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Low Rate Sampling of Pulse Streams with
Application to Ultrasound Imaging
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Abstract—Signals comprised of a stream of short pulses appear
in many applications including bio-imaging, radar, and ultraw-
ideband communication. Recently, a new framework, referred
to as finite rate of innovation, has paved the way to low rate
sampling of such pulses by exploiting the fact that only a small
number of parameters per unit time are needed to fully describe
these signals. Unfortunately, for high rates of innovation, existing
approaches are numerically unstable. In this paper we propose a
general sampling approach which leads to stable recovery even in
the presence of many pulses. We begin by deriving a condition
on the sampling kernel which allows perfect reconstructionof
periodic streams of pulses from a minimal number of samples.
This extends previous work which assumes that the sampling
kernel is an ideal low-pass filter. A compactly supported class of
filters, satisfying the mathematical condition, is then introduced,
leading to a sampling framework based on compactly supported
kernels. We then extend our periodic solution to finite and
infinite streams, and show that our method is numerically stable
even for a large number of pulses per unit time. High noise
robustness is demonstrated as well when the time delays are
sufficiently separated. Finally, we apply our results to ultrasound
imaging data, and show that our techniques result in substantial
rate reduction with respect to traditional ultrasound sampling
schemes.

Index Terms—Analog-to-digital conversion, annihilating filters,
finite rate of innovation, generalized sampling, perfect recon-
struction, ultrasound imaging.

I. I NTRODUCTION

SAMPLING is the process of representing a continuous-
time signal by discrete-time coefficients, while retaining

the important features present in the analog signal. The well-
known Shannon-Nyquist theorem states that the minimal sam-
pling rate required for perfect reconstruction of bandlimited
signals is twice the maximal frequency, and describes a sam-
pling and reconstruction scheme which achieves this minimal
rate. This result has been generalized to minimal rate sampling
schemes for signals lying in an arbitrary subspace [1], [2].

Recently, there has been growing interest in sampling of
signals consisting of a stream of short pulses, where the pulse
shape is known. Such signals have a finite number of degrees
of freedom per unit time, also known as the Finite Rate of
Innovation (FRI) property [3]. This interest is motivated by
applications such as digital processing of neuronal signals,
bio-imaging, image processing and ultrawideband (UWB)
communications, where such signals are present in abundance.
Our work is motivated by the possible application of this
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model in ultrasound imaging. Ultrasound images are formed
by transmitting an ultrasonic pulse into a tissue. Echoes of
the pulse bounce off scatterers within the tissue, and create
a signal consisting of a stream of pulses at the receiver. The
time-delays and amplitudes of the echoes indicate the position
and strength of the various scatterers, respectively. Therefore,
determining these parameters from low rate samples of the
received signal is an important problem. Reducing the rate
allows more efficient processing which can translate to power
and size reduction of the ultrasound imaging system.

Our goal is to design a minimal rate single-channel sampling
and reconstruction scheme for pulse streams that is stable
even in the presence of many pulses. Since the set of FRI
signals does not form a subspace, classic subspace schemes
cannot be directly used to design low-rate sampling schemes.
Mathematically, FRI signals conform with a broader model
of signals lying in a union of subspaces [4]–[8]. Although
the minimal sampling rate required for such settings has been
derived, no generic sampling scheme exists for the general
problem. Nonetheless, some special cases have been treated
in previous work, including streams of pulses.

A stream of pulses can be viewed as a parametric signal,
uniquely defined by the time-delays of the pulses and their
amplitudes. An efficient sampling scheme for periodic streams
of impulses, havingL impulses in each period, was proposed
in [3], [9]. This sampling scheme allows to obtain a set of
Fourier series coefficients of the periodic signal. Once these
coefficients are known, the problem of determining the time-
delays and amplitudes of the pulses becomes that of finding the
frequencies and amplitudes of a sum of sinusoids. The latter
is a standard problem in spectral analysis [10] which can be
solved using conventional methods, such as the annihilating
filter approach, as long as the number of samples is greater
than 2L. This result is intuitive since2L is the number of
degrees of freedom in each period:L time-delays andL
amplitudes.

Periodic streams of pulses are mathematically convenient to
analyze, however not very practical. In contrast, finite streams
of pulses are prevalent in applications such as ultrasound
imaging. The first treatment of finite Dirac streams appears
in [3], in which a Gaussian sampling kernel was proposed.
The time-delays and amplitudes are then estimated from the
Gaussian tails. This method and its improvement [11] are
numerically unstable for high rates of innovation, since they
rely on the tails of the Gaussians which take on low values. A
different approach based on moments of the signal was devel-
oped in [12], where the sampling kernels have compact time
support. This method treats streams of Diracs, differentiated
Diracs, and short pulses with compact support and no DC
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component. However, the authors point out that this sampling
scheme is numerically unstable for largeL. To the best of our
knowledge, a numerically stable sampling and reconstruction
scheme (when the delays are sufficiently separated) for high
order problems has not yet been reported.

Infinite streams of pulses arise in applications such as
UWB communications, where the communicated data changes
frequently. Using a compactly supported filter [12], and under
certain limitations on the signal, the infinite stream can be
divided into a sequence of separate finite problems. The
individual finite cases may be treated using methods for the
finite setting, however this leads to a sampling rate that is
higher than the rate of innovation. Since the infinite stream
reconstruction scheme is based on the finite one, the instability
in high order problems applies here as well. In addition,
the constraints that are cast on the signal become more and
more stringent as the number of pulses per unit time grows.
In a recent work [13] the authors propose a sampling and
reconstruction scheme for finite and infinite streams of dirac
impulses for the restricted case in which there is no more
than one impulse per sampling period. This may be viewed as
a reduction of the infinite setting to a sequence of finite stream
problems, each withL = 1. Our interest here is in high values
of L.

Another related work [7] proposes a semi-periodic model,
where the pulse time-delays do not change from period to
period, but the amplitudes vary. This is a hybrid case in
which the number of degrees of freedom in the time-delays is
finite, but there is an infinite number of degrees of freedom
in the amplitudes. Therefore, the proposed recovery scheme
generally requires an infinite number of samples. This differs
from the periodic and finite cases we discuss in this paper
which have a finite number of degrees of freedom and,
consequently, require only a finite number of samples.

