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From Theory to Practice: Sub-Nyquist Sampling of
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Abstract— Conventional sub-Nyquist sampling methods for
analog signals exploit prior information about the spectral sup-
port. In this paper, we consider the challenging problem of blind
sub-Nyquist sampling of multiband signals, whose unknown fre-
quency support occupies only a small portion of a wide spectrum.
Our primary design goals are efficient hardware implementation
and low computational load on the supporting digital processing.
We propose a system, named the modulated wideband converter,
which first multiplies the analog signal by a bank of periodic
waveforms. The product is then lowpass filtered and sampled uni-
formly at a low rate, which is orders of magnitude smaller than
Nyquist. Perfect recovery from the proposed samples is achieved
under certain necessary and sufficient conditions. We also develop
a digital architecture, which allows either reconstruction of the
analog input, or processing of any band of interest at a low rate,
that is, without interpolating to the high Nyquist rate. Numerical
simulations demonstrate many engineering aspects: robustness
to noise and mismodeling, potential hardware simplifications,
realtime performance for signals with time-varying support and
stability to quantization effects. We compare our system with
two previous approaches: periodic nonuniform sampling, which
is bandwidth limited by existing hardware devices, and the
random demodulator, which is restricted to discrete multitone
signals and has a high computational load. In the broader
context of Nyquist sampling, our scheme has the potential to
break through the bandwidth barrier of state-of-the-art analog
conversion technologies such as interleaved converters.

Index Terms— Analog to digital conversion, compressive sam-
pling, infinite measurement vectors (IMV), multiband sampling,
spectrum-blind reconstruction, sub-Nyquist sampling.

I. INTRODUCTION

RADIO frequency (RF) technology enables the modula-
tion of narrowband signals by high carrier frequencies.

Consequently, manmade radio signals are often sparse. That
is, they consist of a relatively small number of narrow-
band transmissions spread across a wide spectrum range. A
convenient way to describe this class of signals is through
a multiband model. The frequency support of a multiband
signal resides within several continuous intervals spread over
a wide spectrum. Figure 1 depicts a typical communication
application, the wideband receiver, in which the received
signal follows the multiband model. The basic operations in
such an application are conversion of the incoming signal to
digital, and low-rate processing of some or all of the individual
transmissions. Ultimately, the digital product is transformed
back to the analog domain for further transmission.

Due to the wide spectral range of multiband signals, their
Nyquist rates may exceed the specifications of the best analog-
to-digital converters (ADCs) by orders of magnitude. Any
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Fig. 1. Three RF transmissions with different carriers fi. The receiver sees
a multiband signal (bottom drawing).

attempt to acquire a multiband signal must therefore exploit its
structure in an intelligent way. When the carrier frequencies
are known, a common practical engineering approach is to
demodulate the signal by its carrier frequency such that the
spectral contents of a band of interest are centered around the
origin. A lowpass filter follows in order to reject frequencies
due to the other bands. Conversion to digital is then performed
at a rate matching the actual information width of the band
of interest. Repeating the process for each band separately
results in a sampling rate which is the sum of the bandwidths.
This method achieves the minimal sampling rate, as derived by
Landau [1], which is equal to the actual frequency occupancy.
An alternative sampling approach that does not require analog
preprocessing was proposed in [2]. In this strategy, periodic
nonuniform sampling is used to directly sample a multiband
signal at an average rate approaching that derived by Landau.
Both conventional demodulation and the method of [2] rely
on knowledge of the carrier frequencies.

In scenarios in which the carrier frequencies are unknown
to the receiver, or vary in time, a challenging task is to design
a spectrum-blind receiver at a sub-Nyquist rate. In [3], [4]
a multicoset sampling strategy was developed, independent
of the signal support, to acquire multiband signals at low
rates. Although the sampling method is blind, in order to
recover the original signal from the samples, knowledge of the
frequency support is needed. Recently [5], we proposed a fully
spectrum-blind system based on multicoset sampling. Our
system does not require knowledge of the frequency support
in either the sampling or the recovery stages. To reconstruct
the signal blindly, we developed digital algorithms that process
the samples and identify the unknown spectral support. Once
the support is found, the continuous signal is reconstructed
using closed-form expressions.

Periodic nonuniform sampling is a popular approach in
the broader context of analog conversion when the spectrum
is fully occupied. Instead of implementing a single ADC
at a high-rate R, interleaved ADCs use M devices at rate
R/M with appropriate time shifts [6]–[8]. However, time
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interleaving has two fundamental limitations. First, the M
lowrate samplers have to share an analog front-end which must
tolerate the input bandwidth R. With today’s technology the
possible front-ends are still far below the wideband regime.
Second, maintaining accurate time shifts, on the order of
1/RM , is difficult to implement. Multicoset sampling, is a
special case of interleaved ADCs, so that the same limitations
apply. In Section II-B we discuss in more detail the difficulty
in implementing interleaved ADCs and multicoset sampling.
In practice, such systems are limited to intermediate input
frequencies and cannot deal with wideband inputs.

Recently, a new architecture to acquire multitone signals,
called the random demodulator, was studied in the literature of
compressed sensing (CS) [9], [10]. In this approach, the signal
is modulated by a high-rate pseudorandom number generator,
integrated, and sampled at a low rate. This scheme applies
to signals with finite set of harmonics chosen from a fixed
uniform grid. Time-domain analysis shows that CS algorithms
can recover such a multitone signal from the proposed sam-
ples [10]. However, as discussed in Section VI, truly analog
signals require a prohibitively large number of harmonics to
approximate them well within the discrete model, which in
turn renders the reconstruction computationally infeasible and
very sensitive to the grid choice. Furthermore, the time-domain
approach precludes processing at a low rate, even for multitone
inputs, since interpolation to the Nyquist rate is an essential
ingredient in the reconstruction.

In this paper, we aim to combine the advantages of the
previous approaches: The ability to treat analog multiband
models, a sampling stage with a practical implementation, and
a spectrum-blind recovery stage which involves efficient digital
processing. In addition, we would like a method that allows
low-rate processing, namely the ability to process any one of
the transmitted bands without first requiring interpolation to
the high Nyquist rate.

Our main contribution is an analog system, referred to as the
modulated wideband converter (MWC), which is comprised
of a bank of modulators and lowpass filters. The signal is
multiplied by a periodic waveform, whose period corresponds
to the multiband model parameters. A square-wave alternating
at the Nyquist rate is one choice; other periodic waveforms
are also possible. The goal of the modulator is to alias the
spectrum into baseband. The modulated output is then lowpass
filtered, and sampled at a low rate. The rate can be as low
as the expected width of an individual transmission. Based
on frequency-domain arguments, we prove that an appropriate
choice of the parameters (waveform period, sampling rate)
guarantees that our system uniquely determines a multiband
input signal. In addition, we describe how to trade the number
of channels by a higher rate in each branch, at the expense
of additional processing. Theoretically, this method allows to
collapse the entire system to a single channel operating at a
rate lower than Nyquist.

Our second contribution is a digital architecture which
enables processing of the samples for various purposes. Recon-
struction of the original analog input is one possible function.
Perhaps more useful is the capability of the proposed system
to generate lowrate sequences corresponding to each of the

bands, which, in principle, allow subsequent digital processing
of each band at a low rate. This architecture also has the ability
to treat inputs with time-varying support. At the heart of the
digital processing lies the continuous to finite (CTF) block
from our previous works [5], [11]. The CTF separates the
support recovery from the rest of the operations in the digital
domain. In our previous works, the CTF required costly digital
processing at the Nyquist rate, and therefore provided only
analog reconstruction at the price of high rate computations.
In contrast, here, the CTF computations are carried out directly
on the lowrate samples.

The main theme of this paper is going from theory to prac-
tice, namely tying together a theoretical sampling approach
with practical engineering aspects. Besides the uniqueness
theorems and stability conditions, we make use of extensive
numerical simulations, in Section V, to study typical wideband
scenarios. The simulations demonstrate robustness to noise
and signal mismodeling, potential hardware simplifications in
order to reduce the number of devices, fast adaption to time-
varying spectral support, and the performance with quantized
samples. A circuit-level implementation of the MWC is under
development and will be reported in [12].

The paper is organized as follows. Section II describes the
multiband model and points out limitations of multicoset sam-
pling in the wideband regime. In Section III, we describe the
MWC system and provide a frequency-domain analysis of the
resulting samples. This leads to a concrete parameter selection
which guarantees a unique signal matching the digital samples.
We conclude the section with a discussion on the tradeoff
between the number of channels, rate, and complexity. The
architecture for low-rate processing and recovery, is presented
in Section IV. In Section V, we conduct a detailed numerical
evaluation of the proposed system. A review of related work
concludes the paper in Section VI.

II. FORMULATION AND BACKGROUND

A. Problem formulation
Let x(t) be a real-valued continuous-time signal in L2.

Throughout the paper, continuous signals are assumed to be
bandlimited to F = [−1/2T,+1/2T ). Formally, the Fourier
transform of x(t), which is defined by

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt, (1)

is zero for every f /∈ F . We denote by fNYQ = 1/T the
Nyquist rate of x(t). For technical reasons, it is also assumed
that X(f) is piecewise continuous in f . We treat signals from
the multiband model M defined below.

Definition 1: The setM contains all signals x(t), such that
the support of the Fourier transform X(f) is contained within
a union of N disjoint intervals (bands) in F , and each of the
bandwidths does not exceed B.

