exhibits better noise robustness than the one pegsen
consists of L = 2 Diracs witht = [0.2567,0.46T)7, and in [13], and can accommodate high rates of innovation.

0.2}

VIl. CONCLUSION
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Fig. 14. Performance of practical shaping filters of variouders vs. ideal

filtering.

The proposed scheme is based on multiple channels, eggh

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

one comprised of mixing with a properly chosen waveform

followed by an integrator. We exploit the degrees of freedo
in the waveforms selection, and provide several useful genfiyy)
urations, which allow simplified hardware implementationl a

robustness to channel failure. Using simulations we furtixe

plored practical issues, and showed that standard anatesfil

could be used in the waveform generation stage. Moreover, we
draw connections with the work in [15], [16] and show that
the hardware prototype implemented there, can be used for

our scheme, with certain modifications.

REFERENCES
(1]
[2]

Y. C. Eldar and T. Michaeli, “Beyond bandlimited samgih IEEE
Signal Process. Magvol. 26, no. 3, pp. 48-68, May 2009.
T. Michaeli and Y. C. Eldar, “Optimization techniques imodern

sampling theory,” inConvex Optimization in Signal Processing and

CommunicationsD. P. Palomar and Y. C. Eldar, Eds.
University Press, 2010.

M. Unser, “Sampling-50 years after shanndAroc. IEEE vol. 88, no. 4,
pp. 569 -587, apr 2000.

Y. C. Eldar, “Compressed Sensing of Analog Signals inftShivariant
Spaces,[EEE Trans. Signal Processvol. 57, pp. 2986—2997, 2009.
M. Mishali and Y. C. Eldar, “Blind Multiband Signal Recstruction:

(3]
(4]
(5]

Compressed Sensing for Analog Signal§EE Trans. Signal Process.

vol. 57, no. 3, p. 993, 2009.

M. Vetterli, P. Marziliano, and T. Blu, “Sampling sigrslwith finite
rate of innovation,”|EEE Trans. Signal Processvol. 50, no. 6, pp.
1417-1428, Jun 2002.

(6]

[71
sampling of signal innovations/EEE Signal Process. Magvol. 25,
no. 2, pp. 31-40, March 2008.

R. Tur, Y. C. Eldar, and Z. Friedman, “Low rate sampling milse
streams with application to ultrasound imagingrXiv.org 1003.2822;
submitted to IEEE Trans. Signal Process.

P. Stoica and R. Mose#ntroduction to Spectral Analysis Englewood
Cliffs, NJ: Prentice-Hall, 1997.

(8]

El

[10]
structing signals of finite rate of innovation: Shannon reesttang-fix,”

IEEE Trans. Signal Processvol. 55, no. 5, pp. 1741-1757, May 2007.

[11] I. Maravic and M. Vetterli, “Sampling and reconstrueti of signals with
finite rate of innovation in the presence of noisEEEE Trans. Signal

Process. vol. 53, no. 8, pp. 2788-2805, Aug. 2005.

T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and ICoulot, “Sparse

P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling momisnand recon-

Cambridge

12

C. Seelamantula and M. Unser, “A generalized samplirgthad for
finite-rate-of-innovation-signal reconstructionfEEE Signal Process.
Lett, vol. 15, pp. 813-816, 2008.

J. Kusuma and V. Goyal, “Multichannel sampling of pasdrit signals
with a successive approximation propertyEEE Int. Conf. Image
Process. (ICIP2006)pp. 1265 —1268, oct. 2006.

K. Gedalyahu and Y. C. Eldar, “Time delay estimationnfrdow rate
samples: A union of subspaces approadb,’appear in IEEE Trans.
Signal Process.

M. Mishali and Y. C. Eldar, “From theory to practice: Stlyquist
sampling of sparse wideband analog signdBEE J. Sel. Topics Signal
Process. vol. 4, no. 2, pp. 375-391, Apr. 2010.

M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshaxarhpling:
Analog to digital at sub-nyquist ratesCIT Report vol. 751.

H. Lam, Analog and digital filters; design and realization Prentice
Hall, 1979.

Z. Q. Hou and Z. D. Wu, “A new method for high resolutiortiestion
of time delay,” IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP ;8®l. 7, pp. 420-423, May 1982.
R. Schmidt, “Multiple emitter location and signal parater estimation,”
IEEE Trans. Antennas Propageol. 34, no. 3, pp. 276-280, Mar 1986.
G. Bienvenu and L. Kopp, “Adaptivity to background reispatial
coherence for high resolution passive methods,Atoustics, Speech,
and Signal Processing, |IEEE International Conference oASSP '80.
vol. 5, Apr 1980, pp. 307-310.

R. Roy and T. Kailath, “ESPRIT-estimation of signal aareters via
rotational invariance techniquesEEE Trans. Acoust., Speech, Signal
Process. vol. 37, no. 7, pp. 984-995, Jul 1989.

T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothfor direction-
of-arrival estimation of coherent signaldEEE Trans. on Acoustics,
Speech and Signal Processingl. 33, no. 4, pp. 806-811, Aug 1985.

] K. Hoffman and R. Kunze, “Linear Algebra, 2nd edn.” 1971

G. H. Golub and C. F. Van Loamatrix Computations3rd ed. Johns
Hopkins University Press, 1996.



	I Introduction
	II Finite Streams of Pulses
	II-A Notations and Definitions
	II-B Problem Formulation
	II-C Direct Multichannel Sampling
	II-D Mixing the Fourier Coefficients
	II-D1 Cosine and Sine waveforms
	II-D2 Periodic Waveforms


	III Infinite Streams of Pulses
	III-A General Model
	III-B Stream of Pulses with Shift-Invariant Structure

	IV Modulation Waveforms
	IV-A General Periodic Waveforms
	IV-B Pulse Sequence Modulation
	IV-B1 Single Generator
	IV-B2 Robustness to Sampling Channels Failure


	V Related Work
	V-A Single-channel Sampling with the SoS Filter
	V-B Chain of Integrators
	V-C Multichannel Schemes for Shift-Invariant Pulse Streams
	V-D Modulated Wideband Converter

	VI Simulations
	VII Conclusion
	References