In this paper we study sampling of signals consisting of a
stream of pulses, covering the three different cases: periodic,
finite and infinite streams of pulses. The criteria we consider
for designing such systems are: a) Minimal sampling rate
which allows perfect reconstruction, b) numerical stability
(with sufficiently separated time delays), and c) minimal
restrictions on the number of pulses per sampling period.

We begin by treating periodic pulse streams. For this
setting, we develop a general sampling scheme which allows
to determine the times and amplitudes of the pulses, from
a minimal number of samples. Assuming an arbitrary pulse
shape, we derive a condition on the sampling kernel, under
which the solution is guaranteed. As we show, previous work
[3] is a special case of our extended results. In contrast to
the infinite time-support of the filters in [3], we develop a
compactly supported class of filters which satisfy our math-
ematical condition. This class of filters consists of a sum of
sinc functions in the frequency domain. We therefore refer
to such functions asSum of Sincs(SoS). To the best of our
knowledge, this is the first class of finite support filters that
solve the periodic case.

The compact support of the SoS class, in contrast to the
lowpass filter proposed in [3], is the key to extending the
periodic solution to the finite stream case. Generalizing the

SoS class, we design a sampling and reconstruction scheme
which perfectly reconstructs a finite stream of pulses from
a minimal number of samples, as long as the pulse shape
has compact support. Our reconstruction is numerically stable
for both small values ofL and large number of pulses, e.g.,
L = 100. In contrast, Gaussian sampling filters [3], [11] are
unstable forL > 9, and we show in simulations that the
moments approach [12] exhibits large estimation errors for
L ≥ 5. In addition, we demonstrate substantial improvement
in noise robustness even for low values ofL. Our advantage
stems from the fact that we propose compactly supported
filters on the one hand, while staying within the regime of
Fourier coefficients reconstruction on the other hand.

The compact support of the SoS class becomes advan-
tageous when we extend our results to the infinite stream
setting as well. In this context, we consider a signal consisting
of pulse bursts, where within each burst there may be a
large number of closely spaced pulses. We assume a maximal
permitted density of the bursts, and design a sampling and
reconstruction scheme which guarantees perfect reconstruction
from low rate samples. The proposed method is based on our
solution for the finite case, and therefore exhibits numerically
stable reconstruction even for a large number of closely spaced
pulses, which cannot be treated using existing approaches [12].
Another advantage is that in contrast to previous work, the
constraints cast on the structure of the signal are independent
of L (the number of pulses in each burst) and therefore similar
sampling schemes may be used for different values ofL.
Finally, we show that our sampling scheme requires lower
sampling rate forL ≥ 3.

As an application, we demonstrate our finite stream sam-
pling scheme on real ultrasound imaging data acquired by
GE healthcare’s ultrasound system. We obtain high accuracy
estimation while reducing the required number of samples by
2 orders of magnitude in comparison with current imaging
techniques.

The remainder of the paper is organized as follows. In
Section II we present the periodic signal model, and derive
a general sampling scheme. A specific class of filters (the
SoS class) which satisfy this condition, and have compact
support, is then developed and demonstrated via simulations.
An extension of the SoS class to the finite case is presented in
Section III, followed by simulations showing the advantages of
our method in high order problems and in noisy settings. In
Section IV, we present our sampling scheme for an infinite
stream of pulses. Section V explores the relationships of
our work with previous methods. Finally, in Section VI, we
demonstrate our method on real ultrasound imaging data.

II. PERIODIC STREAM OF PULSES

A. Notations and Definitions

Matrices and vectors are denoted by bold font, with low-
ercase letters corresponding to vectors and uppercase letters
to matrices. Thenth element of a vectora is written as
an, and Aij denotes theijth element of a matrixA. Su-
perscripts(·)∗, (·)T and (·)H represent complex conjugation,
transposition and conjugate transposition, respectively. The
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Moore-Penrose pseudo-inverse of a matrixA is written as
A†. The continuous-time Fourier transform (CTFT) of a
continuous-time signalx (t) ∈ L2 is defined byX (ω) =
∫∞

−∞
x (t) e−jωtdω, and

〈x (t) , y (t)〉 =
∫ ∞

−∞

x∗ (t) y (t) dt, (1)

denotes the inner product between twoL2 signals.

B. Problem Formulation

Consider aτ -periodic stream of pulses, defined as

x(t) =
∑

m∈Z

L
∑

l=1

alh(t− tl −mτ), (2)

whereh(t) is a known pulse shape,τ is the known period,
and {tl, al}Ll=1

, tl ∈ [0, τ), al ∈ C, l = 1 . . . L are the
unknown delays and amplitudes. Our goal is to samplex(t)
and reconstruct it, from a minimal number of samples. Since
the signal has2L degrees of freedom, we expect the minimal
number of samples to be2L. We are primarily interested
in pulses which have small time-support. Direct uniform
sampling of2L samples of the signal will result in many zero
samples, since the probability for the sample to hit a pulse is
very low. Therefore, we must construct a more sophisticated
sampling scheme.

Define the periodic continuation ofh(t) as f(t) =
∑

m∈Z
h(t −mτ). Using Poisson’s summation formula [14],

f(t) may be written as

f(t) =
1

τ

∑

k∈Z

H

(

2πk

τ

)

ej2πkt/τ , (3)

whereH(ω) denotes the CTFT of the pulseh(t). Substituting
(3) into (2) we obtain

x(t) =

L
∑

l=1

alf(t− tl)

=
∑

k∈Z

(

1

τ
H

(

2πk

τ

) L
∑

l=1

ale
−j2πktl/τ

)

ej2πkt/τ

=
∑

k∈Z

X [k]ej2πkt/τ , (4)

where we denoted

X [k] =
1

τ
H

(

2πk

τ

) L
∑

l=1

ale
−j2πktl/τ . (5)

The expansion in (4) is the Fourier series representation ofthe
τ -periodic signalx(t) with Fourier coefficients given by (5).

We will now show that once2L or more Fourier coefficients
of x(t) are known, we may use conventional tools from spec-
tral analysis in order to determine the unknowns{tl, al}Ll=1

.
The method by which the Fourier coefficients are obtained
will be presented in subsequent sections.