Signals in M have an even number N of bands due to the
conjugate symmetry of X(f). The band positions are arbitrary,
and in particular, unknown in advance. A typical spectral
support of a signal from the multiband modelM is illustrated
in the example of Fig. 1, in which N = 6 and B, fNYQ are
dictated by the specifications of the possible transmitters.
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We wish to design a sampling system for signals from the
model M that satisfies the following properties:

1) The sampling rate should be as low as possible;
2) the system has no prior knowledge of the band locations;
3) the system can be implemented with existing analog

devices and (preferably low-rate) ADCs.
Together with the sampling stage we need to design a re-

construction scheme, which converts the discrete samples back
to the continuous-time domain. This stage may involve digital
processing prior to reconstruction. An implicit (but crucial)
requirement is that recovery involves a reasonable amount
of computations. Realtime applications may also necessitate
short latency from input to output and a constant throughput.
Therefore, two main factors dictate the input spectrum range
that the overall system can handle: analog hardware at the
required rate that can convert the signal to digital, and a digital
stage that can accommodate the computational load.

In our previous work [5], we proved that the minimal
sampling rate for M to allow perfect blind reconstruction
is 2NB, provided that 2NB is lower than the Nyquist rate.
The case 2NB ≥ fNYQ represents signals which occupy
more than half of the Nyquist range. No rate improvement
is possible in that case (for arbitrary signals), and thus we
assume 2NB < fNYQ in the sequel. Concrete algorithms for
blind recovery, achieving the minimal rate, were developed in
[5] based on a multicoset sampling strategy. The next section
briefly describes this method, which achieves the goals of
minimal rate and blindness. However, limitations of practical
ADCs, which we detail in the next section, render multicoset
sampling impractical for wideband signals. As described later
in Section III-A, the sampling scheme proposed in this paper
circumvents these limitations and has other advantages in
terms of practical implementation.

B. Multicoset using practical ADCs

In multicoset sampling, samples of x(t) are obtained on a
periodic and nonuniform grid which is a subset of the Nyquist
grid. Formally, denote by x(nT ) the sequence of samples
taken at the Nyquist rate. Let M be a positive integer, and
C = {ci}mi=1 be a set of m distinct integers with 0 ≤ ci ≤
M − 1. Multicoset samples consist of m uniform sequences,
called cosets, with the ith coset defined by

xci [n] = x (nMT + ciT ) , n ∈ Z. (2)

Only m < M cosets are used, so that the average sampling
rate is m/MT , which is lower than the Nyquist rate 1/T .

A possible implementation of the sampling sequences (2)
is depicted in Fig. 2-a. The building blocks are m uniform
samplers at rate 1/MT , where the ith sampler is shifted by
ciT from the origin. Although this scheme seems intuitive
and straightforward, practical ADCs introduce an inherent
bandwidth limitation, which distorts the samples. The distor-
tion mechanism, which is modeled as a preceding lowpass
filter in Fig. 2-b, becomes crucial for high rate inputs. To
understand this phenomenon, we focus on the model of a
practical ADC, Fig. 2-b, ignoring the time shifts for the
moment. A uniform ADC at rate r samples/sec attempts to

t = nMT

x(t)

xc1 [n]∆t = c1T

Time shifts

t = nMT

xcm
[n]∆t = cmT

(a)

0 f

b

Analog Digital
r

samples/sec

Model of a practical ADC device

(b)

Fig. 2. Schematic implementation of multicoset sampling (a) requires no
filtering between the time shifts and the actual sampling. However, the front-
end of a practical ADC has an inherent bandwidth limitation, which is
modeled in (b) as a lowpass filter preceding the uniform sampling.

output pointwise samples of the input. The design process
and manufacturing technology result in an additional property,
termed analog (full-power) bandwidth [13], which determines
the maximal frequency b that the device can handle. Any
spectral content beyond b Hz is attenuated and distorted. The
bandwidth limitation b is inherent and cannot be separated
from the ADC. Therefore, manufacturers usually recommend
adding a preceding external anti-aliasing lowpass filter, with
cutoff b, since the internal one has a parasitic response. The
ratio b/r affects the complexity of the ADC circuit design,
and is typically in the range [14]

1.5r ≤ b ≤ 7r. (3)

The practical ADC model raises two difficulties in im-
plementing multicoset sampling. First, RF technology allows
transmissions at rates which exceed the analog bandwidth b
of state-of-the-art devices, typically by orders of magnitude.
For example, ADC devices manufactured by Analog Devices
Corp. have front-end bandwidths which reach up to b =780
MHz [14]. Therefore, any attempt to acquire a wideband signal
with a practical ADC results in a loss of the spectral contents
beyond b Hz. The sample sequences (2) are attenuated and
distorted and are no longer pointwise values of x(t). This
limitation is fundamental and holds in other architectures of
multicoset (e.g., a single ADC triggered by a nonuniform
clock). The second issue is a waste of resources, which is
less severe, but applies also when the Nyquist rate fNYQ = b
for some available device. For a signal with a sparse spectrum,
multicoset reduces the average sampling rate by using only m
out of M possible cosets, where M � 1 is commonly used.
Each coset in Fig. 2 samples at rate fNYQ/M . Therefore, the
ADC samples at rate r = b/M , which is far below the standard
range (3). This implies sampling at a rate which is much lower
than the maximal capability of the ADC.

As a consequence, implementing multicoset for wideband
signals requires the design of a specialized fine-tuned ADC
circuit, in order to meet the wide analog bandwidth, and still
exploit the nonstandard ratio b/r that is expected. Though
this may be an interesting task for experts, it contradicts
the basic goal of our design – that is, using standard and
available devices. In [15] a nonconventional ADC is designed
by means of high-rate optical devices. The hybrid optic-
electronic system introduces a front-end whose bandwidth
reaches the wideband regime, at the expense and size of an
optical system. Unfortunately, at present, this performance
cannot be achieved with pure electronic technology.
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h(t)

t = nTs

pi(t)

x̃i(t) yi[n]

h(t)

t = nTs

p1(t)

h(t)

t = nTs

pm(t)

x(t)

+1

−1

t0 Tp

Tp

M

0
f

1
2Ts

− 1
2Ts

+1

H(f)

Frequency response of h(t)

Parameters:

Symbol Meaning
m number of sampling channels
Tp period of each pi(t)
Ts time-interval between ADC samples, corresponding to cutoff frequency of h(t)
M number of ±1 intervals in each period of pi(t)
αik the value pi(t) takes on the kth interval

The mixing function pi(t)

αi,0

αi,1

x̃m(t) ym[n]

x̃1(t) y1[n]

Fig. 3. The modulated wideband converter – a practical sampling stage for multiband signals.

Another practical issue of multicoset sampling, which also
exists in the optical implementation, arises from the time
shift elements. Maintaining accurate time delays between the
ADCs in the order of the Nyquist interval T is difficult. Any
uncertainty in these delays influences the recovery from the
sampled sequences [16]. A variety of different algorithms have
been proposed in the literature in order to compensate for
timing mismatches. However, this adds substantial complexity
to the receiver [17], [18].

III. SAMPLING

We now present an alternative sampling scheme that uses
available devices, does not suffer from analog bandwidth
issues and does not require non-zero time synchronization.
The system, referred to as the modulated wideband converter
(MWC), is schematically drawn in Fig. 3 with its various
parameters. In the next subsections, the MWC is described
and analyzed for arbitrary sets of parameters. In Section III-
C, we specify a parameter choice, independent of the band
locations, that approaches the minimal rate. The resulting
system, which is comprised of the MWC of Fig. 3 and the
recovery architecture that is presented in the next section,
satisfies all the requirements of our problem formulation.

A. System description

Our system exploits spread-spectrum techniques from com-
munication theory [19], [20]. An analog mixing front-end
aliases the spectrum, such that a spectrum portion from each
band appears in baseband. The system consists of several chan-
nels, implementing different mixtures, so that, in principle,
a sufficiently large number of mixtures allows to recover a
relatively sparse multiband signal.

More specifically, the signal x(t) enters m channels si-
multaneously. In the ith channel, x(t) is multiplied by a
mixing function pi(t), which is Tp-periodic. After mixing, the
signal spectrum is truncated by a lowpass filter with cutoff
1/(2Ts) and the filtered signal is sampled at rate 1/Ts. The
sampling rate of each channel is sufficiently low, so that
existing commercial ADCs can be used for that task. The

design parameters are therefore the number of channels m, the
period Tp, the sampling rate 1/Ts, and the mixing functions
pi(t) for 1 ≤ i ≤ m.

For the sake of concreteness, in the sequel, pi(t) is chosen
as a piecewise constant function that alternates between the
levels ±1 for each of M equal time intervals. Formally,

pi(t) = αik, k
Tp
M
≤ t ≤ (k+1)

Tp
M
, 0 ≤ k ≤M−1, (4)

with αik ∈ {+1,−1}, and pi(t + nTp) = pi(t) for every
n ∈ Z. Other choices for pi(t) are possible, since in principle
we only require that pi(t) is periodic.

The system proposed in Fig. 3 has several advantages for
practical implementation:
(A1) Analog mixers are a provable technology in the wide-

band regime [21], [22]. In fact, since transmitters use
mixers to modulate the information by a high-carrier
frequency, the mixer bandwidth defines the input band-
width.

