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Abstract—The fundamental principle underlying compressed [13]. However, all known recovery approaches use the prior
sensing is that a signal, which is sparse under some basisknowledge of the sparsity basi.
representation, can be recovered from a small number of linar Dictionary learning (DL)]—EQD] is another applicatiof

measurements. However, prior knowledge of the sparsity bas tati In DL . t of traini
is essential for the recovery process. This work introduceshe Sparse representatons. In » We are given a set ot training

concept of blind compressed sensing, which avoids the need t Signals, formally the columns of a matriX. The goal is to
know the sparsity basis in both the sampling and the recovery find a dictionaryP, such that the columns of are sparsely

process. We suggest three possible constraints on the spfys represented as linear combinations of the columng’oin

basis that can be added to the problem in order to make its 171 the quthors study conditions under which the DL proble
solution unique. For each constraint we prove conditions fo . . : . .
yields a unique solution for the given training sét

unigueness, and suggest a simple method to retrieve the stitn. X . !
Under the uniqueness conditions, and as long as the signals In this work we introduce the concept of blind compressed

are sparse enough, we demonstrate through simulations that sensing (BCS), in which the goal is to recover a high-
without knowing the sparsity basis our methods can achieve dimensional vector: from a small number of measurements,
results similar to those of standard compressed sensing, Wi\ here the only prior is that there exists some basis in which

relay on prior knowledge of the sparsity basis. This offers a . Wi fer t i blind. si d t
general sampling and reconstruction system that fits all spae * IS Sparse. VVe refer to our setung as blind, since we do no

signals, regardless of the sparsity basis, under the conitins and require knowledge of the sparsity basis for the sampling or
constraints presented in this work. the reconstruction. This is in sharp contrast to CS, in which

recovery necessitates this knowledge. Our BCS framework
combines elements from both CS and DL. On the one hand, as
. INTRODUCTION in CS and in contrast to DL, we obtain only low dimensional

measurements of the signal. On the other hand, we do not

Sparse signal representations have gained popularity {#fyuire prior knowledge of the sparsity basis which is simil
recent years in many theoretical and applied aréas([L]-[§} the DL problem. The goal of this work is to investigate the
Roughly speaking, the information content of a sparse $igngsic conditions under which blind recovery from comprésse
occupies only a small portion of its ambient dimension. Fopeasurements is possible theoretically, and to propose con
example, a finite dimensional vector is sparse if it containsg ate algorithms for this task.

small number of nonzero entries. It is sparse under a basis il5ince the sparsity basis is unknown, the uncertainty about
its representation under a given basis transform is spArse. i signalz is larger in BCS than in CS. A straightforward

analog signal is referred to as sparse if, for example, @largy|ytion would be to increase the number of measurements.
part of its bandwidth is not exploitedl[4].][7]. Other model§oyever, we show that no rate increase can be used to
for analog sparsity are discussed in detailih [5], [6], [8]. getermines, unless the number of measurements is equal
Compressed sensing (CS) [2]J [3] focuses on the role @fe dimension of:. Furthermore, we prove that even if we
sparsity in reducing the number of measurements neededhfe multiple signals that share the same (unknown) sparsit
represent a finite dimensional vectoe R™. The vectorz is  pasis, as in DL, BCS remains ill-posed. In order for the
measured by = Az, whereA is a matrix of sizen x m, with  measurements to determimeuniquely we need an additional
n < m. In this formulation, determining: from the given constraint on the problem. To prove the concept of BCS we
measurements is ill possed in general, sincd has fewer pegin by discussing two simple constraints on the sparsity b
rows than columns and is therefore non-invertible. Howevejis which enable blind recovery of a single vectote then
if 2z is known to be sparse in a given badfs then under tyrn to our main contribution, which is a BCS framework for
additional mild conditions o [9]-[11], the measurementsstryctured sparsity bases. In this setting, we show thatiprel
b determinex uniquely as long as: is large enough. This yectors sharing the same sparsity pattern are needed teeensu
concept was also recently expanded to include sub-Nyquigkovery. For all of the above formulations we demonstréte v
sampling of structured analog signals [4], [6].[12]. simulations that when the signals are sufficiently sparse th
In principle, recovery from compressed measurementsissults of our BCS methods are similar to those obtained by
NP-hard. Nonetheless, many suboptimal methods have be@indard CS algorithms which use the true, though unknown
proposed to approximate its solutidn [1]J-[3]. [13]5[15héSe in practice, sparsity basis. When relying on the structural
algorithms recover the true value ofwhenz is sufficiently constraint we require in addition that the number of signals
sparse and the columns of are incoherentl[1],[[9]=[11], must be large enough. However, the simulations show that the

number of signals needed is reasonable and much smaller than
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(contract no. 216715). fact that over the years there have been several bases that
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have been considered "good” in the sense that they are knoavwvectorxz € R™ from measurements = Ax, where A €
to sparsely represent many natural signals. These inclut,*™ andn < m. This problem is ill possed in general and
for example, various wavelet representations! [25] and thigerefore has infinitely many possible solutions. In CS vakse
discrete-cosine transform (DCT) _[26]. We therefore tréwt t the sparsest solution:
setting in which the unknown basi® is one of a finite
and known set of bases. We develop uniqueness conditions
and a recovery algorithm by treating this formulation as where|| - ||, is the, semi-norm which counts the number of
series of CS problems. To widen the set of possible bas@snzero elements of the vector. This idea can be generalized
that can be treated, the next constraint allolvgo contain to the case in whick is sparse under a given bag#s so that
any sparse enough combination of the columns of a givéere is a sparse vectsrsuch that: = Ps. Problem[(ll) then
dictionary. We show that the resulting CS problem can hgcomes
viewed within the framework of standard CS, or as DL with . .
a sparse dictionary [23]. We compare these two approaches §=argminlfsllo st b=APs, @
for BCS with a sparse basis. For both classes of constrains & the reconstructed signal is= Ps. When the maximal
show that a Gaussian random measurement matrix satisfiesfhgber of nonzero elements iris known to equak, we may
unigueness conditions we develop with probability one.  consider the objective

Our main contribution is inspired by multichannel systems, A ) )
where the signals from each channel are sparse under separat = 8 min ||b — APs|[3 st lsllo <k (3)

bases. In our setting this translates to the requiremert thaan important question is under what conditionk (@)-(3) have
P is block diagonal. For simplicity, and following several ynique solution. In[]9] the authors define tapark of a
previous works [[27]+[29], we impose in addition thBtis matrix, denoted by (-), which is the smallest possible number
orthogonal. We then choose to measure the set of sigh@dg  of linearly dependent columns. They prove thati§ k-sparse,

a measurement matrid consisting of a union of orthogonal ando(AP) > 2k, then the solution td{2), or equivalenty (3),
bases. This choice has been used in previous CS and DL wagkginique. Unfortunately, calculating the spark of a matsix
as well [21], [22], [30][32]. For technical reasons we alsg combinatorial problem. However, it is often bounded by the
choose the number of blocks iRt as an integer multiple of mytyual coherencf], which can be calculated easily. Denoting

the number of bases id. Using this structure we developthe jth column of a matrixD by d;, the mutual coherence of
uniqueness results as well as a concrete recovery algorithmis given by

The uniqueness condition follows from reformulating the BC .
e : |d; d;|

problem within the framework of DL and then relying on (D) = max — I

results obtained in that context. In particular, we requaire i#5 ||ds]|2|]d;]]2

ensemble of signals, all sparse in the same basis. AS W§; js easy to see that(D) > 1+ ——. Therefore, a sufficient

show, a suitable choice of random matrik satisfies the condition for the uniqueness of the solutionsf (2)[@r (3) is
unigueness conditions with probability 1.

Unfortunately, the reduction to an equivalent DL problem k< 1 (1 + #) )
which is used for the uniqueness proof, does not lead to a 2 H(AP)

practical recovery algorithm. This is due to the fact that it Although the uniqueness condition involves the product
necessitates resolving the signed permutation ambiguliigh AP, some CS methods are universal. This means that by
is inherent in DL. Instead, we propose a simple and direebnstructing a suitable measurement mattixuniqueness is
algorithm for recovery, which we refer to as the orthogongjuaranteed for any fixed orthogonal bagts In such cases
block diagonal BCS (OBD-BCS) algorithm. This method findRnowledge ofP is not necessary for the sampling process. One
X = PS by computing a basi® and a sparse matri& using way to achieve this universality property with probability
two alternating steps. The first step is sparse codding, inlwhrelies on the next proposition.

P is fixed andS is updated using a standard CS algorithn}5
In the second step is fixed andP is updated using several
singular value decompositions (SVD).

The remainder of the paper is organized as follows.
Section[l] we review the fundamentals of CS and define Proof: Due to the properties of Gaussian random variables
the BCS problem. In Section Il we prove that BCS is illand sinceP is orthogonal, the productP is also an i.i.d.
posed by showing that it can be interpreted as a certain ibaussian random matrix. Since anyor less, i.i.d. Gaussian
posed DL problem. In Sectiois JV.]V. VI we consider theectors inR™ are linearly independent with probability 1,
three constrained BCS problems respectively. A compariseiAP) > n with probability 1. On the other hand, more
between the different approaches is provided in Seéfioh Vlthenr vectors inR" are always linearly dependent, therefore

& = argmin ||z||o st b= Az, Q)

roposition 1. If A is an i.i.d. Gaussian random matrix of size
n x m, wheren < m, thenc(AP) = n+ 1 with probability 1
ﬁqr any fixed orthogonal basis.

o(AP)=n+1. |
I BCS_PROBLEM DEFINITION According to Propositiofil1 ifd is an i.i.d Gaussian matrix
A. Compressed Sensing and the number of nonzero elementssinis k& < n/2, then

We start by shortly reviewing the main results in the field ahe uniqueness of the solution fd (2) bf (3) is guaranteeld wit
CS needed for our derivations. The goal of CS is to reconistrygrobability 1 for any fixed orthogonal basi3 (see also[[33]).