Define a setK of M consecutive indices such that
H
(

2πk
τ

)

6= 0, ∀k ∈ K. We assume such a set exists, which
is usually the case for short time-support pulsesh(t). Denote

by H theM ×M diagonal matrix withkth entry 1

τH
(

2πk
τ

)

,
and byV(t) theM ×L matrix with klth elemente−j2πktl/τ ,
wheret = {t1, . . . , tL} is the vector of the unknown delays. In
addition denote bya the length-L vector whoselth element is
al, and byx the length-M vector whosekth element isX [k].
We may then write (5) in matrix form as

x = HV(t)a. (6)

SinceH is invertible by construction we definey = H−1x,
which satisfies

y = V(t)a. (7)

The matrixV is a Vandermonde matrix and therefore has full
column rank [10], [15] as long asM ≥ L and the time-delays
are distinct, i.e.,ti 6= tj for all i 6= j.

Writing the expression for thekth element of the vectory
in (7) explicitly:

yk =
L
∑

l=1

ale
−j2πktl/τ . (8)

Evidently, given the vectorx, (7) is a standard problem of
finding the frequencies and amplitudes of a sum ofL complex
exponentials (see [10] for a review of this topic). This problem
may be solved as long as|K| = M ≥ 2L.

The annihilating filter approach used extensively by Vetterli
et al. [3], [9] is one way of recovering the frequencies. This
method can solve the problem using the critical number of
samplesM = 2L, as opposed to other techniques such as
MUSIC [16], [17] and ESPRIT [18] which require substantial
oversampling. Since we are interested in minimal-rate sam-
pling, we use the annihilating filter method throughout the
paper.

C. Obtaining The Fourier Series Coefficients

As we have seen, given the vector ofM ≥ 2L Fourier series
coefficientsx, we may use standard tools from spectral analy-
sis (e.g., annihilating filter) to determine the set{tl, al}Ll=1

. In
practice, however, the signal is sampled in the time domain,
and therefore we do not have direct access to samples ofx. Our
goal now is to design a single-channel sampling scheme which
will allow to obtain the vectorx from time-domain samples. In
contrast to previous work regarding the periodic case [3], [9]
which focused on a low-pass sampling filter, in this section we
derive a general condition on the sampling kernel allowing to
obtain the vectorx, and consequently recover the time-delays
t and the amplitudesa. For the sake of clarity we confine
ourselves to uniform sampling, but these results extend in a
straightforward manner to nonuniform sampling as well.

s
∗(−t)x(t) c[n]

t = nT

Fig. 1. Single channel sampling scheme.

Consider sampling the signalx(t) uniformly with sampling
kernel s∗(−t) and sampling periodT , as depicted in Fig. 1.
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The samples are given by

c[n] =

∫ ∞

−∞

x(t)s∗(t− nT )dt = 〈s(t− nT ), x(t)〉. (9)

Substituting (4) into (9) we have

c[n] =
∑

k∈Z

X [k]

∫ ∞

−∞

ej2πkt/τs∗(t− nT )dt

=
∑

k∈Z

X [k]ej2πknT/τ

∫ ∞

−∞

ej2πkt/τs∗(t)dt

=
∑

k∈Z

X [k]ej2πknT/τS∗(2πk/τ), (10)

whereS(ω) is the CTFT ofs(t). Choosing any filters∗(−t)
which satisfies

S∗(ω) =







0 ω = 2πk/τ, k /∈ K
nonzero ω = 2πk/τ, k ∈ K
arbitrary otherwise,

(11)

we can rewrite (10) as

c[n] =
∑

k∈K

X [k]ej2πknT/τS∗(2πk/τ). (12)

In contrast to (10), the sum in (12) is finite. Note that
(11) implies that any real filter meeting this condition will
satisfy k ∈ K ⇒ −k ∈ K, and in additionS(2πk/τ) =
S∗(−2πk/τ), due to the conjugate symmetry of real filters.

Defining theM ×M diagonal matrixS whosekth entry is
S∗(2πk/τ) for all k ∈ K, and the length-N vectorc whose
nth element isc[n], we may write (12) as

c = V(−ts)Sx (13)

where ts = {nT : n = 0 . . .N − 1}, and V is defined
as in (6) with a different parameter−ts and dimensions
N × M . The matrixS is invertible by construction. Since
V is Vandermonde, it is left invertible as long asN ≥ M .
Therefore,

x = S−1V†(−ts)c. (14)

In the special case whereN = M andT = τ/N , the recovery
in (14) becomes:

x = S−1DFT{c}, (15)

i.e., the vectorx is obtained by applying the Discrete Fourier
Transform (DFT) on the sample vector, followed by a correc-
tion matrix related to the sampling filter.

The idea behind this sampling scheme is that each sam-
ple is actually a linear combination of the elements ofx.
The sampling kernels∗(−t) is designed to pass the coeffi-
cientsX [k], k ∈ K while suppressing all other coefficients
X [k], k /∈ K. This is exactly what the condition in (11)
means. This sampling scheme guarantees that each sample
combination is linearly independent of the others. Therefore,
the linear system of equations in (13) has full column rank
which allows us to solve for the vectorx.

We summarize this result in the following theorem.

Theorem 1. Consider theτ -periodic stream of pulses of order
L:

x(t) =
∑

m∈Z

L
∑

l=1

alh(t− tl −mτ).

Choose a setK of consecutive indices for whichH(2πk/τ) 6=
0, ∀k ∈ K. Then the samples

c[n] = 〈s(t− nT ), x(t)〉, n = 0 . . .N − 1,

uniquely determine the signalx(t) for any filter s∗(−t)
satisfying condition(11), as long asN ≥ |K| ≥ 2L.

In order to extend Theorem 1 to nonuniform sampling, we
only need to substitute the nonuniform sampling times in the
vectorts in (14).

Theorem 1 presents a general single channel sampling
scheme. One special case of this framework is the one pro-
posed by Vetterli et al. in [3] in whichs∗(−t) = B sinc(−Bt),
whereB = M/τ andN ≥ M ≥ 2L. In this cases(t) is an
ideal low-pass filter of bandwidthB with

S(ω) = rect
( ω

2π

)

. (16)

Clearly, (16) satisfies the general condition in (11) withK =
{−⌊M/2⌋, . . . , ⌊M/2⌋} andS

(

2πk
τ

)

= 1, ∀k ∈ K. Note that
since this filter is real valued it must satisfyk ∈ K ⇒ −k ∈ K,
i.e., the indices come in pairs except fork = 0. Sincek = 0
is part of the setK, in this case the cardinalityM = |K| must
be odd valued so thatN ≥ M ≥ 2L+ 1 samples, rather than
the minimal rateN ≥ 2L.