(A2) Sign alternating functions can be implemented by a
standard (high rate) shift register. Today’s technology
allows to reach alternation rates of 23 GHz [23] and
even 80 GHz [24].

(A3) Analog filters are accurate and typically do not require
more than a few passive elements (e.g., capacitors and
coils) [25].

(A4) The sampling rate 1/Ts matches the cutoff of H(f).
Therefore, an ADC with a conversion rate r = 1/Ts, and
any bandwidth b ≥ 0.5r can be used to implement this
block, where H(f) serves as a preceding anti-aliasing
filter. In the sequel, we choose 1/Ts on the order of B,
which is the width of a single band of x(t) ∈ M. In
practice, this sampling rate allows flexible choice of an
ADC from a variety of commercial devices in the low
rate regime.

(A5) Sampling is synchronized in all channels, that is there
are no time shifts. This is beneficial since the trigger for
all ADCs can be generated accurately (e.g., with a zero-
delay synchronization device [26]). The same clock can
be used for a subsequent digital processor which receives
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the sample sets at rate 1/Ts.

Note that the front-end preprocessing must be carried out
by analog means, since both the mixer and the analog filter
operate on wideband signals, at rates which are far beyond
digital processing capabilities. In fact, the mixer output x̃i(t)
is not bandlimited, and therefore there is no way to replace
the analog filter by a digital unit even if the converter is used
for low-rate signals. The purely analog front-end is the key to
overcome the bandwidth limitation of ADCs.

B. Frequency domain analysis

We now derive the relation between the sample sequences
yi[n] and the unknown signal x(t). This analysis is used for
several purposes in the following sections. First, for specifying
a choice of parameters ensuring a unique mapping between
x(t) and the sequences yi[n]. Second, we use this analysis
to explain the reconstruction scheme. Finally, stability and
implementation issues will also be based on this development.
To this end, we introduce the definitions

fp = 1/Tp, Fp = [−fp/2,+fp/2] (5a)
fs = 1/Ts, Fs = [−fs/2,+fs/2], . (5b)

Consider the ith channel. Since pi(t) is Tp-periodic, it has
a Fourier expansion

pi(t) =
∞∑

l=−∞
cile

j 2π
Tp
lt
, (6)

where

cil =
1
Tp

∫ Tp

0

pi(t)e
−j 2π

Tp
ltdt. (7)

The Fourier transform of the analog multiplication x̃i(t) =
x(t)pi(t) is evaluated as

X̃i(f) =
∫ ∞

−∞
x̃i(t)e−j2πftdt

=
∫ ∞

−∞
x(t)

( ∞∑

l=−∞
cile

j 2π
Tp
lt

)
e−j2πftdt

=
∞∑

l=−∞
cil

∫ ∞

−∞
x(t)e−j2π

“
f− l

Tp

”
tdt

=
∞∑

l=−∞
cilX(f − lfp). (8)

Therefore, the input to H(f) is a linear combination of fp-
shifted copies of X(f). Since X(f) = 0 for f /∈ F , the sum
in (8) contains (at most) dfNYQ/fpe nonzero terms1.

The filter H(f) has a frequency response which is an ideal
rectangular function, as depicted in Fig. 3. Consequently, only
frequencies in the interval Fs are contained in the uniform
sequence yi[n]. Thus, the discrete-time Fourier transform

1The ceiling operator dae returns the greater (or equal) integer which is
closest to a.

(DTFT) of the ith sequence yi[n] is expressed as

Yi(ej2πfTs) =
∞∑

n=−∞
yi[n]e−j2πfnTs

=
+L0∑

l=−L0

cilX (f − lfp) , f ∈ Fs, (9)

where Fs is defined in (5b), and L0 is chosen as the smallest
integer such that the sum contains all nonzero contributions
of X(f) over Fs. The exact value of L0 is calculated by

−fs
2

+ (L0 + 1)fp ≥
fNYQ

2
→ L0 =

⌈
fNYQ + fs

2fp

⌉
− 1.

(10)

Note that the mixer output x̃i(t) is not bandlimited, and,
theoretically, depending on the coefficients cil, the Fourier
transform (8) may not be well defined. This technicality,
however, is resolved in (9) since the filter output involves only
a finite number of aliases of x(t).

Relation (9) ties the known DTFTs of yi[n] to the unknown
X(f). This equation is the key to recovery of x(t). For our
purposes, it is convenient to write (9) in matrix form as

y(f) = Az(f), f ∈ Fs, (11)

where y(f) is a vector of length m with ith element
yi(f) = Yi(ej2πfTs). The unknown vector z(f) =
[z1(f), · · · , zL(f)]T is of length

L = 2L0 + 1 (12)

with

zi(f) = X(f + (i−L0 − 1)fp), 1 ≤ i ≤ L, f ∈ Fs. (13)

The m× L matrix A contains the coefficients cil

Ail = ci,−l = c∗il, (14)

where the reverse order is due to the enumeration of zi(f) in
(13). Fig. 4 depicts the vector z(f) and the effect of aliasing
X(f) in fp-shifted copies for N = 4 bands, aliasing rate fp =
1/Tp ≥ B and two sampling rates, fs = fp and fs = 5fp.
Each entry of z(f) represents a frequency slice of X(f) whose
length is fs. Thus, in order to recover x(t), it is sufficient to
determine z(f) in the interval f ∈ Fp.

The analysis so far holds for every choice of Tp-periodic
functions pi(t). Before proceeding, we discuss the role of each
parameter. The period Tp determines the aliasing of X(f)
by setting the shift intervals to fp = 1/Tp. Equivalently, the
aliasing rate fp controls the way the bands are arranged in
the spectrum slices z(f), as depicted in Fig. 4. We choose
fp ≥ B so that each band contributes only a single nonzero
element to z(f) (referring to a specific f ), and consequently
z(f) has at most N nonzeros. In practice fp is chosen slightly
more than B to avoid edge effects. Thus, the parameter Tp is
used to translate the multiband prior x(t) ∈M to a bound on
the sparsity level of z(f). The sampling rate fs of a single
channel sets the frequency range Fs in which (11) holds. It
is clear from Fig. 4 that as long as fs ≥ fp, recovering x(t)
from the sample sequences yi[n] amounts to recovery of z(f)
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f
0

fp ≥ B

0

2

NYQf

X(f)

X
(

2

)
NYQf

fs = 5fp

i = 1

i = L0

i = L0 + 1

i = L

0

z(f)

i = 1

i = L0

i = L0 + 1

i = L

fs = fp

Value corresponds

to

M
m

in
=

11

Fig. 4. The relation between the Fourier transform X(f) and the vector
set z(f) of (13). In the left pane, fs = fp so that the length of z(f) is
L = 11. The right pane demonstrates fs = 5fp which gives L = 15. Entries
in locations i ≤ L0 (i > L0 + 1) contain shifted and windowed copies of
X(f) to the right (left) of the frequency axis. No shift occurs for the middle
entry, i = L0 + 1.

from y(f), for every f ∈ Fp. The number of channels m
determines the overall sampling rate mfs of the system. The
simplest choice fs = fp ' B, which is presented on the
left pane of Fig. 4, allows to control the sampling rate at a
resolution of fp. Later on, we explain how to trade the number
of channels m by a higher rate fs in each channel. Observe
that setting fp, fs determines L by (10) and (12), which is the
number of spectrum slices in z(f) that may contain energy
for some x(t) ∈M.

The role of the mixing functions appears implicitly in (11)
through the coefficients cil. Each pi(t) provides a single
row in the matrix A. Roughly speaking, pi(t) should have
many transients within the time period Tp so that its Fourier
expansion (6) contains about L dominant terms. In this case,
the channel output yi[n] is a mixture of all (nonidentically
zero) spectrum slices in z(f). The functions pi(t) should differ
from each other to yield linearly independent rows in A.
The precise measure for the amount of required transients is
captured by the singular values of all possible column subsets
of A [27]. Further discussion on the choice of pi(t) appears
in Section IV-D. We next study a specific choice of pi(t) –
the sign waveforms.

Consider the sign alternating function pi(t), depicted in
Fig. 3. Calculating the coefficients cil in this setting gives

cil =
1
Tp

∫ Tp
M

0

M−1∑

k=0

αike
−j 2π

Tp
l
“
t+k

Tp
M

”
dt

=
1
Tp

M−1∑

k=0

αike
−j 2π

M lk

∫ Tp
M

0

e
−j 2π

Tp
ltdt. (15)

Evaluating the integral we have

dl =
1
Tp

∫ Tp
M

0

e
−j 2π

Tp
ltdt =

{
1
M l = 0
1−θl
2jπl l 6= 0

(16)

where θ = e−j2π/M , and thus

cil = dl

M−1∑

k=0

αikθ
lk. (17)

Let F̄ be the M ×M discrete Fourier transform matrix (DFT)
whose ith column is

F̄i =
[
θ0·i, θ1·i, · · · , θ(M−1)·i

]T
, (18)

with 0 ≤ i ≤ M − 1, and let F be the M × L matrix with
columns [F̄L0 . . . , F̄−L0 ] – a re-ordered column subset of F̄.
Note that for M = L, F is unitary. Then, (11) can be written
as

y(f) = SFD z(f), f ∈ Fs, (19)

where S is the m × M sign matrix, with Sik = αik, and
D = diag(dL0 , . . . , d−L0) is an L × L diagonal matrix with
dl defined by (16). As in (14), the reverse order is due to the
aliasing enumeration. The dependency on the sign patterns
{αik} is further expanded in (20).