Problems[(R) and{3) are NP-hard in general. Many sub- [1l. UNIQUENESS

optimal methods have been proposed to approximate theifye now discuss BCS unigueness, namely the uniqueness of

solutions, such as [1H[3]/ [13[=[15]. These algorithms cahe signal matrixX which solves Problerfll 2. Unfortunately,

be divided into two main approaches: greedy algorithms agghough Probleni]2 seems quite natural, its solution is not

convex relaxation methods. Greedy algorithms approxima}jﬁique for any choice of measurement matrix for any

the solutiqn by selecting the indices of the nonzero elem_ient number of signals and any sparsity level. We prove this tesul

§ sequentially. One of the most common methods of this typg reducing the problem to an equivalent one, using the field

is orthogonal matching pursuit (OMR) [13]. Convex rela@ati of p, and proving that the solution to the equivalent proble

approaches change the objective[ih (2) to a convex problgg ot unique.

The most common of these methods is basis pursuit (BP) [15]) SectiorTII=A we review results in the field of DL needed

which considers the problem: for our derivation. In Sectiol III-B we use these results to
s . _ prove that the BCS problem does not have a unique solution.
§ = argmin||s]ly st b=APs. @ In Sectiond 1V [V,[V] we suggest several constraints on the

Under suitable conditions on the produtP and the sparsity basisP that ensure uniqueness.

level of the signals, both the greedy algorithms and the eonv

relaxation methods recover the true valuesofor instance, A Dictionary Learning (DL)

both OMP and BP recover the true valuesaf/hen the number

of nonzero elements in is no more thang (1 + ——py) [,

[O1-{11], [13].

The field of DL [16]-[20] focuses on finding a sparse matrix
S € R™*N and a dictionaryD € R"*™ such thatB = DS
where onlyB € R"*" is given. Usually in DL the dimensions
satisfyn < m. BCS can be viewed as a DL problem with=
B. BCS Problem Formulation AP whereA is known andP is an unknown basis. Thus, one

Even when the universality property is achieved in CS, diay view BCS as a DL problem with a constrained dictionary.
existing algorithms require the knowledge of the sparsitgie However, there is an important difference in the output of DL
P for the reconstruction process. The idea of BCS is to avod BCS. DL provides the dictiona®y = AP and the sparse
entirely the need of this prior knowledge. That is, perforfatrix S. On the other hand, in BCS we are interested in
both the sampling and the reconstruction of the signalsouith Fecovering the unknown signals” = PS. Therefore, after
knowing under which basis they are sparse. performing DL some postprocessing is needed to retrieve

This problem seems impossible at first, since every signalff§m D. This is an important distinction which, as we show in
sparse under a basis that contains the signal itself. Thigdwo SectionlVI-B, makes it hard to directly apply DL algorithms.
imply that BCS allows reconstruction of any signal from a An important question is the uniqueness of the DL fac-
small number of measurements without any prior knowledg@rization. That is, given a matrb3 € R™*Y what are
which is clearly impossible. Our approach then, is to sampqge conditions for the uniqueness of the pair of matrices
an ensemble of signals that are all sparse under the sanse bd%i € R"*™ and S € R™** such thatB = DS where S

Later on we revisit problems with only one signal, but witf k-Sparse. Note that if some palv, S satisfiesB = DS,
additional constraints. then scaling and signed permutation of the column®aind

Let X € R™*N denote a matrix whose columns ardOWs of S respectively do not change the produgt= DS.
the original signals, and le§ € R™*N denote the matrix |herefore, there cannot be a unique pairs. In the context

whose columns are the corresponding sparse vectors, sAEL the term uniqueness refers to uniqueness up to scaling
that X = PS for some basisP € R™*™. The signals and signed permutation. In fact in most cases without loss of

are all sampled using a measurement mattixc R"*™ generality we can assume the columns of the dictionary have

producing the matrixB = AX. For the measurements toUnit norm, such that there is no ambiguity in the scaling, but
be compressed the dimensions should satisfy m, where ©nly in the signed permutation. o .

the compression ratio i& = m/n. Following [17], [24] we Conditions fqr DL unigueness wh(_an the dictionaby is
assume the maximal number of nonzero elements in eachogiiogonal or just square are provided in[28] and] [29].
the columns ofS, is known to equalk. We refer to such However, in BCSD = AP is in general rectangular. In_[17]

a matrix S as ak-sparse matrix. The BCS problem can pihe authors prove sufficient conditions @n and S for the
formulated as follows. uniqueness of a general DL. We refer to the conditioTbas

the spark conditionand to the conditions oS as therichness
Problem 2. Given the measurements and the measurementconditions The main idea behind these conditions is tiat
matrix A find the signal matrixX' such thatB = AX where should satisfy the condition for CS uniqueness, and that the
X = PS for some basig” and k-sparse matrixS. columns ofS should be diverse regarding both the locations

Note that our goal is not to find the bagisand the sparse and tlh.e values of the_ nonzero elements. More specifically, th

matrix S. We are only interested in the produt — ps. conditions for DL uniqueness are:
In fact, for a given matrixX there is more than one pair of « The spark conditions(D) > 2k.
matricesP and S such thatX = PS. Here we focus on the e« The richness conditions:
guestion of whetheX can be recovered given the knowledge 1) All the columns of S have exactlyk nonzero
that such a pair exists fak. elements.



2) For each possible-length support there are at leasthe columns ofPy are perpendicular to the columns Bf; .,
k + 1 columns inS. o o
3) Any k + 1 columns inS, which have the same P{Py =Py Py =||Pyo||} + || Pxll%

support, span &-dimensional space. ) _ )
4) Any k + 1 columns in S, which have different A square matrixP has full rank if and only~|fP~TP has full
supports, span & + 1)-dimensional space. rank. Therefore, sincé, has full rank andP) P, = P! Py,
1;2 also has full rank. So that botR; and P, are solutions
0

According to the second of the richness conditions ”1 ProbleniB. In fact there are many more solutions; some of

number of signals, that is the number of columnsSinmust them can be found by chanaina the sians of onlv part of the
be at least(’") (k + 1). Nevertheless, it was shown i [17] y ging 9 yp
k columns of Py.

that in practice far fewer signals are needed. Heuristictie . . .
P 9 e We now return to the original BCS problem, as defined in

number of signals should grow at least linearly with the teng . i )
. . : roblen{2. We just proved that when the DL solution given
of the signals. It was also shown inJ17] that DL algorlthmlg5 unique, Problerfl2 is equivalent to ProblEm 3 which has no

erform well even when there are at méshonzero elements =~ | . . ) . ) .
P unigue solution. Obviously if the DL solution giveR is not

in the columns ofS instead of exactly. . . .
W unique, then BCS will not be unique. Therefore, Prob[dm 2
has no unique solution for any choice of parameters.
B. BCS Uniqueness In order to guarantee a unique solution we need an ad-

Under the conditions above the DL solution given thgitional constraint. We next discuss constraints Bnthat

measurements is unique. That is, up to scaling and signe&an render the solution to Probldmh 3 unique, and therefore

permutations there is a unique pdd, S such thatB = DS n ado!?mon fPtTﬁ r|chnesstcort'1r(]j|t|on§ ok and :chﬂe] spa}rli_
andS is k-sparse. Since we are interested in the produst condition on €y guarantee the uniqueness ot fhe soution

and not in P or S themselves, without loss of generalityto Problem2. Although there are many possible constraints,

we can always assume that the columns fofare scaled we focus below on the following.

so that the columns oD = AP have unit norm. This 1) P is one of a finite and known set of bases.

way there is no ambiguity in the scaling @ and S, but ~ 2) P is sparse under some known dictionary.

only in their signed permutation. That is, applying DL on 3) P is orthogonal and has a block diagonal structure.

B providesD = APQ and S = Q”'S for some unknown  The motivation for these constraints comes from the unique-
signed permutation matrig). A signed permutation matrix is ness of Problerill3. Nonetheless, we provide conditions under
a column (or row) permutation of the identity matrix, wherguhich the solution to Problerfll 2 with constraints 1 or 2
the sign of each column (or row) can change separately.if1unique even without DL uniqueness. In fact, under these

other words, it has only one nonzero element, eghdl in  conditions the solution to Problefd 2 is unique even when
each column and each row. Any signed permutation matrix 3 — 1, so that there is only one signal.

obviously orthogonal. = N In the next sections we consider each one of the constraints,
If we can find the basi®”> = PQ out of D, then we can prove conditions for the uniqueness of the constrained BCS
recover the correct signal matrix by: solution, and suggest a method to retrieve the solutioneThb

PS = PQQTS = PS - X, summarizes these three approaches.
Therefore, under thg uniqqeness conditions fqr DLSand IV. EINITE SET OF BASES
D = AP Problem2 is equivalent to the following problem.