The ideal low-pass filter is bandlimited, and therefore has
infinite time-support. Due to the infinite support of the filter
it cannot be extended to finite and infinite streams of pulses.
In the next section we propose a class of non-bandlimited
sampling kernels, which exploit the additional degrees of free-
dom in condition (11), and have compact support in the time
domain. The compact support allows us to extend this class
to finite and infinite streams, presented in Sections III and IV,
respectively. While the work in [12] focused on finite support
filters, their reconstruction scheme is based on moments of
the signal, rather than Fourier coefficients, and thereforethe
sampling kernels do not satisfy (11). As we demonstrate in
the following sections, our method is advantageous in both
high order problems and noisy scenarios, in which the moment
method becomes very sensitive.

D. Compactly Supported Sampling Kernels

Consider the following class of functions, which we call the
SoS class since it consists of a sum of sincs in the frequency
domain:

G(ω) =
τ√
2π

∑

k∈K

bk sinc

(

ω

2π/τ
− k

)

(17)

wherebk 6= 0, k ∈ K. The filter in (17) is real valued if and
only if k ∈ K ⇒ −k ∈ K andbk = b∗−k for all k ∈ K. Since
for each sinc in the sum

sinc

(

ω

2π/τ
− k

)

=

{

1 ω = 2πk′/τ, k′ = k
0 ω = 2πk′/τ, k′ 6= k

, (18)
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Fig. 2. The filterg(t) with all coefficientsbk = 1.
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Fig. 3. The filterg(t) with hamming window coefficients.

the filterG(ω) satisfies (11) by construction. Switching to the
time domain

g(t) = rect

(

t

τ

)

∑

k∈K

bke
j2πkt/τ , (19)

which is clearly a time compact filter with supportτ .
The SoS class in (19) may be extended to a more general

structure

G(ω) =
τ√
2π

∑

k∈K

bkφ

(

ω

2π/τ
− k

)

(20)

wherebk 6= 0, k ∈ K, andφ(ω) is any function satisfying:

φ (ω) =







1 ω = 0
0 |ω| ∈ N

arbitrary otherwise
. (21)

This more general structure allows for smooth versions of the
rect function, which is important when practically implement-
ing analog filters.

The functiong(t) represents a class of filters determined
by the parameters{bk}k∈K. These degrees of freedom offer
a filter design tool where the free parameters{bk}k∈K may

be optimized for different goals, e.g., parameters which will
result in a feasible analog filter.

Determining the parameters{bk}k∈K may be viewed from
a more empirical point of view. The impulse response of any
analog filter having supportτ may be written in terms of a
windowed Fourier series as

Φ(t) = rect

(

t

τ

)

∑

k∈Z

βke
j2πkt/τ . (22)

Confining ourselves to filters which satisfyβk 6= 0, k ∈ K,
we may truncate the series and choose:

bk =

{

βk k ∈ K
0 k /∈ K (23)

as the parameters ofg(t) in (19). With this choice,g(t) can
be viewed as an approximation toΦ(t). Notice that there is
an inherent tradeoff here: using more coefficients will result
in a better approximation of the analog filter, but in turn will
require more samples, since the number of samplesN must
be greater than the cardinality of the setK.

To demonstrate the filterg(t) we first chooseK =
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{−p, . . . , p} and set all coefficients{bk} to one, resulting in

g(t) = rect

(

t

τ

) p
∑

k=−p

ej2πkt/τ = rect

(

t

τ

)

Dp(2πt/τ),

(24)
where the Dirichlet kernelDp(t) is defined by

Dp(t) =

p
∑

k=−p

ejkt =
sin
((

p+ 1

2

)

t
)

sin(t/2)
. (25)

The resulting filter forp = 10 and τ = 1 sec, is depicted in
Fig. 2.

In Fig. 3 we show a different choice ofg(t) where thebk ’s
are chosen as a length-M symmetric Hamming window:

bk = 0.54− 0.46 cos

(

2π
k + ⌊M/2⌋

M

)

, k ∈ K. (26)

Notice that in both cases the coefficients satisfybk = b∗−k,
and therefore, the resulting filters are real valued.

E. Simulations

1) Demonstration of Our Sampling and Reconstruction
Scheme:We begin with demonstrating our sampling scheme.
The input signalx(t) consists ofL = 5 delayed and weighted
versions of a Gaussian pulseh(t)

h(t) =
1√
2πσ2

exp(−t2/2σ2), (27)

with parameterσ = 7 · 10−3, and periodτ = 1. The time-
delays and amplitudes were chosen randomly. In order to
demonstrate near-critical sampling we choose the set of indices
K = {−L, . . . , L} with cardinalityM = |K| = 2L+ 1 = 11.
We filter x(t) with g(t) defined in (19), where the coefficients
bk, k ∈ K were set to be the length-M symmetric Hamming
window given by (26). The output of the filter is sampled
uniformly N times, with sampling periodT = τ/N , where
N = M = 11. The sampling process is depicted in Fig. 4.

The Fourier series coefficients were obtained from the
samples as described in (14). Finally, the time-delays and
amplitudes were reconstructed using the annihilating filter
spectral analysis method. The reconstructed and original sig-
nals are depicted in Fig. 5. The estimation and reconstruction
are both exact to numerical precision.

2) Noisy Case:We now consider the case in which the
samples are corrupted by noise. We compare our performance
to the sinc filter method presented in [3], which has high noise
robustness as long as the pulses are sufficiently spaced, and
show that our method retains this robustness.

Our signal consists ofL = 2 pulses, where the pulse
here was chosen ash(t) = δ(t). The period was set to
τ = 1, K = {−2, . . . , 2}, andN = M = 5 samples were
taken, sampled uniformly with sampling periodT = τ/N .
The sampling kernel isg∗(−t) defined in (19), where all
coefficients{bk} were set to one. In our setup additive white
Gaussian noise (AWGN) is added to the samples, i.e., our
samples are given byy = c + n wherec is the uncorrupted

vector of samples, andn consists of independent zero-mean
Gaussian variables with varianceσ2. We define the SNR as:

SNR =
1

N ‖c‖2
2

σ2
, (28)

where ‖ · ‖2 denotes thel2-norm. In our experiments the
variance of the noise is set to give the desired SNR.