A sign alternating function pi(t) is implemented by a shift
register, where M determines the number of flops, and {αik}
initializes the shift register. The clock rate of the register
(Tp/M)−1 is also dictated by M . The next section shows that
M ≥ L, where L is defined in (12), is one of the conditions
for blind recovery. To reduce the clock rate the minimal M as
derived in the sequel is always preferred. Since L is roughly
fNYQ/B for fp = B, this implies a large value for M . In
practice this is not an obstacle, since standard logic gates and
feedback can be used to generate a sign pattern of length M
(a.k.a, m-sequence) with just a few components [19], [20].
In future work, we will investigate the preferred sign pattern
for stable reconstruction. In the implementation [12], we use
a length M register without a supporting logic, in order to
allow any of the 2M possible patterns.

An important consequence of periodicity is robustness to
time-domain variability. As long as the waveform pi(t) is
periodic, the coefficients cil can be computed, or can be cali-
brated in retrospect. Time-domain design imperfections are not
important. In particular, a sign waveform whose alternations
do not occur exactly on the Nyquist grid, and whose levels
are not accurate ±1 levels is fine, as long as the same pattern
repeats every Tp seconds.

Note that the magnitude of dl decays as l moves away
from l = 0. This is a consequence of the specific choice
of sign alternating waveforms for the mixing functions pi(t).
Under this selection, spectrum regions of X(f) are weighted
according to their proximity to the origin. In the presence of
noise, the signal to noise ratio depends on the band locations
due to this asymmetry.
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Y1(ej2πfTs)
Y2(ej2πfTs)

...
Ym(ej2πfTs)




︸ ︷︷ ︸
y(f)

=



α1,0 · · · α1,M−1

...
. . .

...
αm,0 · · · αm,M−1




︸ ︷︷ ︸
S



| · · · | · · · |

F̄L0 · · · F̄0 · · · F̄−L0

| · · · | · · · |




︸ ︷︷ ︸
F



dL0

. . .
d−L0




︸ ︷︷ ︸
D




X(f − L0fp)
...

X(f)
...

X(f + L0fp)




︸ ︷︷ ︸
z(f)

(20)

C. Choice of parameters

An essential property of a sampling system is that the
sample sequences match a unique analog input x(t), since
otherwise recovery is impossible. The following theorems
address this issue. The first theorem states necessary conditions
on the system parameters to allow a unique mapping. A
concrete parameter selection which is sufficient for unique-
ness, is provided in the second theorem. The same selection
works with half as many sampling channels, when the band
locations are known. Thus, the system appearing in Fig. 3
can also replace conventional demodulation in the non-blind
scenario. This may be beneficial for a receiver that switches
between blind and non-blind modes according to availability
of the transmitter carriers. More importantly, Fig. 3 suggests
a possible architecture in the broader context of ADC design.
The analog bandwidth of the frontend, which is dictated by
the mixers, breaks the conventional bandwidth limitation in
interleaved ADCs.

For brevity, we use sparsity notations in the statements
below. A vector u is called K-sparse if u contains no more
than K nonzero entries. The set supp(u) denotes the indices
of the nonzeros in u. The support of a collection of vectors
over a continuous interval, such as z(Fp) = {z(f) : f ∈ Fp},
is defined by

supp(z(Fp)) =
⋃

f∈Fp
supp(z(f)). (21)

A vector collection is called jointly K-sparse if its support
contains no more than K indices.

Theorem 1 (Necessary conditions): Let x(t) be an arbitrary
signal within the multiband model M, which is sampled
according to Fig. 3 with fp = B. Necessary conditions to
allow exact spectrum-blind recovery (of an arbitrary x(t) ∈
M) are fs ≥ fp, m ≥ 2N . For mixing with sign waveforms
an additional necessary requirement is

M ≥Mmin
4
= 2

⌈
fNYQ

2fp
+

1
2

⌉
− 1. (22)

Note that for fs = fp, Mmin = L of (12); see also Fig. 4.
Proof: Observe that according to (9) and Fig. 4, the

frequency transform of the ith entry of z(f) sums fp-shifted
copies of X(f). If fs < fp, then the sum lacks contributions
from X(f) for some f ∈ F . An arbitrary multiband signal
may contain an information band within those frequencies.
Thus, fs ≥ fp is necessary.

The other conditions are necessary to allow enough linearly
independent equations in (11) for arbitrary x(t) ∈ M. To

prove the argument on m, first consider the linear system v =
Au for the m × L matrix A of (11). In addition, assume
fs = fp = B. Substituting these values into (10),(12) and
using fNYQ ≥ 2NB gives L > 2N , namely A has more than
2N columns.

If m < 2N , then since rank(A) ≤ m there exist two N -
sparse vectors ū1 6= ū2 such that Aū1 = Aū2. The proof
now follows from the following construction. For a given N -
sparse vector u, choose a frequency interval ∆ ⊂ Fp of
length B/2. Construct a vector z(f) of spectrum slices, by
letting z(f) = u for every f ∈ ∆, and z(f) = 0 otherwise.
Clearly, that z(f) corresponds to some x(t) ∈M (see below
an argument that treats the case that this construction results
in a complex-valued x(t)). Follow this argument for ū1, ū2

to provide x̄1(t) 6= x̄2(t) within M. Since Aū1 = Aū2,
both x̄1(t), x̄2(t) are mapped to the same samples. It can be
verified that since cil = c∗i,−l, the existence of complex-valued
x̄1(t) 6= x̄2(t) implies the existence of a corresponding real-
valued pair of signals withinM, which have the same samples.

The condition (22) comes from the structure of F. For M <
Mmin, F contains identical columns, for example F1 = FM+1.
Now, set û1 to be the zero vector except the value 1/d1 on the
first entry. Similarly, let û2 have zeros except for 1/dM+1 on
the (M + 1)th entry. We can then use the arguments above to
construct the signals x̂1(t), x̂2(t) from û1, û2. It is easy to see
that the signals (or their real-valued counterparts) are mapped
to the same samples although they are different.

The proof on the necessity of m ≥ 2N, M ≥ Mmin for
fs > fp follows from the same arguments.

We point out that the necessary conditions on m,M may
change with other choices of fp. However, fp = B is sufficient
for our purposes, and allows to reduce the total sampling rate
as low as possible. In addition, note that it is recommended
(though not necessary) to have M ≤ 2m−1. This requirement
stems from the fact that S is defined over a finite alphabet
{+1,−1} and thus cannot have more than 2m−1 linearly
independent columns. Therefore, in a sense, the degrees of
freedom in A = SFD are decreased2 for M > 2m−1. We
next show that the conditions of Theorem 1 are also sufficient
for blind recovery, under additional conditions.

Theorem 2 (Sufficient conditions): Let x(t) be an arbitrary
signal within the multiband model M, which is sampled
according to Fig. 3 with sign waveforms pi(t). If

2Note that repeating the arguments of the proof for M > 2m−1 allows to
construct spectrum slices z(f) in the null space of SF. However, these do
not necessarily correspond to x(t) ∈ M and thus this requirement is only a
recommendation.
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TABLE I
POSSIBLE PARAMETER CHOICES FOR MULTIBAND SAMPLING

Model
N = 6 B = 50 MHz fNYQ = 10 GHz

Sampling parameters
Option A Option B

fp =
fNYQ
195
≈ 51.3 MHz fp =

fNYQ
195
≈ 51.3 MHz

fs = fp ≈ 51.3 MHz fs = 5fp ≈ 256.4 MHz
m ≥ 2N = 12 m ≥ d 2N

5
e = 3

M = Mmin = 195 M = 195

Mmin = L = 195 Mmin = 195, L = 199

Rate mfs ≥ 615 MHz Rate mfs ≥ 770 MHz

1. fs ≥ fp ≥ B, and fs/fp is not too large (see the proof);
2. M ≥Mmin, where Mmin is defined in (22);
3. m ≥ N for non-blind reconstruction or m ≥ 2N for

blind;
4. every 2N columns of SF are linearly independent,

then, for every f ∈ Fs, the vector z(f) is the unique N -sparse
solution of (19).

Proof: The choice fp ≥ B ensures that every band can
contribute only a single non-zero value to z(f). Fig. 4 and
the earlier explanations provide a proof of this statement. As
a consequence, z(f) is N -sparse for every f ∈ Fs.

For M ≥ L, D contains nonzero diagonal entries, since
dl = 0 only for l = ±kM for some k ≥ 1. The same also
holds for Mmin ≤ M < L as long as the ratio fs/fp is
less than (Mmin + 1)/2. This implies that D is nonsingular
and rank(SFD) = rank(SF). Thus linear independence
of any column subset of SF implies corresponding linear
independence for SFD.

In the non-blind setting, the band locations imply the sup-
port supp(z(f)) for every f ∈ Fs. The other two conditions
(on m, SF) ensure that (19) can be inverted on the proper
column subset, thus providing the uniqueness claim. A closed-
form expression is given in (29) below.

In blind recovery, the nonzero locations of z(f) are un-
known. We therefore rely on the following result from the
CS literature: A K-sparse vector u is the unique solution of
v = Au if every 2K columns of A are linearly independent
[28]. This condition translates into m ≥ 2N and the condition
on SF of the theorem.