One way to guarantee a unique solution to Prollém 3 is to
limit the number of possible baséd3 to a finite set of bases,
and require that these bases are different from one another

We therefore focus on the uniqueness of Prodlém 3. Singader the measurement matuk Since P in Problen(3 is a
n < m the matrix4 has a null space. As we now show, evenolumn signed permutation d@ in Probleni2, by limitingP
with the constraint tha® is a basis there is still no uniqueto a finite set we also limit the possible to a finite set. The
solution. new constrained BCS, instead of Problgim 2, is then:

To see that assumg, is a basis, i.e., has full rank, and
satisfiesD = AP,. Decompose?, asP, = Py. + Py where
the columns ofPy are in N(A), the null space of4, and
those of Py are in its orthogonal complement(A)-. Note
that necessarilyPy # 0, otherwise the matrix?y = Py. is
in N(A)* and has full rank. However, since the dimension of The motivation behind Problefd 4 is that over the years a
N(A)t is at mostm — n, it contains at mostn — n linearly variety of bases were proven to lead to sparse represeargatio
independent vectors. Therefore, there ismno< m full rank of many natural signals, such as wavelet [25] and DCT [26].
matrix whose columns are all iv(A)*. These bases have fast implementations and are known to fit

Next define the matrix®, = Py. — Py which is different many types of signals. Therefore, when the basis is unknown
from Py, but it is easy to see thdd = AP,. Moreover, since it is natural to try one of these choices.

Problem 3. (}ivenD € Rxm an~dA € R"™™ wheren < m,
find a basisP such thatD = AP.

Problem 4. Given the measuremeni8, the measurement
matrix A and a finite set of baseg, find the signal matrixX
such thatB = AX and X = PS for some basis® € ¥ and
k-sparse matrixs.



TABLE |
SUMMARY OF CONSTRAINTS ONP

The constraint Conditions for uniqueness Algorithm
Finite Set - Section 1V e o(AP) <2k forany P € V. e F-BCS - Solving[(b) or[{l7) for eacl® € ¥ using a standard CS
P is in a given finite set | o A is k-rank preserving of' (Definition[3). algorithm, and choosing the best solution.
of possible base¥.
Sparse Basis SectiolY | e o(A®) > 2kpk. e Direct method - Solving[(9) ol (10) using a standard CS afgonj
P is kp-sparse under a where the recovery iX = ®C.
given dictionary®. e Sparse K-SVD - Using sparse K-SVD algorithim [23] to retrievgZ,
where the recovery iX = ®Z5.
Structure - Section[ V] e The richness conditions ofl. e OBD-BCS - UpdatingS and P alternately according to the algorithm
P is orthogonal2L-block | e A is a union ofL orthogonal bases. in Table[IM, where the recovery i¥ = PS.
diagonal. e o(AP)=n+1.
e A is not inter-block diagonal (Definitio_10)|

A. Uniqueness Conditions Alternatively, one can bound the spark of these matricasgusi

We now show that under proper conditions the solutiotrl:l'T'r_mUtuaI coherenr::e. full ol K dxis
to Problem% is unique even when there is only one signal, tis easy to see that any full column rank matrxis &-

namely N' — 1. In this case instead of the matricas S, B rank preserving for any: and any setV. However, in our
we deal with the vectors, s, b respectively ’ caseA is rectangular and therefore does not have full column

Assumez is a solution to Problefl4. That is, is k-sparse rank. In order to guarantee that is k-rank preserving with

under P € ¥ and satisfied = Ax. Uniqueness is achievedpmb‘ijbiIity 1 we rely on the following proposition:

if there is noz # = which is k-sparse under a basid € ¥ Proposition 6. An i.i.d Gaussian matrixd of sizen x m is
and also satisfies = Az. We first require that(AP) > 2k;  with probability 1 k-rank preserving of any fixed finite set of
otherwise even ii> = P there is no unique solutionl[9]. Sincebases and any < n/2.

the real sparsity basi8 is unknown we need that( AP) > 2k
forany P € .

Next we writex = Ps = Prsp, whereT is the index
set of the nonzero elements inwith |T| < k, s is the
vector of nonzero elements isn, and Pr is the sub-matrix
of P containing only the columns with indices if. If z is
also a solution to Problefd 4 then= Ps = P;5;, where.J
is the index set of the nonzero elementssinand |J| < k.
Moreover,b = AP;5; = APrsr, which implies that the
matrix A[Pr, P;] has a null space. This null space contai
the null space of Py, P;]. By requiring

Proof: If n > m then A has full column rank with
probability 1, and is thereforé-rank preserving with prob-
ability 1. We therefore focus on the case where< m.
AssumeT’, J are index sets of sizk, and P, P € ¥. Denote
r = rankPr, P;]. We then need such that we need to prove
that ranKA[Pr, P;]) = r.

Perform a Gram Schmidt process on the columns of
[Pr, P;] and denote the resulting matrix fy. G is then an
& x r matrix with orthonormal columns, with ragi) = r
and rankAG) = rankA[Pr, P;]). Next we complete? to
an orthogonal matrixG,, by adding columns. According to

rank A[Pr, P;]) = ranK Py, Py, (5) Propositior 1 sinced is an i.i.d Gaussian matrix ar@l, is or-

- thogonalo (AG,,) = n+ 1 with probability 1. Therefore, with
we guarantee that the null spaceAffPr, P;] equals the null probability 1 anyt columns of AG,, are linearly independent,
space of Pr, P;]. Therefore, undeld5)AP;5; = APrsr if  with ¢ < n. In particular, with probability 1 the columns efG
and only if P;5; = Prsp, which impliesz = z. are linearly independent, so that r&dky) = », completing

Therefore, in order do guarantee the uniqueness of tie proof. n
solution to Probleni]4 in addition to the requirement that Until now we proved conditions for the uniqueness of
o(AP) > 2k for any P € ¥, we require that any two index Problem[# when there is only one sign&l = 1. The same
setsT, J of sizek and any two base®, P ¢ ¥ satisfy [3).  conditions are true foN > 1 since we can look at every signal
separately. However, since all the signals are sparse tineer
same basis, if withV > 1 then the condition thatl must be
k-rank preserving can be relaxed.

For instance, consider the case where there are only two
The conditions for the uniqueness of the solution to Promdex sets7,.J and two basesP?,P € ¥ (P is the real
lem[4 are therefores(AP) > 2k for any P € ¥, and A sparsity basis) that do not satisfy (5). In this case if weehav

is k-rank preserving of the se¥. In order to satisfy the many signals with different sparsity patterns, then onlynalé

first condition with probability 1, according to SectibnAl- portion of them fall in the problematic index set, and theref

we can require allP ¢ ¥ to be orthogonal and generate might falsely indicate tha is the sparsity basis. However,
from an i.i.d. Gaussian distribution. However, since thenbar most of the signals correspond to index sets that safisfy (5)
of bases is finite, we can instead verify the first conditioand therefore these signals indicate the correct basis. The
is satisfied by checking the spark of all the produdt®. selection of the sparsity bases is done according to therityajo

Definition 5. A measurement matrid is k-rank preserving
of the bases se¥ if any two index set¥’, J of sizek and any
two basesP, P € ¥ satisfy(5).



TABLE Il

of signals and there_fore the correct basis is selected. _ F-BCS SIMULATION RESULTS
Another example is the case where there are enough diverse
S|gna_1ls such _th_at the richness co_nd|t|0ns $rare satisfied. SNR Viss Average
In this case it is enough to require that for any two bases Detected | Error
P, P € U the matricesAP and AP are different from one S 0% 10’1;*%
another even under scaling and signed permutation of the gggg 802 %302
columns. This way we guarantee that the problem equivalent 20dB 0% 5.4%
to Problem ¥ under the richness and spark conditions has a 15dB 1% 11.6%
unigue solution, and therefore Probléin 4 also has a unique 10dB | 12% 22.5%
Iqt' : q 5dB | 25% | 40.1%
solution.

Problen{# can also be viewed as a CS problem with a block
sparsity constrainf[34]([35]. That is, W = { P, P», ...} then

the desired signal matrix can be written as C. F-BCS Simulation Results
S, We now demonstrate the F-BCS method in simulation. We
S, chose the set of basds to contain 5 bases of sizgl x 64:

X =[P, P, ] T the identity, DCT [[26], Haar wavelet, Symlet wavelet and

Biorthogonal wavelet[[25]. 100 signals of length 64 were
where only one of the submatricés is not all zeros. In con- created randomly by generating random sparse vectors and
trast to the usual block sparsity constraint here the sutsixna Multiplying them by the Biorthogonal wavelet basisiin Each
S; which is not zero is itself sparse. However, the uniquenesgarse vector contained up to 6 nonzero elements in unyorml
conditions which are implied from this block sparsity Cgandom locations, and values from a normal distribution.
approach are too Strong Comparing to our BCS approach_ Forrhe measurement matrig was an i.i.d Gaussian matrix of
instance, they require aﬂ?j € U, to be incoherent, WhereasSize32 x 64. The measurements were calculated first without
the BCS uniqueness is not disturbed by coherent bases.tin fa@ise, that isB = AX, and then with additive Gaussian noise
the solution is unique even if the baseslirequal one another. With varying SNR from 30dB to 5dB. For each noise level the
This is because here we are not interested in recovétimyt F-BCS method was performed, where the CS algorithm we

rather P; S;. used was OMP[[13].
Table[Tl summarizes the results. For all noise levels the
B. The F-BCS Method basis selection according to the majority was correct. Ttss m