The simulation consists of1000 experiments for each SNR,
where in each experiment a new noise vector is created.
The time-delays were chosen to bet = τ · (1/3 2/3)T and
the amplitudes were set to one. The time-delays and the
amplitudes remain constant throughout the experiments. We
define the error in time-delay estimation as the average over
all experiments of‖t − t̂‖2

2
, wheret and t̂ denote the true

and estimated time-delays, respectively, sorted in increasing
order. In Fig. 6 we show the error as a function of SNR, for
our method versus the sinc sampling kernel. Evidently, both
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Fig. 6. Error in time-delay estimation as a function of SNR using our
approach and the sinc filter method.

methods have the same performance. However our sampling
scheme for the periodic case consists of sampling kernels
having compact support in the time domain. In the next
section we exploit the compact support of our filter, and
extend the results to the finite stream case. We will show that
our sampling and reconstruction scheme offers a numerically
stable solution for this case, with high noise robustness.

Finally, we can improve reconstruction accuracy at the
expense of oversampling, as illustrated in Fig. 7. Here we
show recovery performance for oversampling factors of 2, 4
and 8.

III. F INITE STREAM OF PULSES

A. Extension of SoS Class

Consider now a finite stream of pulses, defined as

x̃(t) =
L
∑

l=1

alh(t− tl), tl ∈ [0, τ), al ∈ R, l = 1 . . . L,

(29)
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Fig. 7. The effect of oversampling on estimation error. Oversampling by a
factor of 1, 2, 4 and 8.

where, as in Section II,h(t) is a known pulse shape, and
{tl, al}Ll=1

are the unknown delays and amplitudes. The time-
delays{tl}Ll=1

are restricted to lie in a finite time interval
[0, τ). Again, there are only2L degrees of freedom, so
we expect the critical number of samples to be2L. We
wish to design a sampling and reconstruction method which
perfectly reconstructs the signalx̃(t) from a minimal number
of samples. In this section we assume that the pulseh(t) has
finite supportR, i.e.,

h(t) = 0, ∀|t| ≥ R/2. (30)

This is a rather weak condition, since our primary interest
is in very short pulses which have wide, or even infinite,
frequency support, and therefore cannot be sampled efficiently
using classical sampling schemes for bandlimited signals.

Note thatx(t) in (2) is the periodic continuation of̃x(t) in
(29). Therefore,̃x(t) may be convolved with a Dirac comb to
yield x(t):

x(t) = x̃(t) ∗
∑

m∈Z

δ(t−mτ). (31)

Exploiting this observation, we can write the samples of the
periodic signalc[n] as

c[n] = x(t) ∗ g∗(−t)
∣

∣

t=nT

= x̃(t) ∗
∑

m∈Z

δ(t−mτ) ∗ g∗(−t)
∣

∣

t=nT

= x̃(t) ∗ g̃∗(−t)
∣

∣

t=nT
(32)

where we denoted̃g(t) =
∑

m∈Z
g(t+mτ). In other words,

sampling the periodic signalx(t) in (2) with a filterg∗(−t), is
equivalent to sampling the aperiodic signalx̃(t) with the filter
g̃∗(−t) which is the periodic extension ofg∗(−t). Therefore,
in order to obtain the exact same samplesc[n], n = 0 . . .N−1
as in (12) for the periodic case, we could samplex̃(t) with a
periodic sampling kernel̃g∗(−t). However, a periodic filter is
of course impractical since it has infinite energy and infinite
support. We now propose a variant of the above approach

which exploits the compact support of the filterg(t), and under
mild assumptions on the pulseh(t) obtains precisely the same
samplesc[n] as in the periodic case, while using a compactly
supported filter.

From (10), and usingg∗(−t) as the sampling kernel, the
samples taken in the periodic case can be written as

c[n] = 〈g(t− nT ), x(t)〉

=
∑

m∈Z

L
∑

l=1

al

∫ ∞

−∞

h(t− tl −mτ)g∗(t− nT )dt

=
∑

m∈Z

L
∑

l=1

al

∫ ∞

−∞

h(t)g∗ (t− (nT − tl −mτ)) dt

=
∑

m∈Z

L
∑

l=1

alϕ(nT − tl −mτ), (33)

where we defined

ϕ(ϑ) = 〈g(t− ϑ), h(t)〉. (34)

Sinceg(t) in (19) vanishes for all|t| > τ/2 andh(t) satisfies
(30), the support ofϕ(t) is (R + τ), i.e.,

ϕ(t) = 0 for all |t| ≥ (R+ τ)/2. (35)

Using this property, the summation in (33) will be over
nonzero values for indicesm satisfying

|nT − tl −mτ | < (R+ τ)/2. (36)

Sampling within the window[0, τ), i.e., nT ∈ [0, τ), and
noting that the time-delays lie in the intervaltl ∈ [0, τ), l =
1 . . . L, (36) implies that

(R+τ)/2 > |nT − tl−mτ | ≥ |m|τ −|nT − tl| > (|m|−1)τ.
(37)

Here we used the triangle inequality and the fact that|nT −
tl| < τ in our setting. Therefore,

|m| < R/τ + 3

2
⇒ |m| ≤

⌈

R/τ + 3

2

⌉

− 1
△
= r, (38)

i.e., the elements of the sum in (33) vanish for allm but the
values in (38). Consequently, the infinite sum in (33) reduces
to a finite sum overm ≤ |r| so that (33) becomes

c[n] =
r
∑

m=−r

L
∑

l=1

alϕ(nT − tl −mτ)

=

r
∑

m=−r

L
∑

l=1

al

∫ ∞

−∞

h(t− tl)g
∗(t− nT +mτ)dt

=

〈

r
∑

m=−r

g(t− nT +mτ),

L
∑

l=1

alh(t− tl)

〉

, (39)

where in the last equality we used the linearity of the inner
product. Defining a function which consists of(2r+1) periods
of g(t):

gr(t) =

r
∑

m=−r

g(t+mτ), (40)
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we conclude that

c[n] = 〈gr(t− nT ), x̃(t)〉. (41)

Therefore, the samplesc[n] can be obtained by filtering the
aperiodic signal̃x(t) with the filter g∗r (−t) prior to sampling.
This filter, in contrast tõg(t) in (32), has compact support
equal to(2r + 1)τ .

We summarize this result in the following theorem.

Theorem 2. Consider the finite stream of pulses given by:

x̃(t) =
L
∑

l=1

alh(t− tl), tl ∈ [0, τ), al ∈ R,

whereh(t) has finite supportR. Choose a setK of consecutive
indices for whichH(2πk/τ) 6= 0, ∀k ∈ K. Then,N samples
given by:

c[n] = 〈gr(t− nT ), x̃(t)〉, n = 0 . . .N − 1, nT ∈ [0, τ),

where r is defined in(38) and gr(t) is defined by(40) and
compactly supported, uniquely determine the signalx̃(t) as
long asN ≥ |K| ≥ 2L.