To reduce the sampling rate to minimal we may choose
fs = fp = B and m = 2N (for the blind scenario). This
translates to an average sampling rate of 2NB, which is
the lowest possible for x(t) ∈ M [5]. Table I presents two
parameter choices for a representative signal model. Option A
in the table uses fs = fp and leads to a sampling rate as low
as 615 MHz, which is slightly above the minimal rate 2NB
= 600 MHz. Option B is discussed in the next section.

Recall the proof of Theorem 1, which shows that A has L >
2N columns. Therefore, if m = 2N is sufficiently small, then
the requirement M ≥ L may contradict the recommendation
M ≤ 2m−1. This situation is rare due to the exponential nature
of the upper bound; it does not happen in the examples of
Table I. Nonetheless, if it happens, then we may view x(t) ∈

M as conceptually having ρN bands, each of width B/ρ, and
set fp = B/ρ. The upper bound on M grows exponentially
with ρ while the lower bound grows only linearly, thus for
some integer ρ ≥ 1 we may have a valid selection for M . This
approach requires m = 2ρN branches which correspond to a
large number of sampling channels. Fortunately, this situation
can be solved by trading the number of sampling channels for
a higher sampling rate fs.

To complete the sampling design, we need to specify how to
select the matrix S, namely the sign patterns {αik}, such that
the last condition of Theorem 2 holds. This issue is shortly
addressed in Section IV.

D. Trading channels for sampling rate

The burden on hardware implementation is highly impacted
by the total number of hardware devices, which includes the
mixers, the lowpass filters and the ADCs. Clearly, it would
be beneficial to reduce the number of channels as low as
possible. We now examine a method which reduces the number
of channels at the expense of a higher sampling rate fs in each
channel and additional digital processing.

Suppose fs = qfp, with odd q = 2q′ + 1. To analyze this
choice, consider the ith channel of (11) for f ∈ Fp:

yi(f + kfp) =
∞∑

l=−∞
cilX(f + kfp − lfp)

=
+L0−k∑

l=−L0−k
ci,(l+k)X(f − lfp)

=
+L0∑

l=−L0

ci,(l+k)X(f − lfp) (23)

where −q′ ≤ k ≤ q′. The first equality follows from a change
of variable, and the second from the definition of L0 in (10),
which implies that X(f − lfp) = 0 over f ∈ Fp for every
|l| > L0 − q′. Now, according to (23), a system with fs =
qfp provides q equations on Fp for each physical channel.
Equivalently, m hardware branches (including all components)
amounts to mq channels having fs = fp. Eq. (24) expands this
relation.

Theorem 2 ensures that z(f) has N nonzero elements for
every f ∈ Fs. Nonetheless, as detailed in the next section,
for efficient recovery it is more interesting to determine the
joint sparsity level of z(f) over Fs. As Fig. 4 depicts, over
f ∈ Fp, z(f) is 2N -jointly sparse, whereas over the wider
range f ∈ Fs, z(f) may have a larger joint support set. It is
therefore beneficial to truncate the sequences appearing in (23)
to the interval Fp, prior to reconstruction. In terms of digital
processing, the left-hand-side of (24) is obtained from the
input sequence yi[n] as follows. For every −q′ ≤ k ≤ q′, the
frequency shift yi(f +kfp) is carried out by time modulation.
Then, the sequence is lowpass filtered by hD[n] and decimated
by q. The filter hD[n] is an ideal lowpass filter with digital
cutoff π/q, where π corresponds to half of the input sampling
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yi(f − q′fp)
...

yi(f)
...

yi(f + q′fp)




=




ci,L0−q′ · · · ci,−L0−q′
...

. . .
...

ci,L0 · · · ci,−1 ci,0 ci,1 · · · ci,−L0

...
. . .

...
ci,L0+q′ · · · ci,−L0+q′






|

z(f)
|


 , f ∈ Fp. (24)

rate fs. This processing yields the rate fp = fs/q sequences

ỹi,k[ñ] =
(
yi[n]e−j2π kfp nTs

)
∗ hD[n]

∣∣
n=ñq

=
(
yi[n]e−j

2π
q kn

)
∗ hD[n]

∣∣∣
n=ñq

. (25)

Conceptually, the sampling system consists of mq channels
which generate the sequences (25) with fs = fp.

Table I presents a parameter choice, titled Option B, which
makes use of this strategy. Thus, instead of the proposed
setting of Theorem 2 with m ≥ 12 channels, uniqueness can
be guaranteed from only 3 channels. Observe that the lowest
sampling rate in this setting is higher than the minimal 2NB,
since the strategy expands each channel to an integer number
q of sequences. In the example, 3 channels are digitally
expanded to 3q = 15 channels. In Section V-C we demonstrate
this approach empirically using a finite impulse response (non-
ideal) filter to approximate hD[n].

Theoretically, this strategy allows to collapse a system with
m channels to a single channel with sampling rate fs = mfp.
However, each channel requires q digital filters to reduce the
rate back to fp, which increases the computational load. In
addition, as q grows, approximating a digital filter with cutoff
π/q requires more taps.

IV. RECONSTRUCTION

We now discuss the reconstruction stage, which takes the
m sample sequences yi[n] (or the mq decimated sequences
ỹi,k[ñ]) and recovers the Nyquist rate sequence x(nT ) (or its
analog version x(t)). As we explain, the reconstruction also
allows to output digital lowrate sequences that captures the
information in each band.

Recovery of x(t) from the sequences yi[n] boils down to
recovery of the sparsest z(f) of (11) for every f ∈ Fs. The
system (11) falls into a broader framework of sparse solutions
to a parameterized set of linear systems, which was studied
in [11]. In the next subsection we review the relevant results.
We then specify them to the multiband scenario.

A. IMV model

Let A be an m × M matrix with m < M . Consider a
parameterized family of linear systems

v(λ) = Au(λ), λ ∈ Λ, (26)

indexed by a fixed set Λ that may be infinite. Let u(Λ) =
{u(λ) : λ ∈ Λ} be a collection of M -dimensional vectors
that solves (26). We will assume that the vectors in u(Λ) are
jointly K-sparse in the sense that | supp(u(Λ))| ≤ K. In other

v(Λ)
Reconstruct joint support

V
S =

⋃
i

supp(Ūi)
SSolve V = AU for

sparsest matrix Ū
Construct a frame

V for v(Λ)

Continuous to finite (CTF) block

Fig. 5. Recovery of the joint support S = supp(u(Λ)).

words, the nonzero entries of each vector u(λ) lie within a set
of at most K indices.

When the support S = supp(u(Λ)) is known, recovering
u(Λ) from the known vector set v(Λ) = {v(λ) : λ ∈ Λ} is
possible if the submatrix AS , which contains the columns of
A indexed by S, has full column rank. In this case,

uS(λ) = A†Sv(λ) (27a)

ui(λ) = 0, i /∈ S (27b)

where uS(λ) contains only the entries of u(λ) indexed by S
and A†S = (AH

S AS)−1AH
S is the (Moore-Penrose) pseudoin-

verse of AS . For unknown support S, (26) is still invertible
if K = |S| is known, and every set of 2K columns from A
is linearly independent [11], [28], [29]. In general, finding the
support of u(Λ) is NP-hard because it may require a combi-
natorial search. Nevertheless, recent advances in compressive
sampling and sparse approximation delineate situations where
polynomial-time recovery algorithms correctly identify S for
finite Λ. This challenge is referred to as a multiple measure-
ment vectors (MMV) problem [27], [29]–[34].

The sparsest solution of a linear system, for unknown
support S, has no closed-form solution. Thus, when Λ has
infinite cardinality, referred to as the infinite measurement
vectors (IMV) problem [11], solving for u(Λ) conceptually
requires an independent treatment for infinitely many systems
[11]. To avoid this difficulty of IMV, we proposed in [5], [11]
a two step flow which recovers the support set S from a finite-
dimensional system, and then uses (27) to recover u(Λ). The
algorithm begins with the construction of a (finite) frame V
for v(Λ). Then, it finds the (unique) solution Ū to the MMV
system V = AU that has the fewest nonzero rows. The main
result is that S = supp(u(Λ)) equals supp(Ū), namely the
index set of the nonidentically zero rows of Ū. In other words,
the support recovery is accomplished by solving only a finite
dimensional problem. These operations are grouped in a block
entitled continuous to finite (CTF), depicted in Fig. 5. The
tricky part of the CTF is in exchanging the infinite IMV system
(26) by a finite dimensional one. Computing the frame V,
which theoretically involves the entire set v(Λ) of infinitely



10

many vectors, can be implemented straightforwardly in an
analog setting as we discuss in the next subsection. Isolating
the infiniteness to the frame construction stage enables us
to solve (26) exactly with only one finite-dimensional CS
problem.

B. Multiband reconstruction

We now specify the CTF block in the context of multiband
reconstruction from the MWC samples. The linear system (11)
clearly obeys the IMV model with Λ = Fs. In order to use
the CTF, we need to construct a frame V for the measurement
set y(Λ). Such a frame can be obtained by computing [11]

Q =
∫

f∈Fs
y(f)yH(f)df =

+∞∑

n=−∞
y[n]yT [n], (28)

where y[n] = [y1[n], · · · , ym[n]]T is the vector of samples
at time instances nTs. Then, any matrix V, for which Q =
VVH , is a frame for y(Fs) [11]. The CTF block, Fig. 5, can
then be used to recover the support S = supp(z(Fp)).