?tected column in the table contains the percentage odisign

The uniqueness cont_jmons we discussed lead to_ a straq‘ﬁét indicated a false basis. The average error column icenta
forward method for solving Problelm 4. We refer to this metho<]1I .
the average reconstruction error, calculated as the azerfig

as F-BCS which stands for finite BCS. Whéh= 1, F-BCS
solves a CS problem for eadh € ¥ i = Fill2

i = (8)
§ = argmin ||s||p S.t. b = APs, (6) [lifl2
s wherex;, Z:; are the columns of the real signal matri and
and chooses the sparsastUnder the uniqueness conditionghe reconstructed signal matriX respectively. The average
it is the only one with no more thak nonzero elements. js performed only on the signals that indicated the correct
Therefore if we know the sparsity levél we can stop the pasis. The reconstruction of the rest of the signals ob¥jous
search when we found a sparse enofighhe recovered signal fajled. As can be seen from Tali[é Il in the noiseless case the
is 2 = Ps where P is the basis corresponding to thewe recovery is perfect and the error grows with the noise |éve.
chose. Wherk is known an alternative method is to solve fohigh SNR there are no false reconstructions, but as the SNR

eachP e ¥ decreases beyond 15dB the percentage of false reconstrsicti
§ = argmin ||b — APs||2 s.t.||s||o < , @) increases: In these cases, one should use more then o_nb sigha
s such that if one of the signals failed there will be an indmat

and chooses that minimizes||b — AP3||3. In the noiseless for this through the rest of the signals.
case this minimum is zero for the correct baBis Another simulation we performed investigated the influence
When N > 1 we can solve eithef16) ofl(7) for each of theof the sparsity levelk, which is the number of nonzero
signals and select the sparsity basis according to the ityajorelements inS. The settings of this simulation were the same
The solution to problemg$](6) anfl(7) can be approximated those of the first simulation, only this time there was
using one of the standard CS algorithms. Since these alg® noise added to the measurements, &ndas gradually
rithms are suboptimal, there is no guarantee that they geovincreased from 1 to 32. For each sparsity level new signals
the correct solution, even for the correct basiB. In general, were generated with the same sparsity basis and measured by
when k is small enough relative ta these algorithms are the same measurement matrix. Fox 8 the recovery of the
known to perform very well. Moreover, wheN > 1, P is signal was perfect, but as expected, for higher valuds thie
selected according to the majority of signals, and theeefior number of false reconstructed signals and the average error
the CS algorithm did not work well on a few of the signals igrew. The reason for this is that the OMP algorithm works
will not effect the recovery of the rest of the signals. well with small values of, for higher values of, even if the



unigueness conditions are still satisfied, the OMP algarithHowever, if the solution without this constraint is uniqiemn

may not find the correct solution. obviously the solution with this constraint is also unique.
Therefore, a sufficient condition for the uniqueness of Prob
V. SPARSEBASIs lem[d isc(AD) > 2k,k.

A different constraint that can be added to Probldm 2 in
order to reduce the number of solutions is the sparsity of the
basis P. That is, we assume that the columns of the badi Algorithms For Sparse BCS
P are sparse under some known dictiondryso that there
exists some unknown sparse matixsuch thatP = ¢Z. We
assume the number of nonzero elements in each colundh o
is known to equak,. We refer to® as a dictionary since it
does not have to be square. Note that in orderHato be a
basis® must have full row rank, and must have full column
rank.

The constrained BCS in this case is then:

1) Direct Method:When there is only one signal, according

o the uniqueness discussion, the solution to Prolilem 7 can
e found by solving eithe{9) of (IL0) using a standard CS
algorithm. When there are more signals the same process
can be performed for each signal separately. Since we use a
standard CS algorithm, for this method to succeed we require

the productk, % to be small relative tou.

2) Sparse K-SVD:The sparse K-SVD algorithm [23] is a
Problem 7. Given the measurement8, the measurement DL algorithm that seeks a sparse dictionary. That is, giten t
matrix A and the dictionary®, which has full row rank, find measurement® and a base dictionary it finds k,-sparse
the signal matrixX such thatB = AX whereX = ®ZS for 7 and k-sparseS, such thatB = DZS. In our case we can
somek-sparse matrixS and k,-sparse and full column rank run sparse K-SVD om3 with D = A® in order to findZ
matrix Z. and.S, and then recover the signals By = ®~7.5. The sparse

This problem is similar to that studied in [23] in the contex-SVD algorithm is a variation of the K-SVD algorithrn [24],

of sparse DL. The difference is that [23] finds the matrice¥nich is a popular DL algor_ithm_. Sparse K'S_VD qonsists of
7,5, while we are only interested in their product. Théwo alternating steps. The first is sparse coding, in which

motivation behind Probleif] 7 is to overcome the disadvanta§el*€d @nds is updated using a standard CS algorithm. The
ond step is dictionary update, in which the suppof &

of the previously discussed Probléin 4 in which the bases
previously discu &in 4 in wh d andZ is updated together with the value of the nonzero

fixed. When using a sparse basis we can choose a diction _ he diff b d
® with fast implementation, but enhance its adaptability {8 ments inS. The difference between sparse K-SVD and K-

different signals by allowing any sparse enough combinatic VP is only in the dictionary update step. Since the sparse K-

of the columns of®. Note that we can solve the problemS_VD is a DL algorithm, it requires a large number of diverse

separately for several different dictionariésand choose the Signais. Moreover, the required diversity of the signala ca
best solution. This way we can combine the sparse bﬁgvent the_algorlthm from working, for instance in cases of
constraint and the constraint of a finite set of bases. Amot ock sparsity.

possible combination between these two approaches is td" general, BCS cannot be solved using DL methods.
define the basic dictionary a8 = [Py, P»,...], where the However, under the sparse basis constraint BCS is reduaed to

finite set of bases i@ = {Py, P»,...}. This way we allow problem that can be viewed as constrained DL, and therefore
any sparse enough combination of columns from all the basi¥ved using sparse K-SVD. Nevertheless, Protfem 7 is not
in . exactly constrained DL, since in DL we seek the matrices
S and Z themselves, whereas here we are interested only in
their productX = ®ZS. Moreover, as in any DL algorithm,

A. Uniqueness Conditions for sparse K-SVD to perform well it requires many diverse

As we now show, here too under appropriate conditions tagynals. However, for the uniqueness of Problem 7 or for
constrained problem has a unique solution even when thergg girect method of solution, there is no need for such a

only one signalV’ = 1. Therefore, instead of matricés 5, B yequirement. The sparse K-SVD algorithm is also much more
we deal with vectors:, s, b respectively. Sincgls|lo < k and  complicated than the direct method.

Z is ky-sparse, the vectar= Zs necessarily satisfigc||o <

Nonetheless, sparse K-SVD has one advantage over the
k,k. Therefore, Problef] 7 as

direct method in solving Problef 7. The direct method uses a

¢ = argmin ||c||o s.t.b= Adc, (9) standard CS algorithm in order to fifid = Z.S which is k,k-
_ ¢ sparse. This algorithm provides the correct result onhhé t
or equivalently: productk,k is small enough relative ta. On the other hand,
¢ = argmin ||b — Adcl[2 s.t.|lcllo < kyk, (10) the standard CS algorithms used in sparse K-SVD attempt to

find separately5' which is k-sparse andZ which is k,-sparse,
where the recovery is = ®¢. The solutions to[{9) and(]L0) and therefore requiré andk, themselves to be small instead
are unique ifo (A®) > 2k,k. If there is more then one signal,of the product:, k. Thus, when there are few signals, or even
N > 1, then one can solve](9) an@{10) for each signfist one, and whe,k is small relative ton, then Probleni]7
separately. should be solved using the direct methodk}# is large but
Note that in Problenl]7 the matriX necessarily has full still satisfieso(A®) > 2k,k, and if there are enough diverse
column rank, while this constraint is dropped i (9) aind (103ignals, then sparse K-SVD should be used.



TABLE Ill
RECONSTRUCTION ERROR FOR DIFFERENT NOISE LEVELS

Error Vs. Sparsity Level
T T T

T T T T
Sparse BCS
—— CS with the real P

60

sor 1 SNR CS sparse BCS
> 10~ 11% 10~ %
aof ] 30dB | 1.2% 2.8%
25dB | 1.5% 5.8%
T30 20dB | 3.3% 11.9%
® 15dB | 7.1% 23.5%
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simulation only this time we fixe& = 3 and added Gaussian
_ noise to the measuremenis We looked at different noise

R levels, and for each level we ran the direct method for sparse
BCS, and also for comparison we ran an OMP algorithm
Fig. 1. Reconstruction error as a function of the sparsitglle which used the real basi3. Table[Ill summarizes the average