If, for example, the supportR of h(t) satisfiesR ≤ τ then
we obtain from (38) thatr = 1. Therefore, the filter in this
case would consist of3 periods ofg(t):

g3p(t)
△
= gr(t)

∣

∣

r=1
= g(t− τ) + g(t) + g(t+ τ). (42)

Practical implementation of the filter may be carried out using
delay-lines.

The problem of sampling and reconstructing a finite stream
of pulses as in (29), has already been addressed in [3]. The
pulse considered there ish(t) = δ(t). The authors use a
Gaussian sampling kernel prior to sampling and reconstruction
is based on the infinitely long tails of the Gaussian kernel. Al-
though analytically exact, this method is numerically unstable
as mentioned in [11]. This is due to the fact that the tails of
the Gaussian consist of very small values, which leads to nu-
merical instability. The authors of [11] propose improvements
of this method, based on substantial oversampling, which lead
to better performance, however for high order problems they
still exhibit instability.

An alternative approach based on estimating the signal
moments was proposed in [12]. This allows for compactly
supported filters to be used in the sampling scheme, and
therefore offers a local reconstruction scheme. With a proper
choice of the sampling period, the minimal number of samples
is sufficient for this method. However, the authors mention that
high order problems lead to numerical instability. In contrast
to the estimation of Fourier coefficients, estimating high order
moments from the samples is unstable since unstable weight-
ing of the samples is carried out during the process. We will
show in simulations that in the presence of noise, even in low
order problems, the performance of this method is inferior to
the scheme we introduced here.

The strength of our reconstruction scheme is that we use
a compactly supported filter, while staying within the regime
of Fourier reconstruction. This allows us to stably solve high
order problems, and achieve better noise robustness.

B. Simulations

1) Demonstration of the Sampling Scheme:The input sig-
nal x̃(t) consists ofL = 5 delayed and weighted versions
of the pulseh(t) = δ(t). The delays and weights were
chosen randomly. We chooseK = {−L, . . . , L}, so that
M = |K| = 11. Since the support ofh(t) satisfiesR ≤ τ
the parameterr in (38) equals1, and therefore we filter̃x(t)
with g3p(t) defined in (42). The coefficientsbk, k ∈ K were
all set to one. The output of the filter is sampled uniformlyN
times, with sampling periodT = τ/N , whereN = M = 11.
Perfect reconstruction is achieved as can be seen in Fig. 8.
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Fig. 8. Application of the filterg3p(t) on a finite stream ofL = 5 diracs.

The estimation is exact to numerical precision.
2) High Order Problems:The same simulation was carried

out with L = 20 diracs. The results are shown in Fig. 9. Here
again, the reconstruction is perfect even for this high order
problem.
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Fig. 9. High order problems: application of the filterg3p(t) on a finite
stream ofL = 20 diracs.
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3) Noisy Case:We now examine the performance of our
method in the presence of noise. In addition, we compare our
performance to the one proposed in [12], using B-spline filters,
and to the Gaussian sampling kernel suggested in [3]. The
signal consists ofL = 2 diracs. The time-delays are set to be
t = τ · (1/3 2/3)T , whereτ = 1, and both amplitudes are
one. The set of indices isK = {−L, . . . , L}, and the number
of samples isN = 5. The sampling period isT = τ/N .

The method of noise corruption is the same as in Sec-
tion II-E2. The B-splines we used were of order2L−1, and the
sampling period,T , is the same as above. Hard thresholding
was implemented in order to improve the spline method, as
suggested by the authors in [12]. The threshold was chosen to
be3σN , whereσN is the standard deviation of the AWGN. For
the Gaussian sampling kernel the parameterσ was optimized
and took on the value of0.25. The results are given in Fig. 10a.
On average, our method outperforms the B-spline method by
an order of magnitude. The performance of the Gaussian and
the SoS approaches coincides for high SNR, but for low SNR
the latter prevails.

In Fig. 10b-d the same simulation was carried out forL =
3, 5, 20, respectively1. Evidently, asL grows the advantage of
our method becomes more substantial. ForL ≥ 5 the spline
method exhibits large estimation errors (on the order ofτ ), and
the Gaussian kernel’s performance exhibits degradation of2-
4 orders of magnitude comparing to the SoS filter. We have
seen in simulations that forL ≥ 6 the Gaussian method shows
numerical instability as well, leading to errors on the order of
τ . In contrast, our method estimates the time-delays stably,
and with high noise robustness, as can be seen in Fig. 10d.
The improved version of the Gaussian approach presented in
[11] would not perform better in this high order case, since it
fails for values ofL > 9, as mentioned by the authors. The
computational complexity of all methods is the same, since
the main computational burden is the annihilating filter stage
which is common to all techniques.

In the next section we extend the finite case results to an
infinite stream of pulses. This can be done due to the compact
support of our filter.

IV. I NFINITE STREAM OF PULSES

A. Sampling And Reconstruction Scheme

We now consider the case of an infinite stream of pulses

z(t) =
∑

l∈Z

alh(t− tl), tl, al ∈ R. (43)

We assume that the infinite signal has a bursty character,
i.e., the signal has two distinct phases: a) bursts of maximal
durationτ containing at mostL pulses, and b) quiet phases
between bursts. For the sake of clarity we begin with the case
h(t) = δ(t). For this choice the filterg∗r(−t) in (40) reduces
to g∗

3p(−t) of (42).
Since the filterg∗3p(−t) has compact support3τ we are

assured that the current burst cannot influence samples taken
3τ/2 seconds before or after it. In the finite case we have

1The parameterσ for the Gaussian method took on the valuesσ =
0.28, 0.32, 0.9, respectively.

confined ourselves to sampling within the interval[0, τ).
Similarly, here, we assume that the samples are taken during
the burst duration. Therefore, if the minimal spacing between
any two consecutive bursts is3τ/2, then we are guaranteed
that each sample taken during the burst is influenced by one
burst only, as depicted in Fig. 11. Consequently, the infinite
problem can be reduced to a sequential solution of local
distinct finite order problems, as in Section III. Here the
compact support of our filter comes into play, allowing us
to apply local reconstruction methods.