The frame construction (28) is theoretically noncausal.
However, rank(V) ≤ 2N due to the sparsity prior [5], and
thus there is no need to collect more than 2N linearly indepen-
dent terms in (28). In practice, only pathological signals would
require significantly larger amount of samples to reach the
maximal rank [5]. Section V-A demonstrates recovery de-facto
from frame construction over a short time interval. Therefore,
the infinite sum in (28) can be replaced by a finite sum and
still lead to perfect recovery since the signal space is directly
identified.

Once S is found,

zS [n] = A†Sy[n] (29a)
zi[n] = 0, i /∈ S, (29b)

where z[n] = [z1[n], · · · , zL[n]]T and zi[n] is the inverse-
DTFT of zi(f). Therefore, the sequences zi[n] are generated
at the input rate fs. At this point, we may recover x(t) by
either of the two following options. If fNYQ is not prohibitively
large, then we can generate the Nyquist rate sequences x(nT )
digitally and then use an analog lowpass (with cutoff 1/2T )
to recover x(t). The digital sequence x(nT ) is generated by
shifting each spectrum slice zi(f) to the proper position in the
spectrum, and then summing up the contributions. In terms of
digital processing, the sequences zi[n] are first zero padded:

z̃i[ñ] =
{
zi[n] ñ = nL, n ∈ Z
0 otherwise. (30)

Then, z̃i[ñ] is interpolated to the Nyquist rate, using an
ideal (digital) filter. Finally, the interpolated sequences are
modulated in time and summed:

x[n] = x(nT ) =
∑

i∈S
(z̃i[n] ∗ hI [n])e2πifpnT . (31)

The alternative option is to handle the sequences zi[n]
directly by analog hardware. Every zi[n] passes through an

analog lowpass filter hI(t) with cutoff fs/2 and gives (the
complex-valued) zi(t). Then,

x(t) =
∑

i∈S,i≥0

R{zi(t)} cos(2πifpt) + I(zi(t)) sin(2πifpt),

(32)
where R(·), I(·) denote the real and imaginary part of their
argument, respectively. By abuse of notation, in both (31) and
(32), the sequences z̃i[n] are enumerated −L0 ≤ i ≤ L0 to
shorten the formulas. We emphasize that although the analysis
of Section III-B was carried out in the frequency domain, the
recovery of x(t) is done completely in the time-domain, via
(28)-(32).

The next section summarizes the recovery flow and its
advantages from a high-level viewpoint.

C. Architecture and advantages

Fig. 6 depicts a high-level architecture of the entire recovery
process. The sample sequences entering the digital domain are
expanded by the factor q = fs/fp (if needed). The controller
triggers the CTF block on initialization and when identifying
that the spectral support has changed. Spectral changes are
detected either by a high-level application layer, or by a simple
technique discussed hereafter. The digital signal processor
(DSP) treats the samples, based on the recovered support,
and outputs a lowrate sequence for each active spectrum slice,
namely those containing signal energy. A memory unit stores
input samples (about 2N instances of y[n]), such that in case
of a support change, the DSP produces valid outputs in the
period required for the CTF to compute the new spectral
support. An analog back-end interpolates the sequences and
sums them up according to (32). The controller has the ability
to selectively activate the digital recovery of any specific band
of interest, and in particular to produce an analog counterpart
(at baseband) by overriding the relevant carrier frequencies.

CTF and sampling rate. The frame construction step of
the CTF conceptually merges the infinite collection z(Fs) to
a finite basis or frame, which preserves the original support.
For the CTF to work in the multiband reconstruction, the
sampling rate must be doubled due to a specific property
that this scenario exhibits. Observe that under the choices
of Theorem 2, z(Fp) is jointly 2N -sparse, while each z(f)
is N -sparse. This stems from the continuity of the bands
which permits each band to have energy in (at most) two
spectrum pieces within Fp. Therefore, when aggregating the
frequencies the support supp(z(Fp)) cannot contain more
than 2N indices. An algorithm which makes use of several
CTF instances and gains back this factor was proposed in
[5]. Although the same algorithm applies here as well, we
do not pursue this direction so as to avoid additional digital
computations.

MMV recovery complexity. The CTF block requires solv-
ing an MMV system, which is a known NP-hard problem.
In practice, sub-optimal polynomial-time CS algorithms may
be used for this computation [11], [29], [32]–[34]. The price
for tractability is an increase in the sampling rate. In the
next section, we quantify this effect for a specific recovery
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Fig. 6. High-level architecture for efficient multiband reconstruction.

approach. We refer the reader to [29], [33]–[35] for theoretical
guarantees regarding MMV recovery algorithms.

Realtime processing. Standard CS algorithms, for the finite
Λ scenario, couple the tasks of support recovery and the
construction of the entire solution. In the infinite scenario,
however, the separation between the two tasks has a significant
advantage. The support recovery step yields an MMV system,
whose dimensions are m × L. Thus, we can control the
recovery problem size by setting the number of channels m,
and setting L via fp, fs in (12). Once the support is known,
the actual recovery has a closed form (29), and can be carried
out in realtime. Indeed, even the recovery of the Nyquist
rate sequence (30)-(32), can be done at a constant rate. Had
these tasks been coupled, the reconstruction stage would have
to recover the Nyquist rate signal directly. In turn, the CS
algorithm would have to run on a huge-scale system, dictated
by the ambient Nyquist dimension, which is time and memory
consuming.

In the context of realtime processing, we comment that the
CTF is executed only when the spectral support changes, and
thus the short delay introduced by its execution is negligible
on average. In a realtime environment, about 2N consecutive
input vectors y[n] should be stored in memory, so that in case
of a support change the CTF has enough time to provide a new
support estimate before the recovery of z[n], eq. (29), reaches
the point that this information is needed. The experiment in
Section V-D demonstrates such a realtime solution. In either
case, there is no need to recover the Nyquist rate signal before
a higher application layer can access the digital information.

In order to notice the support changes once they occur, we
can either rely an indication from the application layer, or
automatically identify the spectral variation in the sequences
z[n]. To implement the latter option, let S = supp(Ū) be the
last support estimate of the CTF, and define S̃ = S

⋃{i} for
some entry i /∈ S. Now, monitor the value of the sequence
zi[n]. As long as the support S does not change, the sparsity
of z[n] implies that zi[n] = 0 or contains only small values
due to noise. Whenever, this sequence crosses a threshold (for
certain number of consecutive time instances) trigger the CTF
to obtain a new support estimate. Note that the recovery of
zi[n] requires to implement only one row from A†

S̃
. Since,

the values are not important for the detection purpose, the
multiplication can be carried out at a low resolution.

Robustness and sensitivity. The entire system, sampling
and reconstruction, is robust against inaccuracies in the param-

eters fs, fp. This is a consequence of setting the parameters
according to Theorem 2, with only the inequalities fs ≥
fp ≥ B. In particular, fp is chosen above the minimal to
ensure safety guard regions against hardware inaccuracies or
signal mismodeling. Furthermore, observe that the exact values
of fs, fp do not appear anywhere in the recovery flow: the
expanding equations (25), the frame construction (28), the
CTF block – Fig. 5, and the recovery equations (29). Only
the ratio q = fs/fp is used, which remains unchanged if
the a single clock circuitry is used in the design. In addition,
in the recovery of the Nyquist rate sequence (31), only the
ratio T/Tp is used, which remains fixed for the same reasons.
When recovering x(t) via (32), fp is provided to the back-
end from the same clock triggering the sampling stage. The
recovery is also stable in the presence of noise as numerically
demonstrated in Section V-A.

Digital implementation. The sample vectors y[n] arrive
synchronously to the digital domain. As mentioned earlier, a
possible interface is to trigger a digital processer from the same
clock driving the ADCs, namely at rate 1/Ts. Since the digital
input rate is relatively low, on the order of B Hz, commercial
cheap DSPs can be used. However, here the actual number of
channels m has a great impact. Each sample is quantized by
the ADC to a certain number of bits, say 8 or 16. The bus width
towards the DSP becomes of length 8m or 16m, respectively.
Care must be taken when choosing the processing unit in order
to accommodate the bus width. Note that some recent DSPs
have analog inputs with built-in synchronized ADCs so as to
avoid such a problem. See other aspects of quantization in
Section V-E.

Finally we point out an advantage with respect to the
reconstruction of a multicoset based receiver. The IMV for-
mulation holds for this strategy with a different sampling
matrix A [5]. However, the IMV system requires a (Nyquist
rate) zero padded version of (2) in this case. Consequently,
constructing a frame V from the multicoset low-rate sequences
(2) requires interpolating the sample sequences to the Nyquist
rate. Only then can Q be computed (see (61)-(62) in [5]).
Furthermore, reconstruction of the signal x(t) also requires
the same interpolation to the Nyquist grid, that is even for a
known spectral support. In contrast, the current mixing stage
has the advantage that the IMV is expressed directly in terms
of the lowrate sequences yi[n], and the computation of Q in
(28) is carried out directly on the input sequences. In fact, one
may implement an adaptive frame construction at the input rate
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fs. Digital processing at rate fs is obviously preferred over a
processor running at the Nyquist rate.

D. Choosing the sign patterns

Theorem 2 requires that for uniqueness, every 2N columns
of SF must be linearly independent. To apply the CTF block
the requirement is strengthened to every 4N columns, which
also implies the minimal number of rows in S [5]. Verifying
that a set of sign patterns {αik} satisfies such a condition is
computationally difficult because one must check the rank of
every set of 4N columns from SF. In practice, when noise is
present or when solving the MMV by sub-optimal polynomial-
time CS algorithms, the number of rows in S should be
increased beyond m = 4N . A preliminary discussion on the
required dimensions of S is quoted below from the conference
version of this work [36]. The actual choice of the patterns will
be investigated in future work.