errors of each of the methods. In the noiseless case there is
a perfect recovery in both cases. As the SNR decreases both
errors increases, but as can be expected, the one of the BCS
grows faster. The reason for the big difference in the low SNR
Simulation results for sparse K-SVD can be found[inl [23Fases is again the fact that in the CS case the OMP algorithm
Here we present simulation results for the direct methoat Fiis performed on sparser signals, relative to the sparse BCS
of all we tested the influence of the sparsity level of the fhascase.
We generated a random sparse matrix,-of size256 x 256
with up tok, = 6 nonzero elements in each column. The value VI. STRUCTURAL CONSTRAINT
of k£ - the number of nonzero elements #) was gradually
increased from 1 to 20. For eaktwe generated as a random
k-sparse matrix of siz256 x 100, and created the signal matrix
X = &ZS, where® was the DCT basisX was measured
using a random Gaussian matrixof size 128 x 256, resulting
in B=AX.
We solved Probleni]7 giveml and B using the direct P
method, where again the CS algorithm we used was OMP. P
For comparison we also performed OMP with the real b&sis -
which is unknown in practice. F[g 1 summaries the results. Fo Pr
every value ofk the error of each of the graphs is an averaggnd 4 is chosen to be a union of orthonormal bases, [21],
over the reconstruction errors of all the signals, caledas 7] [30]-[32]. Thatis,A = [A,,...A] whereAy, ..., A, are
in (8). Both the errors are similar fdr < 8, but for largerk’s )| orthonormal matrices. In this case
the error of the blind method is much higher.
Since A is an i.i.d Gaussian matrix and the DCT matrix D= [Dy,..,D] = [A1 P, ..., ALPL],
is orthogonal with probability 1g(A®) = 129. Therefore and we can simolv recove? by-
with probability 1 the uniqueness of the sparse BCS methdd Py y:
is achieved as long ds,k < 64, ork < 10. The error began to AT D,
grow before this sparsity level because OMP is a suboptimal p— . _ (11)
algorithm that is not guaranteed to find the solution evennwhe ‘ ATD
it is unique, but works well on sparse enough signals. The LI
reconstruction error of the OMP which used the rBafjrows Therefore, the solution to Probldrmh 3 under the constrait th
much less for the same values/afThat is since in this case P is block diagonal is very simple.
k itself, instead ofk,k, should be small relative to. Under the richness and spark conditions the BCS problem,
Sparse K-SVD can improve the results for high value:of as defined in Problefd 2, is equivalent to Prob[ém 3, where the
assuming of course it is small enough for the solution to lgasis P in Problem3 is a column signed permutation of the
unique. However, in this simulation the number of signals IsasisP in Probleni2. Since we are interested in the solution to
even less then the length of the vectors, and sparse K-SWiboblen(2, the constraint should be on the b#3isstead of
does not work well with such a small number of signals. . However, if we constrair® to be block diagonal, then the
the sparse K-SVD simulations which are presented_iri [28plution to the equivalent Probldrh 3 is not as simple aS i (11
the number of signals is at least 100 times the length of theProblen8 we look for® = P(Q, for some unknown signed
signals. permutation matrixQ). Under the block diagonal constraint on
We also investigated the influence of noise on the algorithR. the matrix ? = P(Q is not necessarily block diagonal, and
The setting of this simulations were the same as in the pusvidherefore we cannot usg_{11) to recover it.

C. Simulation Results

The last constraint we discuss is a structural constraint on
the basisP. We requireP to be block diagonal and orthogonal.
The motivation for the block diagonal constraint comes form
Problem[B, which looks fo® such thatD = AP. Assume
for the moment tha® is block diagonal, such that:



We can guarantee tha is block diagonal only if we can It is easy to see ifd is a union of orthogonal bases, then
guarantee thaf) is block diagonal. That is) permutes only o(A) > % + 1 guarantees thatl is not inter-block diagonal.
the columns inside each block df, and does not mix the For more details see Appendix B. With this definition in
blocks or change the outer order of them. As we prove beldvand we can now define the conditions for the uniqueness
in the uniqueness discussion, this can be guaranteed if ofeProblen{®.
requireP to have more b_IocI§s thgﬂ. Specifically, we require - rem 11.1f A € R"*"L is a union ofL orthogonal bases,
P to have2L blocks, which is twice the number of blocks in’ "~~~ ) .

c . which is not inter-block diagonal, and(AP) = n + 1, then
A. Such a basig” is called2L-block diagonal In fact, the the solution to Problerfll9 is unique
number of blocks inP can beM L for any integerM > 2. que.
We useM = 2 for simplicity; the expansion ta\/ > 2 is The proof of this theorem uses the next lemma.

trivial. «
We also constrainf’ to be orthogonal. The motivation for Lemma_ 12. AssumgP and P are t.)Oth orthogor_1<'_:1I2L—
block diagonal matrices, and satisfies the conditions of

this is the spark condition. In order be able to solve Prolfe N . .
instead of Probleri]2, we need to satisfyAP) > 2k. By ml'heiqrerrftﬂl. IlfDAfP: AP@ for some signed permutation
Jpatrix Q, thenP = PQ.

constrainingP to be orthogonal we can use results simil
to PropositionJl in order to achieve this requirement with |n general sincet has a null space, if the matrices P, P
probability 1. did not have their special structures, then the equalify =

The constrained BCS problem is then: APQ would not imply P = PQ. However, according to
Lemma I under the constraints dnP, P this is guaranteed.
The full proof of Lemmad IR appears in Appendix A. Here we
present only the proof sketch.

Proof sketchlt is easy to see that due to the orthogonality
of the blocks ofA, if @ is block diagonal theMP = APQ

In this new settings the size of the measurement matrix  implies P = P(Q. Therefore, we need to prove thét is
n x nL, wheren is the number of measurements alds the necessarily block diagonal. Denofe = AP. In general the
number ofn x n blocks in A, which equals the compressionmultiplication DQ can yield three types of changes i It
ratio. Moreover, The length of the signalsris=nL, and the can mix the blocks ofD, permute the order of the blocks of
size of the basig” is nL x nL. SinceP is 2L-block diagonal, D, and permute the columns inside each blockis block
the size of its blocks is; x 5. Therefore;, must be even.  diagonal if and only if it permutes only the columns inside

This constrained problem can be useful for instance #hch block, but does not mix the blocks or change their outer
multichannel systems, where the signals from each changgdler. First we prove thaf) cannot mix the blocks ofD.
are sparse under separate bases. In such systems wemganthis we use the condition on the spark bf and the
constructX' by concatenating signals from several differerdrthogonality of the blocks. Next we prove th cannot
channels, and compressively sampling them. For exampl@ange the outer order of the blocks. This time we use the
in microphone arrays_[36] or antenna arrays![37], we cdct that bothP and P have2L blocks and that! is not inter-
divide the samples from each microphone / antenna into tirsyck diagonal. Therefore) can only permute the columns
intervals in order to obtain the ensemble of sampled signaigide each block, which implies it is block diagonal M
B. Each column ofB is a concatenation of the signals from |f p and P have onlyL blocks instead oRL, then@ can
all the microphones / antennas over the same time intervalthange the outer order of the blocks Bf such that it does

not have to be block diagonal. Therefore, if the constramt o

A. Uniqueness Conditions P was that it hasl. blocks instead oL, then Lemmd 12

To ensure a unique solution to Probléth 8, we need tMuld be incorrect, such that the solution tp the Probfém 9,
DL solution givenB to be unique. Therefore, we assume thﬁnd therefore to _Problem 8, would not be unique. On the other
the richness conditions ofi and the spark condition o p  Nand the extension of the proof of Lemind 12/tbL. blocks
are satisfied. Then, Problel 8 is equivalent to the followingn€re > 2 is trivial. _
problem: Proof of Theoreri 11The proof we provide for Theorem 1

is constructive, although far from being a practical mettmd

Problem 9. Given the matricesD and A, which have more deploy in practice. Denote the desired solution of Prodlém 9
columns then rows, find an orthogon&lsuch thatD = AP, py P = P(), and denote:

and P = P(Q for some signed permutation matri@ and )
orthogonal2L-block diagonal matrixP. P

In order to discuss conditions for uniqueness of the satutio A=[A1,... A, P = - ’
to ProblenT® we introduce the following definition. P

Definition 10. DenoteA = [Ay, ..., Ar], such that4; € R**" where A; for i = 1,...L and P/ for j = 1,...,2L are all
for any1 < i < L. If for any two indices # j the product orthogonal matrices.

AT A; is not 2-block diagonal, or a permutation of a 2-block We first find a permutation matrix), such thatD =
diagonal matrix, we say that is not inter-block diagonal DQp = AP, where P is an orthogonalL-block diagonal

Problem 8. Given the measuremenis and the measurement
matrix A € R"*"L find the signal matrixX such thatB =
AX where X = PS for some orthogona2L-block diagonal
matrix P and k-sparse matrixs.
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matrix. There is always at least one such permutation. Fsatisfy the condition, and for longer signals of length= 64
instance, we can choosgp to equal the absolute value ofand L = 2 only 1.51 - 10734% satisfy the requirement.
QT. In this caseP equalsP up to the signs, and therefore it Therefore, a systematic search is not practical, even fmt sh

is necessarily orthogon@lL—bIgc;k diagonal. signals. Moreover, in practice the output of the DL algarith
Denote the blocks of” by P’ for j = 1,...,2L, and note contains some error, so that even for the correct permatatio
that the matricesA;lDi are not exactly 2-block diagonal, which

. . . renders the search even more complicated. Although there
- ; - R exist suboptimal methods for permutation problems such as
{A1 ( P! . ) AL ( p2L-t . ) } [38], these techniques are still computationally extemsind
pz ) p2L are sensitive to noise.
Instead we present the orthogonal block diagonal BCS

Since A; are orthogonal for ali = 1,..., L, we can recover - X ;
the blocks of P by _(OB_D-BCS) algor_lthm for the solution of Problefd 8, which
. is, in theory, equivalent to DL followed by the above post-
{ p2i-l } _ATD. processing. However, it is much more practical and simple.
p | T This algorithm is a variation of the DL algorithm in_[21],
such that [22], which learns a dictionary under the constraint that

AT D, the dictionary is a union of orthogonal bases. Giventhe
P ! algorithm in [21], [22] aims to solve
~ . 2
ATDy min ||B — DS||x (12)

Since bothP and P are orthogonalL-block diagonal, ac- s.t.5'ls k-sparse and) is a union of orthogonal bases.

cording to Lemme 12 the equalitp) = AP = APQQp |n the BCS caseP is orthogonal2L-block diagonal and4
implies P = PQQp. Therefore, we can recoveP by s g union of L orthogonal bases. Therefore, the equivalent
P =PQ = PQJ,. B (ictionary is:

The conclusion from Theorefm 111 is that if the richness
conditions onS are satisfied and! satisfies the conditions of D = AP =
Theoren1IlL, then the solution to Problgin 8 is unique. {Al ( Pl ) A, ( p2L—1 ) }

As proven in Appendix B one way to guarantee thét pz ) P
satisfies the conditions of Theordml 11 with probability 1 i§ince allA; and P' are orthogonal, here tob is a union of
to generate it randomly from an i.i.d Gaussian distributio ! '

. . rthogonal bases. The measurement matriis known and
and perform a Gram Schmidt process on each block in ord% 9

to make it orthogonal. This claim is similar to Proposit[dn ¢ are looking for an orthogonal’-block diagonal matrix>

except that the statistics of is a bit different due to the Gram for;;:)v?/i:pirasﬁar:ta(t)rflﬁﬂsll;?h thatls = APS. This leads to the
Schmidt process. g '

: _ 2
min ||B — APS|[F (13)

B. The OBD-BCS Algorithm s.t. S is k-sparse and® is orthogonaRL-block diagonal.

Although the uniqueness proof is constructive it is far from ] ) ) )
being practical. In order to solve Probléth 8 by following the 1N"€ algorithm in([21],[[2P] consists of two alternating step

uniqueness proof one needs to perform a DL algorithm dit€ first step is sparse coding, in which the dictionarys
B, resulting inD, S. Then go over all the permutation = fixed and the sparse matriX is updated. The second step is
DQp, and look forQp such that the matriceg” D;, for dictionary update, in whicl$' is fixed andD is updated. This
al i = 1. L are 2-block diagonal. After findling such gdlgorithm finds the dictionaryp = AP and the sparse matrix

permutation the recovery ot is S but not the basig?, and consequently, not the signal matrix
X =PS.
Al Dy In OBD-BCS we follow similar steps. The first step is again
X = Qgg_ sparse coding, in whictP is fixed andS is updated. The
ATD second step is basis update, in whi6his fixed and P is
LYL

updated. The difference between OBD-BCS and the algorithm
The problem with this method is the search for the permuta [21], [22] is mainly in the second step, where we add the

tion @p. There aren! different permutations of the columnsprior knowledge of the measurement matrixand the block

of D, wherem = nlL is the length of the signals, whilediagonal structure of”. In addition, we use a different CS

only [(%)!]QL of them satisfy the requirement (see Appendialgorithm in the sparse coding step.

C). As m and L grow the relative fraction of the desirable We now discuss in detail the two steps of OBD-BCS.

permutations decreases. For instance, for signals of Hengt 1) Sparse Coding:In this step P is fixed so that the

m = 16 and a compression ratio &f = 2 only 1.58-1075% of  optimization in [IB) becomes:

the permutations satisfy the requirement. For the samelsign ) ) .

but a higher compression ratio @ = 4 only 1.22 - 10-°% min |B—APS|[F  s.t.Sis k-sparse. (14)
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. . . TABLE IV
It is easy to see thal_(lL4) is separable in the columns'of THE OBD-BCS ALGORITHM

Therefore, for each column d® and S we need to solve

Inputs:

o B € R"*N - measurements

_ ) o A € R**"L - measurement matrix (union df orthogonal bases
where s, b are the appropriate columns 6t B respectively. Outputs:

This is a standard CS problem, as [ (3), with the additional ® X € R"2? - reconstructed signal matrix

property that the combined measurement mallix AP is a /.'\'?n?trg:;“é _ 7 (the identity

union of orthogonal bases. This property is used by the block o repeat until a stoping criteria is reached:

min ||b — APs||3 s.t.|[s]lo < K, (15)

coordinate relaxation (BCR) algorithrh [21], [22]."[39]. &h o Sparse codingfind the sparses§ such thatB = APS,
idea behind this algorithm is to divide the elementssadhto for Ihstandce L;SlngllQl\ﬁP- .

blocks corresponding to the orthogonal blocksiaf In each ° Bas(':sa::&;f;r_a E: _é’;m’ﬁfﬁjﬁj

iteration aII.the blocks ofs are fixed except one, which is Use SVD:&#(B%)T A° P USVT.

updated using soft thresholding. The DL algorithm proposed Update: P — VUT.

by [21], [22] is a variation of the BCR algorithm, which aims | e calculate: X = P3.
to improve its convergence rate. In OBD-BCS we can also use
this variation. However, experiments showed that the tesul
are about the same as the results with OMP. Therefore, we use
, : T . . U
OMP in order to update the sparse matsixwhen the basis lﬁ]e matrix 2 = V2 PU IS Qrthogpnal it and only itP is
orthogonal. Therefore[_(18) is equivalent to

P is fixed.
2) Basis Update:In this step the sparse matri is fixed max{Tr [2Z]} s.t. Z is orthogonal.
and P is updated. Divide each of theL x N matricesS and z
X into 2L submatrices of siz& x N such that: If the matrix R = SB”T A has full rank then® is invertible.
g1 x1 In this case the maximization is achieved only fo= I, and
thereforeP? = VU7 is the unique minimum of(17). Even if
S = : , X = : : R does not have full ranl’ = VU™ achieves a minimum of
§2L x2L @a.
Table[TM summarize the OBD-BCS algorithm. Note that the
Divide each orthogonal block ofl into two blocks: A; = jnjtiation can be ang L-block diagonal matrix, not necessarily
(A%, A% for i = 1,..., L, such that: the identity matrix as written in the table; however, the

_ identity matrix is simple to implement. This algorithm is ofu
A= (A AL] = [AL A7, A2 AP, simpler then following the uniqueness proof, which regsiae

With this notation X = PiSi, and B — 2251 Aipigi. combinatorial permutation search. Each iteration of thedOB

Therefore, [IB) becomes: = BCS algorithm uses a standard CS algorithm ahdSVDs.

An important question that arises is whether the OBD-BCS

) 2L P algorithm converges. To answer this question we look at each
PI,I?_{II}.,QL 1B - Z AT P S [ (16) step separately. If the sparse coding step is performedqibrf
J=1 it solves [(I#) for the currenP. That is, the objective of (13)

s.t. P, ..., P?* are orthogonal. is reduced or at least stays the same. In practice, for small

enoughk the CS algorithm converges to the solution [of](14).

However, in order to guarantee the objectivelofl (13) is reduc

or at least not increased in this step, we can always compare

17) the new solution after this step with the one from the presiou
iteration and chose the best of them.

Note that this step is performed separately on each column
of S. Thatis, we can choose to keep only some of the columns
from the previous iteration, while the rest are updated.tif a
an orthogonal matrixP” AT AP — I, and||APS|[% = ||S][2. ﬁzst pz;]\rt of thetﬁolu?n}sgare u;;r(?at[te_d t?r(]en tfhtﬁ next basiseipda
Thus, [I7) reduces to p changes the basi, so that in the following sparse

coding step we can get a whole new mat§x Therefore,
max{Tr [BT APS]} s.t. P is orthogonal. (18 the decisipn to keep the resglts from the previous. iteration
P does not imply we keep getting the same results in all the

Let the singular value decomposition (SVD) of the matriRext iterations. Another possibility is to keep only the sop
R = SBTA be R = USVT, whereU, V are orthogonal of the previous solution and update the values of the nonzero

matrices and® is a diagonal matrix. Using this notation we€léments using least-squares. In practice, in our sinauigti
can manipulate the trace i {18) as follows: the algorithm converges even without any comparison to the
previous iteration.
Tr[BTAPS] = Tr[SBT AP] = Tr[2VT PU. The basis update step is divided irité steps. In each, all

To minimize [16), we iteratively fix all the blockB’ for j =
1,...,2L except one, denoted b¥?, and solve

min ||B" — A'P'S"|3. s.t. P"is orthogonal
whereB' = B—3", ,; A7P7S7. With slight abuse of notation,

from now on we abandon the indéx
SinceP is orthogonal and! is constructed of columns from
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the blocks of P are fixed except one, which is updated t Error Vs. Number of Signals

minimize [IT). Therefore, the objective ¢f{17) is reduced ¢ . OBD-BCS

at least stays the same in each of fhe steps constructing i ——CSwiththe real P4
the basis update step. Therefore, the objectivé_af (16)¢hwvhi 8t 1
is equivalent to[{13) with fixed, is reduced or not increased .l , i
in the basis update step.

Thus, as inl[211],[[22], the algorithm we are based on, ar  _ o 1
as in other DL algorithms such ds [20], [24], we cannot pron & 5 1
the OBD-BCS algorithm converges to the unique minimum ¢ at 1
(I3). However, we can guarantee that under specific conditic ol |
there is a uniqgue minimum and that the objective function
reduced or at least stays the same in each step of the algorit 2r il
Furthermore, as can be seen in the next section the OBD-B it 1
algorithm performs very well in simulations on syntheticala 0 I S S W

500 1000 1500 2000 2500

N

C. OBD-BCS Simulations
. . . .., Fig. 2. Reconstruction error as a function of the number ghals, for
As in the first two constraints we evaluated the aIgonthrgb%rsity level ofk — 4. 9

performance on synthetic data. The signal mafXixhad 64
rows and was generated as a product of a random sparse matrix
- S and a random orthogonal 4-block diagonal matrix.-The

value of the nonzero elements fwas generated randomlme(_:h_ smaller then the number needed in order to saﬂgfy the
gufﬁment richness conditions, which {§') (k + 1) ~ 3 - 10°.

from a normal distribution, and the four orthogonal block3™ . . y .

of P were generated from a normal distribution followed b s in most DL algorlthms, the algorithm ”EDM]EUZ?] was

a Gram Schmidt process. The measurement matriwas valuated by counting the number of columns of the dictignar
' that are detected correctly. The conclusionslol [21]] [22] a

constructed of two randord2 x 32 orthogonal matrices, that t their alqorith tind about 80% of th | h
were generated from a normal distribution followed by a Gra at their aigorithm can find abou o o the columns when
e number of signals is at lea&in = 640, and can find all the

Schmidt process. The number of signals and the sparsity le

were gradually changed in order to investigate their infbgen =~ oo )
g y 9 g ing the same measurement matrix dimensions a5 in [21],

The stopping rule of the algorithm was based on a maxi o . .
number of iterations and the amount of change in the matri ,.the _mlmmal number of signals the OBD-BCS algorithm
[equires is only 500.