τ

1st burst 2nd burst

g3p(t) filter support = 3τ

t

−0.5τ 1.5τ 2.5τ 3.5τ

Fig. 11. Bursty signalz(t). Spacing of3τ/2 between bursts ensures that
the influence of the current burst ends before taking the samples of the next
burst. This is due to the finite support,3τ of the sampling kernelg∗

3p(−t).

In the above argument we assume we know the locations of
the bursts, since we must acquire samples from within the burst
duration. Samples outside the burst duration are contaminated
by energy from adjacent bursts. Nonetheless, knowledge of
burst locations is available in many applications such as
synchronized communication where the receiver knows when
to expect the bursts, or in radar or imaging scenarios where
the transmitter is itself the receiver.

We now state this result in a theorem.

Theorem 3. Consider a signalz(t) which is a stream of bursts
consisting of delayed and weighted diracs. The maximal burst
duration isτ , and the maximal number of pulses within each
burst isL. Then, the samples given by

c[n] = 〈g3p(t− nT ), z(t)〉, n ∈ Z

whereg3p(t) is defined by(42), are a sufficient characteriza-
tion ofz(t) as long as the spacing between two adjacent bursts
is greater than3τ/2, and the burst locations are known.

Extending this result to a general pulseh(t) is quite
straightforward, as long ash(t) is compactly supported with
supportR, and we filter withg∗r (−t) as defined in (40) with
the appropriater from (38). If we can choose a setK of
consecutive indices for whichH(2πk/τ) 6= 0, ∀k ∈ K and
we are guaranteed that the minimal spacing between two
adjacent bursts is greater than((2r + 1)τ +R) /2, then the
above theorem holds.

V. RELATED WORK

Throughout the paper we mentioned closely related methods
for sampling of pulse streams. In this section we explore
in more detail the relationships between our approach and
previously developed solutions proposed in [3], [9], [12],[13].
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(a) L = 2
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(b) L = 3
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(c) L = 5
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(d) L = 20

Fig. 10. Performance in the presence of noise: finite stream case. Our method vs. spline [12] and Gaussian [3] sampling kernels. (a)L = 2 dirac pulses are
present, (b)L = 3 pulses, (c) high value ofL = 5 pulses, and (d) the performance for a very high value ofL = 20.

A. Periodic Case

The work in [3] was the first to address efficient sampling
of pulse streams, e.g., diracs. Their approach for solving the
periodic case was ideal lowpass filtering, followed by uniform
sampling, which allowed to obtain the Fourier series coeffi-
cients of the signal. These coefficients are then processed by
the annihilating filter to obtain the unknown time-delays and
amplitudes. In Section II, we derived a general condition on
the sampling kernel (11), under which recovery is guaranteed.
The lowpass filter scheme of [3] is a special case of this result.
The noise robustness of both the lowpass approach and our
more general method is high as long as the pulses are well
separated, since reconstruction from Fourier series coefficients
is stable in this case.

The lowpass filter is bandlimited and consequently has
infinite time-support. Therefore, this sampling scheme is un-
suitable for finite and infinite streams of pulses. The SoS class
introduced in Section II consists of compactly supported filters
which is crucial to enable the extension of our results to finite
and infinite streams of pulses.

Both approaches achieve the minimal number of samples.
Regarding implementation, both filters cannot be implemented
accurately, since analog filters are neither bandlimited nor
time-limited, and therefore must be approximated. A table

comparing between the two methods is shown in Table I.

TABLE I
PERIODIC CASE- COMPARISON WITH PREVIOUS WORK

Feature Lowpass filter [3] Proposed method

Degrees of freedom 2L

Required no. of sam-
ples

2L+ 1 2L

Time-support Infinite τ , finite support al-
lows extension to fi-
nite & infinite cases

Noise Robustness High High

Analog implementa-
tion

Approximate
lowpass filter

Approximate finite
support filter.
Truncated Fourier
series form.

B. Finite Pulse Stream

The authors of [3] proposed a Gaussian sampling kernel
for sampling finite streams of Diracs. The Gaussian method is
numerically unstable, as mentioned in [11], since the samples
are multiplied by a rapidly diverging or decaying exponent.
Therefore, the Gaussian approach is unsuitable forL ≥ 6.
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Modifications proposed in [11] exhibit better performance and
stability. However, these methods require substantial oversam-
pling, and still exhibit instability forL > 9.

The work in [12] offers compactly supported sampling ker-
nels, which enable obtaining moments of the signal, rather than
Fourier coefficients. The moments are then processed with the
same annihilating filter used in previous methods. However,as
mentioned by the authors, this approach is unstable for high
values ofL. This is due to unstable weighting of the samples
when obtaining the moments, a problem that disappears when
dealing with Fourier coefficients. We showed in simulations
that typically for L ≥ 5 the estimation errors, using the B-
spline sampling kernel, become very large. In contrast, our
approach leads to stable reconstruction even for very high
values ofL, e.g.,L = 100. In addition, the moments method
treats Diracs, differentiated Diracs and compactly supported
filters having no DC component, whereas our approach treats
any pulse with compact support.

All three methods achieve the minimal number of samples
2L. A comparison is shown in Table II.

TABLE II
FINITE CASE - COMPARISON

Feature Gaussian filter
[3]

Spline Filter
[12]

Proposed
method

Degrees of
freedom

2L

Required no.
of samples

2L

Time-support Infinite Finite Finite

Stability Unstable for
L ≥ 6

Unstable for
L ≥ 5

Stable even for
L = 100

Noise Robust-
ness

Low Low High

C. Infinite Streams

Dragotti et al. [12] addressed the infinite stream case,
with h(t) = δ(t). They proposed filtering the signal with a
polynomial reproducing sampling kernel prior to sampling.If
the signal has at mostL diracs within any interval of duration
LPT , where P denotes the support of the sampling filter
andT the sampling period, then the samples are a sufficient
characterization of the signal. This condition allows to divide
the infinite stream into a sequence of finite case problems. In
our approach the quiet phases of1.5τ between the bursts of
lengthτ enable the reduction to the finite case.

Since the infinite solution is based on the finite one, our
method is advantageous in terms of stability in high order
problems and noise robustness. However, we do have an
additional requirement of quiet phases between the bursts.