Consider the system v = Au, where u is an unknown
sparse vector, v is the measurement vector, and A is of size
m ×M . A matrix A is said to have the restricted isometry
property (RIP) [27] of order K, if there exists 0 ≤ δK < 1
such that

(1− δK)‖u‖2 ≤ ‖Au‖2 ≤ (1 + δK)‖u‖2 (33)

for every K-sparse vector u [27]. The requirement of Theo-
rem 2 thus translates to δ2N < 1. The RIP requirement is also
hard to verify for a given matrix. Instead, it can be easier to
prove that a random A, chosen from some distribution, has
the RIP with high probability. In particular, it is known that a
random sign matrix, whose entries are drawn independently
with equal probability, has the RIP of order K if m ≥
CK log(M/K), where C is a positive constant independent
of everything [37]. The log factor is necessary [38]. The RIP
of matrices with random signs remains unchanged under any
fixed unitary transform of the rows [37]. This implies that if
S is a random sign matrix, possibly implemented by a length
M shift register per channel, then SF has the RIP of order
2N for the above dimension selection. Note that D is ignored
in this analysis, since the diagonal has nonzero entries and
thus supp(Du) = supp(u) for any vector u. In particular, it
is known that recovery using the program (35) below depends
only on the signs of the nonzero values of u, which are
unchanged under diagonal scaling.

To proceed, observe that solving for u would require the
combinatorial search implied by

min
u
‖u‖0 s.t. v = Au. (34)

A popular approach is to approximate the sparsest solution by

min
u
‖u‖1 s.t. v = Au. (35)

The relaxed program, named basis pursuit (BP) [39], is convex
and can be tackled with polynomial-time solvers [27]. Many
works have analyzed the basis pursuit method and its ability
to recover the sparsest vector u. For example, if δ2K ≤

√
2−1

then (35) recovers the sparsest u [40]. The squared error of the
recovery in the presence of noise or model mismatch was also
shown to be bounded under the same condition [40]. Similar

conditions were shown to hold for other recovery algorithms.
In particular, [35] proved a similar argument for a mixed `2/`1
program in the MMV setting (which incorporates the joint
sparsity prior). See also [34].

In practice, the matrix S is not random once the sampling
stage is implemented, and its RIP constant cannot be calcu-
lated efficiently. A reviewer also pointed out that when imple-
menting a binary sequence using feedback logic, as popular for
m-sequences, the set of possible sign patterns is much smaller
than 2M . In this setting, alternative randomness properties,
such as almost k-wise independency can be beneficial [41].
Extensive simulations on synthesized data are often used to
evaluate the performance and the stability of a CS system when
RIP values are difficult to compute (e.g., see [11], [29], [31]).
Clearly, the numerical results do not ensure a desired RIP
constant. Nonetheless, for practical applications, the behavior
observed in simulations may be sufficient. The discussion
above implies that stable recovery of the MMV of Fig. 5
requires roughly

m ≈ 4N log(M/2N) (36)

channels to estimate the correct support, using polynomial-
time algorithms.

V. NUMERICAL SIMULATIONS

We now demonstrate several engineering aspects of our
system, using numerical experiments:

1. A wideband design example in the presence of wideband
noise, for a synthesized signal with rectangular transmis-
sion shapes;

2. Hardware simplifications: using a single shift-register to
implement several periodic waveforms pi(t) at once;

3. Collapsing the number of hardware channels, evaluating
the idea presented in Section III-D;

4. Fast adaption to time-varying support, for quadrature
phase shift keying (QPSK) transmissions;

5. Quantization effects.

A. Design example

To evaluate the performance of the proposed system (see
Fig. 3) we simulate the system on test signals contaminated
by white Gaussian noise.

More precisely, we evaluate the performance on 500 noisy
test signals of the form x(t) + w(t), where x is a multiband
signal and w is a white Gaussian noise process. The multiband
model of Table I is used hereafter. The signal consists of 3
pairs of bands (total N = 6), each of width B = 50 MHz,
constructed using the formula

x(t) =
3∑

i=1

√
EiB sinc(B(t− τi)) cos(2πfi(t− τi)), (37)

where sinc(x) = sin(πx)/(πx). The energy coefficients are
Ei = {1, 2, 3} and the time offsets are τi = {0.4, 0.7, 0.2}
µsecs. The exact values X(f) takes on the support do not
affect the results and thus Ei, τi are fixed in all our simula-
tions. For every signal the carriers fi are chosen uniformly at
random in [−fNYQ/2, fNYQ/2] with fNYQ = 10 GHz.
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Fig. 7. Image intensity represents percentage of correct support set recovery
Ŝ = S, for reconstruction from different number of sampling sequences m̄
and under several SNR levels.

We design the sampling stage according to “Option A” of
Table I. Specifically, fs = fp = fNYQ/195 ' 51.3 MHz. The
number of channels is set to m = 100, where each mixing
function pi(t) alternates sign at most M = Mmin = 195 times.
Each sign αik is chosen uniformly at random and fixed for the
duration of the experiment. To represent continuous signals in
simulation, we place a dense grid of 50001 equispaced points
in the time interval [0, 1µsecs]. The time resolution under this
choice, T/5, is used for accurate representation of the signal
after mixing, which is not bandlimited. The Gaussian noise
is added and scaled so that the test signal has the desired
signal-to-noise ratio (SNR), where the SNR is defined to be
10 log(‖x‖2/‖w‖2), with the standard l2 norms. To imitate
the analog filtering and sampling, we use a lengthy digital
FIR filter followed by decimation at the appropriate factor.
After removing the delay caused by this filter, we end up
with 40 samples per channel at rate fs, which corresponds to
observing the signal for 780 nsecs. We emphasize that these
steps are required only when simulating an analog hardware
numerically. In practice, the continuous signals pass through
an analog filter (e.g., an elliptic filter), and there is no need
for decimation or a dense time grid.

The support of the input signal is reconstructed from m̄ ≤
m channels. (More precisely, S = supp(z(Fp)) is recovered.)
We follow the procedure described in Fig. 5 to reduce the
IMV system (19) to an MMV system. Due to Theorem 2, Q
is expected to have (at most) 2N = 12 dominant eigenvectors.
The noise space, which is associated with the remaining negli-
gible eigenvalues is discarded by simple thresholding (10−9 is
used in the simulations). Then, the frame V is constructed and
the MMV is solved using simultaneous orthogonal matching
pursuit [31], [32]. We slightly modified the algorithm to select
a symmetric pair of support indices in every iteration, based on
the conjugate symmetry of X(f). Success recovery is declared
when the estimated support set is equal the true support,
Ŝ = S. Correct recovery is also considered when Ŝ ⊃ S
contains a few additional entries, as long as the corresponding
columns AS are linearly independent. As explained, recovery
of the Nyquist rate signal can be carried out by (31)-(32).
Fig. 7 reports the percentage of correct support recoveries for
various numbers m̄ of channels and several SNRs.
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Fig. 8. Percentage of correct support recovery, when drawing the sign patterns
randomly only for the first r channels. Results are presented for (a) SNR=25
dB and (b) SNR=10 dB.

The results show that in the high SNR regime, correct
recovery is accomplished when using m̄ ≥ 35 channels, which
amounts to less than 18% of the Nyquist rate. This rate con-
forms with (36) which predicts an order of 4N log(M/2N) '
30 channels for stable recovery. A saving factor 2 is possible
if using more than a single CTF block and a complicated
processing (see [5] for details) or by brute-force MMV solvers
with exponential recovery time. An obvious trend which
appears in the results is that the recovery rate is inversely
proportional to the SNR level and to the number of channels
m̄ used for reconstruction.

B. Simplifying the mixing stage

Each channel needs a mixing function pi(t), which suppos-
edly requires a shift register of M flip flops. In the setting of
Fig. 7, every channel requires M = 195 flip flops with a clock
operating at (Tp/M)−1 = 10 GHz.

We propose a simple method to reduce the total number of
flip flops by sharing the same register by a few channels, and
using consecutive taps to produce several mixing functions
simultaneously. This strategy however reduces the degrees
of freedom in S and may affect the recovery performance.
To qualitatively evaluate this approach, we generated sign
matrices S whose first r rows are drawn randomly as before.
Then, the ith row, r < i ≤ m, is five cyclic shifts (to the
right) of the (i− r)th row. Fig. 8 reports the recovery success
for several choices of r and two SNR levels. As evident, this
strategy enables a saving of 80% of the total number of flip
flips, with no empirical degradation in performance.

C. Collapsing analog channels

Section III-D introduced a method to collapse q sampling
channels to a single channel with a higher sampling rate
fs = qfp. To evaluate this strategy, we choose the parameter
set “Option B” of Table I. Specifically, the system design of
Section V-A is now changed to fs = 5fp, with m = 20
physical channels.