S and P. If the change from the last iteration was too small, | der t e the infl of ‘ d th
or if the maximal number of iterations was reached, then the h order 1o examine the nfiuence arwe periormed the
me experiment as before but for different values &f 10.

) . S
algorithm stopped. In most cases the algorithm stoppedaduel_ e results are presented in Fig. 3. It can be seen that for

small change between iterations after about 30 iterations. _
: : . all values ofk the graph has the same basic shape: the error
First we examined the influence of two parametérs, the : . - . .
decreases withiVv until a critical N, after which the error is

number of signals needed for the reconstruction, andhe L .
sparsity level. Figll2 considers the influencefwhere the almost constant. A& grows this critical N increases and so
’ does the value of the constant error. The graphskfer 1,

sparsity level is set té = 4. For each value o from 150 to k — 2,k — 3 follow the same pattern; they are not in the
2500 the error presented in the upper graph is an average (}Ygegre 'sinc; they are not visible on the ,same scale as the rest
20 simulations of the OBD-BCS algorithm. In each simulation '

the sparse vectors and the orthogonal matrix where geltllerz’;‘tezl\le.xt we mvgstlgated the influence of noise on the algorithm.
: : n,this simulation the noisy measuremetswere calculated
independently, but the measurement matrix was not changed.

The error of each signal was calculated accordindto (8). as B » APS + W, where the elements dﬂ/ were white

For comparison, the lower graph in Fig. 2 is the avera %aussmn noise. For each noise level 20 S|mulat|on§ were per
error of a standard CS algorithm that was performed on t %rmed and the average error was calculated. In all sirarati
same data, and used the real baiswhich is unknown k=4 and N = 800. Table[M summarizes the results of the

in practice. The CS algorithm we used was again OMP. A%BD'BCS algonthm and those of OMP ‘f’"g"“thm. which uses
. . t e realP. It is clear from the table that in the noiseless case
expected, the results of the CS algorithm are mdepend@

columns when the number of signals is at le&&t = 1600.

. . o e error of both algorithms is similar, therefore in thisea
of the number of signals, since it is performed separate

) : e prior knowledge of the basi® can be avoided. As the
and independently on each signal. The average error of t IRIR decreases both error increase, but the error of OBD-BCS
algorithm is 0.08%. The reason for this nonzero error, aitno '

P is known, is that for a small portion of the signals the OMlglgonthm Increases a b't. faster then t_hat of the CS algoxith
algorithm fails, However, the difference is not very big.

It is clear from Fig[® that forV > 500 the reconstruction
results of the proposed algorithm are successful and simila
to those obtained whei®? is known. Similarly to the con-  The following simulation illustrates the difference beeme
clusion in [17], the reconstruction is successful even #or the three BCS methods presented in this work. In this simu-

VII. COMPARATIVE SIMULATION
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) TABLE VI
Error Vs. Number of Signals
90 DL ALGORITHM FOR ORTHOGONAL DICTIONARY

80

Inputs

e X - training set

e k - sparsity level

Outputs

e P - orthogonal dictionary

e S - sparse matrix

Algorithm

e Initiate P = 1.

e Repeat until a stoping criteria is reached:
o Fix P and calculateS = PT X.
o Keep only thek highest (absolute value) elements

in each column ofS.

o Fix S, and calculate the SVDSX7 = UxV ™.
o UpdateP = VU7,

701

AN NN N X
Lt g Y N 1

P Oo~NOoOOgN

o

60

50

e[%]

401
30
20

101,

500 1000 1500 2000 2500

basis. We performed the estimation using a training set 0020
signals and a DL algorithm. The estimated basis is denoted
by Ppr. There are several different DL algorithms, €g.][20]-

Fig. 3. Reconstruction error as a function of the number ghals for
different values of.

TABLE V [22], [24], [4Q]. However,_in _this case we have impor_tanbpri
RECONSTRUCTION ERROR FOR DIFFERENT NOISE LEVELS knowledge that the basi® is orthogonal 4-block diagonal.
One way of using this knowledge is dividing the signals
SNR CS OBD-BCS X into 4 blocks corresponding to the 4 blocks &f and
00 0.008% 0.008% estimating each block a? from the relevant block oX using
35dB | 0.82% 0.88% ; ; . ; ;
2048 | 1540 164% the algorithm in Tabl€ VI, which is designed for learning an
25dB | 2.95% 3.23% orthogonal basis.
20dB | 5.81% 6.10% Due to this structure o’ and the sparsity of in each

15dB | 12.03% 12.58%

1008 | 2511% 26.04% column of X there are up to 12 nonzero elements. Therefore,

the identity matrix/ was one of the bases in the finite set

¥ that we used. Specifically, we used the sameUsets in

the simulations in Section IVX had about twice as many
lation the length of the signals was = 128, the sparsity nonzero elements in each column compared to the real sparse
level wask = 6, the number of signals wad” = 2000, matrix S, such thatX is 2k-sparse undef. Therefore, we

and the compression ratio wads = 2. The syntectic data ran the F-BCS method with sparsity level 2# instead ofk.

was generated as in Sectibn VI-C, but this time the instedbreover, sinceP is sparse itself we usedl = I as the base

of generatingP € R'?%*!?¥ randomly we used dictionary in the sparse BCS method. It is easy to see that
1 -1 ky, = 2.
11 Table [Vl reports the average error of all five methods,
1 calculated as in{8). As can be seen, the results of F-BCS are
P = ﬁ y much worse than all the others. This can be expected since
1 -1 in this caseX is 2k-sparse, so that the OMP reconstruction
1 1 is not as good. The error of the sparse BCS is also higher

. . . then the rest. The reason for this is that in order for thectlire
which can be viewed as an orthogonal 4-block diagonal matrljﬁ(ethod of sparse BCS to work well the prodigt should
(ez\;t/sh blocg :CS 16(;2:0(:'( dlagorr\]aldbyfltselrm:). . bfe small relative ton. In this case this product is not small
thesz ;Z?lalslve ifferent methods for the reconstruction %nough. Note that though higher from the rest the errors of

the sparse BCS and F-BCS are quite small. We performed the

1) CS algorithm with the real basi8. same simulation withk = 3 and then the error of sparse BCS
2) CS algorithm with an estimated bag? ;.. was reduced to the level of the rest, but the error of F-BCS
3) The F-BCS method. was still high.

4) The direct method for sparse BCS. The results of both the OBD-BCS algorithm and the CS with
5) The OBD-BCS algorithm. the estimated basis, which both did not use the knowledge

In all the methods above we used OMP as the standard GfSthe basisP, are similar to those of the algorithm which
algorithm. The first method, came as a reference for the rassed this knowledge. Thus, the prior knowledgerotan be
It used the real basi®, whose knowledge we are trying toavoided. The advantage of OBD-BCS over the CS with the
avoid. The second method is an intuitive way to reconsthet testimated basis is that it does not require any trainingaset,
signals. Since the basB is unknown one can estimate it firsttherefore can be used in applications where there is no sicces
and then perform a CS algorithm which uses the pre-estimatedany full signals but only to their measurements.
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TABLE VII . k
RECONSTRUCTION ERROR OF DIFFERENT RECONSTRUCTION ALGorims  When multiplying D@ only the order of the block®), ..., Dy,

and the order of the columns inside the blocks change, but

Algorithm Error there is no mixture between the blocks. In order to prove that

CS with the realP | 10 °% in our case necessarily € Q g, we use the next lemmas.

CSwith P = Ppy, | 1075% . .

F-BCS 0.522% Lemma A.l. If D = [Dy,...,D;] € R*™"L is a union of

Sparse BCS 0.084% L orthogonal bases, and(D) = n + 1, then any set of

OBD-BCS 107°% orthogonal columns of) are necessarily all from the same
block of D.