Regarding the sampling rate, the number of degrees of
freedom of the signal per unit time, also known as the rate
of innovation, isρ = 2L/2.5τ , which is the critical sampling
rate. Our sampling rate is2L/τ and therefore we oversample
by a factor of2.5. In the same scenario, the method in [12]
would require a sampling rate ofLP/2.5τ , i.e., oversampling
by a factor of P/2. Properties of polynomial reproducing

kernels imply thatP ≥ 2L, therefore for anyL ≥ 3, our
method exhibits more efficient sampling. A table comparing
the various features is shown in Table III.

Recent work [13] presented a low complexity method for
reconstructing streams of pulses (both infinite and finite cases)
consisting of diracs. However the basic assumption of this
method is that there is at most one dirac per sampling period.
This means we must have prior knowledge about a lower limit
on the spacing between two consecutive deltas, in order to
guarantee correct reconstruction. In some cases such a limit
may not exist; even if it does it will usually force us to sample
at a much higher rate than the critical one.

TABLE III
INFINITE CASE - COMPARISON

Feature Spline filter [12] Proposed method

Signal model No more than L
pulses in any interval
of LPT sec

Bursty character:
burst -τ , quiet phase
1.5τ

Rate of innovation -
bursty signal

ρ , 2L/2.5τ

Min. sampling rate P · ρ/2 2.5ρ

For L ≥ 3 ⇒
P/2 ≥ 3

Proposed sampling scheme is more efficient

Noise Robustness Low High

Stability Unstable forL ≥ 5 Stable forL = 100

VI. A PPLICATION - ULTRASOUND IMAGING

An interesting application of our framework is ultrasound
imaging. In ultrasonic imaging an acoustic pulse is trans-
mitted into the scanned tissue. The pulse is reflected due to
changes in acoustic impedance which occur, for example, at
the boundaries between two different tissues. At the receiver,
the echoes are recorded, where the time-of-arrival and power
of the echo indicate the scatterer’s location and strength,
respectively. Accurate estimation of tissue boundaries and
scatterer locations allows for reliable detection of certain
illnesses, and is therefore of major clinical importance. The
exact location of the boundaries is usually more important
than the exact power of the reflection. This stream of pulses is
finite since the pulse energy decays within the tissue. We now
demonstrate our method on real 1-dimensional (1D) ultrasound
data.

The multiple echo signal which is recorded at the receiver
can be modeled as a finite stream of pulses, as in (29).
The unknown time-delays correspond to the locations of the
various scatterers, whereas the amplitudes correspond to their
reflection coefficients. The pulse shape in this case is a
Gaussian defined in (27), due the physical characteristics of
the electro-acoustic transducer (mechanical damping).

In our setting, a phantom consisting of uniformly spaced
pins, mimicking point scatterers, was scanned by GE Health-
care’s Vivid-i portable ultrasound imaging system [19], [20],
using a 3S-RS probe. We use the data recorded by a single ele-
ment in the probe, which is modeled as a 1D stream of pulses.
The center frequency of the probe isfc = 1.7021 MHz,
The width of the transmitted Gaussian pulse in this case is
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σ = 3 · 10−7 sec, and the depth of imaging isRmax = 0.16 m
corresponding to a time window of2 τ = 2.08 · 10−4 sec.

In this experiment all filtering and sampling operations are
carried out digitally in simulation. The analog filter required by
the sampling scheme is replaced by a lengthy Finite Impulse
Response (FIR) filter. Since the sampling frequency of the
element in the system isfs = 20 MHz, which is more than5
times higher than the Nyquist rate, the recorded data represents
the continuous signal reliably. Consequently, digital filtering
of the high-rate sampled data vector (4160 samples) followed
by proper decimation mimics the original analog sampling
scheme with high accuracy. The recorded signal is depicted
in Fig. 12. The band-pass ultrasonic signal is demodulated
to base-band, i.e., envelope-detection is performed, before
inserted into the process.
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Fig. 12. Recorded ultrasound imaging signal. The data was acquired by GE
healthcare’s Vivid-i ultrasound imaging system.

We carried out our sampling and reconstruction scheme
on the aforementioned data. We setL = 4, looking for the
strongest 4 echoes. Since the data is corrupted by strong
noise we over-sampled the signal, obtaining twice the minimal
number of samples. In addition, hard-thresholding of the
samples was implemented, where we set the threshold to 10
percent of the maximal value. We obtainedN = 17 samples by
decimating the output of the lengthy FIR digital filter imitating
g∗
3p(−t) from (42), where the coefficients{bk} were all set to

one. In Fig. 13a the reconstructed signal is depicted vs. thefull
demodulated signal using all4160 samples. Clearly, the time-
delays were estimated with high precision. The amplitudes
were estimated as well, however the amplitude of the second
pulse has a large error. This is probably due to the large values
of noise present in its vicinity. However, as mentioned earlier,
the exact locations of the scatterers is more important than
the accurate reflection coefficients. We carried out the same
experiment only now oversampling by a factor of 4, resulting
in N = 33 samples. Here no hard-thresholding is required.
The results are depicted in Fig. 13b, and are very similar to

2The speed of sound within the tissue is1550 m/sec.

our previous results. In both simulations, the estimation error
in the location of the pulses is around0.1 mm.

Current ultrasound imaging technology operates at the high
rate sampled data, e.g.,fs = 20 MHz in our setting. Since
there are usually 100 different elements in a single ultrasonic
probe each sampled at a very high rate, data throughput
becomes very high, and imposes high computational complex-
ity to the system, limiting its capabilities. Therefore, there
is a demand for lowering the sampling rate, which in turn
will reduce the complexity of reconstruction. Exploiting the
parametric point of view, our sampling scheme reduces the
sampling rate by 2 orders of magnitude, from 4160 to around
30 samples in our setting, while estimating the locations of
the scatterers with high accuracy.

VII. C ONCLUSIONS

We presented efficient sampling and reconstruction schemes
for streams of pulses. For the case of a periodic stream of
pulses, we derived a general condition on the sampling kernel
which allows a single-channel uniform sampling scheme.
Previous work [3] is a special case of this general result. We
then proposed a class of filters, satisfying the condition, with
compact support. Exploiting the compact support of the filters,
we constructed a new sampling scheme for the case of a finite
stream of pulses. Simulations show this method exhibits better
performance than previous techniques, in terms of stability in
high order problems, and noise robustness. An extension to
an infinite stream of pulses was also presented. The compact
support of the filter allows for local reconstruction, and thus
lowers the complexity of the problem. Finally, we demon-
strated the advantage of our approach in reducing the sampling
rate of ultrasound imaging, by applying our techniques to real
ultrasound data.
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