In the simulation, the time interval in which the signal is
observed is extended to [0, 4µsecs], such that every channel
records (after filtering and sampling) about 500 samples. The
extended window enables accurate digital filtering in order
to separate each sequence to q = 5 different equations.
We design a 100-tap digital FIR filter with the MATLAB
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Fig. 9. Image intensity represents percentage of correct support set recovery
Ŝ = S, for reconstruction from different number of hardware channels m̄
and under several SNR levels. The input sample sequences are expanded to
m̄fs/fp digital sequences.

command h=fir1(100,1/q) to approximate the optimal
filter hD[n] of Section III-D. Then, for the ith sample sequence
yi[n], h is convolved with each of the modulated versions
yi[n]ej2π/q ln, where −q′ ≤ l ≤ q′ = 2. Fig. 9 reports the
recovery performance for different SNR levels and versus the
number of sampling channels. The performance trend remains
as in Fig. 7. In particular, 35/q = 7 channels achieve an
acceptable recovery rate. This implies a significant saving in
hardware components. The combination of collapsing channels
and sharing the same shift register for different channels were
realized in [12] for m = 4,M = 96.

D. Time-varying support

To demonstrate the realtime capabilities of our system, we
consider a communication system with 3 concurrent quadra-
ture phase shift keying (QPSK) transmissions of width B = 30
MHz each. Each QPSK signal is given by

x(t) =

√
2Esym

Tsym

(∑

n

I[n]s(t− nTsym)

)
cos(2πfct) (38)

+

(∑

n

Q[n]s(t− nTsym)

)
sin(2πfct),

where Esym, Tsym = 2/B are the energy and the duration
of a symbol. The in-phase and quadrature bit streams are
I[n], Q[n], and s(t) is the pulse shaping. We chose the
standard shaping s(t) = sinc(t/Tsym) and generated the bit
streams uniformly at random. The power spectral density
around the carrier fc is illustrated in Fig. 10-a. Evidently,
reallife transmissions have nonsharp edges, as opposed to nice
rectangular sinc signals, which were synthesized in (37).

The experiment was set up as follows. Three QPSK signals
of the form (38) were generated x1(t), x2(t), x3(t) with sym-
bol energies 1, 2, 3 respectively. The carriers fi were drawn
as before uniformly at random over a wideband range with
fNYQ = 10 GHz. Every 10µsecs the carrier were re-drawn
independently of their previous values. Each interval of 10µsec
gave about 500 time samples y[n]. In addition, the SNR was
fixed to 30 dB. The sampling parameters are the same of
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Fig. 10. The spectral density of a QPSK transmission is plotted in (a).
Reconstruction of a signal with time-varying spectral support is demonstrated
in (b).

Fig. 7, except for a fixed number of channels m = 40 so
as to simplify the presentation.

In order to handle the time-varying support, we decided to
use NCTF = 50 time samples y[n] for the frame construction of
the CTF. In addition, we considered the architecture of Fig. 6
with a memory stack that can save only NMEM = 20 vectors.
As a result, whenever the spectral support changes, the lowrate
sequences z[n] remain valid only for 20 cycles, and then
becomes invalid for 30 more cycles, until the CTF provides
a new support estimate. To identify the support changes, we
used the technique described earlier in Section IV-C.

Fig. 10-b shows the normalized squared baseband error,
which is defined as

Baseband error[n] =
‖ẑ[n]− z[n]‖2
‖z[n]‖2 , (39)

where z[n] corresponds to the signal x(t) without noise, ac-
cording to (13), while ẑ[n] are the actual recovered sequences,
including noise and possible wrong indices in the recovered
support. We measure the baseband error, rather than the output
error ‖x̂(t) − x(t)‖2/‖x(t)‖2, since the lowpass filter in the
output recovery, either hI [n] in (31) or hI(t) in (32), has its
own memory which smooths out the error to negligible values.
In the figure, the noise floor is due to the normalization in (39)
and our choice of 30 dB SNR.

This experiment highlights that the CTF requires only a
short duration to estimate the support. Once the new estimate
is ready, the baseband error, and consequently reconstruction,
are correct. In the experiment, we intentionally used a memory
size NMEM smaller than NCTF, in order to demonstrate error
in this setting. In practice, one should use NMEM ≥ NCTF for
normal operation. When changing the SNR and the number
of channels, we found that NCTF can be much lower than 50.
The bottom line is that the CTF introduces only a short delay
in realtime environments, and the memory requirements are
consequently very low.

E. Quantization

The ADC device performs two tasks: taking pointwise
samples of the input (up to the bandwidth limitation), and
quantizing the samples to a predefined number of bits. So far,
we have ignored quantization issues. A full study of these
effects is beyond the current scope. Nonetheless, we provide
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Fig. 11. Support recovery from quantized samples of QPSK transmissions.

a preliminary demonstration of the system capabilities in that
context.

Quantization is usually regarded as additive noise at the
input, though the noise distribution is essentially different from
the standard model of white Gaussian noise. Since Fig. 7
shows robustness to noise, it is expected that the system can
handle quantization effects in the same manner. To perform the
experiment, we used the setting of the first experiment, Fig. 7,
with the following exceptions: QPSK transmissions (37), no
additive wideband noise (in order to isolate the quantization
effect), and a variable number of bits to represent y[n]. We
used the simplest method for quantization – uniformly spaced
quantization steps that covers the entire dynamic range of
y[n]. Fig. 11 shows that indeed the support recovery functions
properly even from a few number of bits.

VI. DISCUSSION

A. Related work
The random demodulator is a recent system which also aims

at reducing the sampling rate below the Nyquist barrier [9],
[10]. The system is presented in Fig. 12. The input signal f(t)
is first mixed by a sign waveform with a long period, produced
by a pseudorandom sign generator which alternates at rate W .
The mixed output is then integrated and dumped at a constant
rate R, resulting in the sequence y[n].

t = n
R

f(t) y[n]

Pseudorandom
±1 generator at

rate W

Seed

f(t) · pc(t)

pc(t)

∫ t

t− 1
R

Fig. 12. Block diagram of the random demodulator [10].

The signal model for which the random demodulator was
designed consists of multitone functions:

f(t) =
∑

ω∈Ω

aωe
−j2πωt, t ∈ [0, 1), (40)

where Ω is a finite set of tones

Ω ⊂ {0,±1,±2, · · · ,±(W/2− 1),W/2} . (41)

The analysis in [10] shows that f(t) can be recovered from
y[n], using the linear system

y = Φa, (42)

where Φ is R×W matrix and a collects the coefficients aω .
Despite the somewhat visual similarity between Fig. 12 and

Fig. 3, the systems are essentially different in many aspects.
The most noticeable is the discrete multitone setting in contrast
to the analog multiband model that was considered throughout
this paper. When attempting to approximate analog signals in
the discrete model, such as those used in the previous section,
the number of tones W is about the Nyquist rate, and R =
const ·NB is required [10]. In practice, this results in a huge-
scale Φ (millions of rows by 10’s of millions of columns),
which may not allow to solve for the coefficients aω in a
reasonable amount of computations. In contrast, the MWC is
developed for continuous signals, and the matrix A has low
dimensions, 35× 195 in our experiments, for the same signal
parameters.

Besides model and computational aspects, the systems also
differ in terms of hardware. Our approach is easily adapted to
arbitrary periodic waveforms by just re-calculating the Fourier
coefficients cil in (7). In contrast, the analysis in [10] is
more tailored for the specific choice of sign waveforms. The
hardware of [10] also requires accurate integration, as opposed
to flexible analog filter design in the MWC.

Finally, we point out that (42) aims at Nyquist rate recovery.
In contrast, our approach combines standard sampling theory
tools, such as frequency-domain analysis, Section III-B, and
incorporates CS only where beneficial. The CS problem of
the CTF, eq. (19), is used only for support recovery, which is
the key for reducing recovery complexity and allowing low-
rate processing. A detailed comparison of our system with the
random demodulator appears in [42].

B. Concluding remarks
We presented a sub-Nyquist sampling system, the modu-

lated wideband converter, which is designed independently
of the spectral support of the input signal. The analog front-
end supports wideband applications and can also be used to
sample wideband inputs occupying the entire spectral support.
A unified digital architecture for spectrum-blind reconstruction
and for low-rate processing was also provided. The architec-
ture consists of digital support recovery and an analog back-
end. The digital operations required for the support recovery
need only a small number of observations, thus introducing
a short delay. Once the support is known, various realtime
computations are possible. Recovery of the original signal
at the Nyquist rate is only one application. Perhaps more
important is the potential to digitally process any information
band at a low rate.

This work bridges theory to practice. In theory, we prove
that analog signals are determined from minimal rate samples.
In the bridge to practice, we utilized numerical simulations to
prove the concept of stable recovery in challenging wideband
conditions. Finally, we presented various practical consid-
erations, both for the implementation of the analog front-
end (e.g. setting the number of channels, trading system
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branches by a higher sampling rate, and some potential hard-
ware simplifications), and for the digital stage (e.g. low-rate
and realtime processing, handling time-varying spectrum, and
quantization). The engineering aspects are the prime focus of
the current paper, while future work will sharpen the theoreti-
cal understandings and report on circuit-level implementation
[12].

The current work embeds theorems and algorithms from
compressed sensing (CS), an emerging research field which
exploits sparsity for dimension reduction. The mainstream line
of CS papers studies sparsity for discrete and finite vectors.
The random demodulator expands this approach by parame-
terizing continuous signals in a finite setting. In contrast, this
work continues the line of [5], [11] and belongs to a recently-
developed framework within CS [35], [43], [44], which studies
signals from a truly continuous domain. Within this analog
framework, we propose selecting a practical implementation
among the various possible sampling stages covered by [43].
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