Proof: Assumel is a set ofn orthogonal columns frond.
Denotel’ = I'yUI'y, wherel ' is the set of columns taken from
We presented the problem of BCS which aims to solve C8,, andI's contains the rest of the columnslin Without loss

problems without the prior knowledge of the sparsity basis @f generality assume the sEi is not empty. Since botlD,
the signals. Therefore, this work renders CS universal niyt 0 andI" are orthogonal bases &, the span ofl’, equals the
from the measurement process point of view, but also from tegan of the columns ab; which are not inl". Therefore, the
recovery point of view. set of columnd’, Ud, whered is any column fromD; which
We presented three different constraints on the sparsity @ not in T, is either linearly dependent or empty. However,
sis, that can be added to the BCS problem in order to guaraniig€ setl’, Ud contains at most columns, andr(D) = n + 1
the uniqueness of the solution to the BCS problem. Undeiich that this set cannot be linearly dependent. Therefare,
each of these constraints we proved uniqueness conditigh®iecessarily empty, such that all the columnd adre from
and proposed simple methods to retrieve the solution. AHe same block ofD. [
the proposed methods perform very well in simulations on S _
synthetic data. In fact, whek is small enough and whenle€mma A.2. AssumeD = [Dy, ..., D¢} € R"*"" is & union
enough signals are measured (only for the structural cainstr ©f L orthonormal bases, witly(D) = n + 1, and D = DQ
case), the performance of our methods is similar to those of% S0me signed permutation matré}. If D is also a union
standard CS which uses the real, though unknown in practi@& [ orthonormal bases, the@ € Q.
sparsity basis. We also demonstrated through simulaties t proof: If there was a signed permutatial ¢ Qp such
advantage of BCS over CS with an estimated sparsity basigat ) = D¢, it would imply thatn columns of D, not all
The advantage of BCS is that it does not require any trainiggm the same block, form one of the orthogonal blocks)of
set, and therefore can be used in applications where thergyisyever, according to LemniaA.1 amyorthogonal columns
no access to any full signals but only to their measuremenifyst be from the same block, and theref@tee Q. W
An interesting direction for future research is to examine penote the orthogonal blocks of by A; for i = 1,..., L

more ways to assure uniqueness, beside the three presegigfl ihe orthogonal blocks of and P by P/ and P’
here, and weaken the constraint on the basis. respectively forj = 1, ..., 2L. Also denote:

VIII. CONCLUSIONS
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| APPENDIXA | ) A, ( 2 ) AL ( oL )}
The following proves LemmB12. That is, ## and P are

both 2L-block diagonal matricesd satisfies the conditions i1 are both unions of, orthogonal bases sincé;, P/ and

of Theoren[Ill, and) is a signed permutation matrix, thenp; are all orthogonal. Therefore, according to Lemimal A.2
AP = APQ implies P = PQ. Q€ Qp.

We begin this proof by proving thap is necessarily block
diagonal, after this is done the completion of the proof lﬁ.'
straight forward. For anyD = [Dy, ..., Dy] € R™*"L such
that Dq,...,Dp € R™ ™ the signed permutatiorD@ can
yield three types of changes iP. It can mix the blocks of is a switch between the first two blocks Bf That is
D, permute the order of the blocks @, and permute the '
columns inside each block) is L-block diagonal if and only p3
if it permute only the columns inside each block, but does not [ Pt ] Q2
mix the blocks or change their outer order. R pl

First we prove that) cannot mix the blocks ofD. We Dy =D1Q1 = Ay [ p2 ] Q1
denote by@p the group of all block signed permutation
matrices, which is the group of all the signed permutatiomhere@;, Q)5 are the corresponding sub-matrices(pfvhich
matrices that keep all blocks together. That iQiE Q5 then permute the columns inside the blocky, D,. In order to

ol
I
o
>
[

Next we prove that) also cannot change the outer order of
e blocks, and therefore must lieblock diagonal. Assume
by contradictions thaf) changes the outer order of the blocks
of D. Without loss of generality we can assume this change

Dy = DyQq = Ay
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satisfy D = AP we must have First of all, we can look at the generation of each block
of A as follows. The first columm; is generated randomly

p1 3
Dy = Ay { P P2 } = A, { P pi } Q> from R™. The second column; is generated randomly from
A then — 1 dimensional space orthogonald. a3 is generated
Do— A p3 A 4 P! ) randomly from then — 2 dimensional space orthogonal to
2 2 4 ! p? L the span ofiy, a2, and similarly anyu; is generated randomly

from the space orthogonal to the span of all previous colymns

Since A; and A, are orthogonal the above implies whose dimension is — i+ 1.

[ P! ] _ AT A { p3 0 We start by provingr(A) = n+ 1. This proof uses the next
p2 | e pt |2 lemma.
. (A-1) . .
P AT A P! 0 Lemma B.3. AssumeG € R™*" is generated as an i.i.d
pa| 2 p? ! Gaussian matrix followed by a Gram Schmidt process, and

oy is a given space of dimensiof If d < n then with

The left hand side of the above equations is obviously 2ibl eorobability 1 non of the columns @ are in U,

diagonal. Howeverd is not inter-block diagonal, such that th
matricesAT A5, AT A; are not 2-block diagonal or a column Proof: Denote the columns of! by ¢; for i = 1,....,n. g1
permutation of a 2-block diagonal matrix. Since in additédin is generated randomly froR™. Sinced < n the spacel/
PJ are orthogonal, the right hand side bf (A-1) is necessarihas zero volume ilR” and therefore with probability 4, is
not 2-block diagonal. Therefore, the contradictions aggion not in U. For any otherl < i < n, g; is generated randomly
is incorrect andy) cannot change the outer order of the block$rom G; - the space orthogonal to thie- 1 previous columns

such that it must bd.-block diagonal. in G, whose dimension ig; = n — ¢ + 1. We need to look
Denote the diagonal blocks @ by @, for ¢ = 1,...,L, at the probability to generatg in the intersection/ N G;.
such that: If d < d; then obviously this intersection has zero volume in

G,, such that with probability I; is not inU. Furthermore, if

D= P L1 d > d; then due to the randomness of the columnsg/ofvith
[Al < 5o > Lo AL < for ) } = probability 1G; is not entirely contained itv. Therefore, here
P P too UNG; has zero volume id+;, such that with probability 1
p! p2i-t . is not inU [ |
A LA L :
[ ! ( pP? ) @ueees Az < p2r > QL} Assumel is a set ofr(A) linearly dependent columns from

A. Denotel’ = I'; UT',, wherel'; is the subset of' which

. contains the columns taken from the bladk, andI'; are the

[ pr-l ] _ [ p2i-t _ ] 0; rest of the columns if". Without loss of generality assume
p2 | p2 " T"; is not empty. Moreover, sincd; is orthogonal’; is also

orthogonal, such that in order fdr to be linearly dependent

T’y also cannot be empty.

Any n 4+ 1 columns fromA are linearly dependent such
thato(A) < n+1. Therefore|T'| < n+ 1 such thaiT'y| < n
(imd T3] < n. If T'y] = n or |[T'2] = n then necessarily
o(A)=|T=n+1.

Assume by contradiction that(A) = |I'| < n, such that
IT1| < nand|T'z| < n—|T'y]. If |T'y| contains only one column,

Since all A; are orthogonal it implies for al =1, ..., L that

such that? = PQ. [ |
In fact the above proves not only thatis L-block diagonal,
it is also 2L-block diagonal. Note that i and P had L
blocks instead ofL, this proof would not work. That is since
in order to eliminate solutions of the form df (A-1) we use
the 2-block diagonal structure of the left hand side. Howgeve
if P had onlyL blocks the left hand side of (A1) would not

be 2-block diagonal. Therefore, the first block Bfcould be denoted byy,, then sincd” is linearly dependent; must be in

H T
either Ay A, PQ» or 1@y, and the second block could bey,, span of’;. However, the dimension of this span is at most

either A3 A1 P1 Q1 or P>Q,. Where Py, P, are the firsj[ two ngQ' < n—1, such that according to LemrhaB.3 the probability
blocks of P. On the other hand the extension of this progf 'ric is sero. IfT', contains only two columns, denoted by

to the case wher#® and P have M L blocks, forM > 2, is 1,72, then~, must be in the span df, U 71 However, the

trivial. dimension of this space is at md$t| 4+ 1 < n — 1, such that
according to LemmBa Bl 3 the probability for this is again zero
APPENDIX B We can keep increasing the cardinalitylof and as long as
The following proves that ifA = [A4, ..., A] € R"*"L is |T'| < n the probability forl' to be linearly dependent will be
a union of L orthogonal bases, where each block is generateero. Therefore, the contradiction assumption is incorit
randomly from an i.i.d Gaussian distribution followed by grobability 1, such that with probability d(4) = |T'| = n+1.
Gram Schmidt process, then with probability{4) = n+ 1 Next we need to prove that is not inter-block diagonal.
and A is not inter-block diagonal (Definitioh_10). Multipli- In order for A to be inter-block diagonal it should have
cation by an orthogonaP does not change the statisticsa pair of blocksA;, A; such that the matrixd7 A; is 2-
therefore ifo(A) = n 4+ 1 with probability 1, then also block diagonal or a column permutation of a 2-block diagonal
o(AP) = n + 1 with probability 1. Therefore, such ad matrix. That is, any column ofi; should be orthogonal to at
satisfies the conditions of Theoréml 11 with probability 1. leastn/2 columns ofA;. Equivalently, since4; is orthogonal



any column ofA; should be in the span of the rest of thegie]
n/2 columns of A;. Therefore, it is enough to prove that

o(A) > n/2+1in order for A not to be inter-block diagonal. |17
In our case, we already proved thatAd) = n + 1 such that
A is trivially not inter-block diagonal. 18]

APPENDIXC (19]

AssumeA € RZ*™ is a union of L random orthogonal
bases and® € R™*™ is an orthogonab L-block diagonal
matrix. DenoteD = APQ where( is some unknown signed
permutation matrix. We prove here that there &r&:)!*>
different permutation matrice® p such thatDQ, = AP,
where P is an orthogona?L-block diagonal matrix. Without [22]
loss of generality we can assur@e= I, therefore we need to
refer to APQp = AP. According to Lemma&12 this implies 23]
PQp P. Since bothP and P are 2L-block diagonal
Qp must be too, and the size of its blocks & x 7. "
Q@p is a permutation matrix, therefore each of its blocks {s ]
a permutation of the identity matrix of siz§-. Thus, there
are only (22)! different possibilities for each block. Therel29]

[21]

2L
are 2L blocks such that the total number of possifje’s is (26]
[(F)]? [27]
[28]
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