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B D
support. In this paper, we consider the challenging problemof p— R
spectrum-blind sub-Nyquist sampling of multiband signals The J:L

Fourier transform of such signals occupy only a small portia of

a wide spectrum, with unknown frequency support. Our primary —
design goals are efficient hardware implementation and lowam- ’j C? /_’f\ /;\ /f\ ’T‘
putational load on the supporting digital processing. We sggest ! o aoh
a system, named the modulated wideband converter, which fits
multiplies the analog signal by a bank of periodic waveforms
The product is then lowpass filtered and sampled uniformly at
low rate. We derive necessary and sufficient conditions ensing

perfect recovery from the proposed system. In particular, he
waveform period and the uniform rate can be made as low as multiband model. The basic operations in such an applisatio
the expected width of each band, which is orders of magnitude gre conversion of the incoming signal to digital, and low-
smaller than the Nyquist rate. Reconstruction relies on reent rate processing of some or all of the individual transmissio

ideas developed in the context of analog compressed sensiagd . . .
is comprised of a digital step which recovers the spectral sport. Ultimately, the digital product is transformed back to the

Our approach enables baseband processing, namely generagi analog domain for further transmission.
a low rate sequence corresponding to any information band of  Due to the wide spectral range of multiband signals, their
interest from the given samples, without going through the fIgh  Nyquist rates may exceed the specifications of the bestgnalo

Nyquist rate. Numerical simulations demonstrate robustnes as to-digital converters (ADCs) by orders of magnitude. Any
well as several further hardware simplifications. In particular, the

ideas can be applied to a single channel with a higher samplin attempt to_ acqui.re a multiband signal must ther.efore et(ijtfni.
rate. We compare our system with two previous approaches: Structure in an intelligent way. When the carrier frequesci
periodic nonuniform sampling, which is bandwidth limited by are known, a common practical engineering approach is to
¢X|st|ng .hardware devices, and the randqm demodula.tor, wich employ baseband processing, in which an analog front-end
Is sensitive to parameter choice, has a high computationabad, 4 jates the signal by a carrier frequency such that the
and is restricted to multitone signals. In addition, both these .
methods do not allow baseband processing. In the broader SPectral contents of a band of interest are centered ardiend t
context of Nyquist sampling, our scheme has the potential to oOrigin. A lowpass filter follows in order to reject frequeasi
break through the bandwidth barrier of state-of-the-art analog  due to the other bands. Conversion to digital is then peréorm
conversion technologies such as interleaved converters. at a rate matching the actual information width of the band
Index Terms— Analog to digital conversion, compressive sam- Of interest. Repeating the process for each band separately
pling, infinite measurement vectors (IMV), multiband samping, results in a sampling rate which is the sum of the band

Abstract— Conventional sub-Nyquist sampling methods for 4& D) )
analog signals exploit prior information about the spectrd é D Receiver
A
B

f

Fig. 1. Three RF transmissions with different carrigfs The receiver sees
a multiband signal (bottom drawing).

spectrum-blind reconstruction, sub-Nyquist sampling. widths. This method achieves the minimal sampling rate, as
derived by Landau [1], which is equal to twice the actual
I. INTRODUCTION frequency occupancy. An alternative sampling approach tha

, . does not require analog preprocessing was proposed im[2]. |
Radio frequency (RF) technology enables the modulation @fﬁs strategy, periodic nonuniform sampling is used todiye

narrowband signals by high carrier frequencies. Consettwensample a multiband signal at an average rate approaching tha

manmade radio signals are often sparse. That is, they €on§ig,eq by Landau. Both baseband processing and the method

of a relatively small number of narrowband transmissiorbsf [2] rely on knowledge of the carrier frequencies
spread across a wide spectrum range. A convenient way t L . . . '
P P 9 Y ' scenarios in which the carrier frequencies are unknown

describe this class of signals is through a multiband mod? “the receiver, or change with time, a challenging task is to

The frequency support of a multiband signal resides Wlth|(51esign aspectrum-blindreceiver at a sub-Nyquist rate. In [3],

several continuous intervals spread over a wide spectr ; . :
Figure 1 depicts a typical communication application t@amultlcoset sampling strategy was developed, indepsnd
9 P yp PP ' f the signal support, to acquire multiband signals at low

wideband receiver, in which the received signal follows thl%tes Although the sampling method is blind, in order to

This work has been submitted to the IEEE for possible putitina recover the original signal from the samples, knowledgéief t
Copyright may be transferred without notice, after whicts thersion may frequency support is needed. Recently [5], we proposedya ful
no longer be accessible. _ _ ~ spectrum-blind system based on multicoset sampling. Our
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tute of Technology, Haifa Israel. Emails: moshiko@tx.t@oh.ac.il, yon- .SyStem does not reqmre knOWIGdge of the frequency support
ina@ee.technion.ac.il. in both the sampling and the recovery stages. To reconstruct
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the signal blindly, we developed digital algorithms thaigess corresponds to the multiband model parameters. A square-
the samples and identify the unknown spectral support. Oneave alternating at the Nyquist rate is one choice; other
the support is found, the continuous signal is reconstductpossibilities and their advantages are also discussedgdale
using closed-form expressions. of the modulator is to alias the spectrum into baseband. The
Periodic nonuniform sampling is a popular approach imodulated output is then lowpass filtered, and sampled at a
the broader context of wideband analog conversion when tlogv rate. The rate can be as low as the expected width of an
spectrum is fully occupied. Instead of implementing a ®ngindividual transmission. We prove that an appropriate c#oi
ADC at a high-rateR, interleaved ADCs usé/ devices at of the parameters (waveform period, sampling rate) guaesnt
rate R/M with appropriate time shifts [6]—[8]. However, timethat our system uniquely determines a multiband input $igna
interleaving has two fundamental limitations. First, thé In addition, we describe how to trade the number of channels
lowrate samplers have to share an analog front-end which mbyg a higher rate in each branch, at the expense of additional
tolerate the input bandwidt®. With today’s technology the processing. Theoretically, this method allows to collafise
possible front-ends are still far below the wideband regimentire system to a single channel operating at a rate lower
Second, maintaining accurate time shifts, on the order thfan Nyquist. Some essential differences and advantadls wi
1/RM, is difficult to implement. Multicoset sampling, is arespect to the random demodulator are detailed in Section VI
special case of interleaved ADC, in which only some of Our second contribution is a recovery stage complementing
the M branches are used. Consequently, the same limitatiahe sampling. Our algorithm relies on the machinery of blind
apply. In Section II-B we discuss in more detail the diffigult reconstruction, which we originally developed for multet
in implementing interleaved ADCs and multicoset samplingamples [5], and later extended to a broader setting in [m1].
In practice, such systems are limited to intermediate inpobntrast to [10], we use frequency domain analysis, a standa
frequencies and cannot deal with wideband inputs. tool in sampling theory, to express the relation between the
Recently, a new architecture to acquire analog signaliedalsample sequences and the unknown signal. As we show, the
the random demodulator, was studied in the literature frequency domain viewpoint allows to control the dimension
compressed sensing (CS) [9], [10]. In this approach, theesig of the recovery problem. A representative wideband scenari
is modulated by a high-rate pseudorandom number generatorsimulated in Section V-A and demonstrates recovery from
integrated, and sampled at a low rate. This scheme canadow scale problem (up to 9 orders of magnitude below
implemented using standard hardware devices. The randth@ counterpart recovery of [10]). In addition, our method
demodulator was studied for a multitone model, which coseparates the support recovery from the actual reconstruc-
tains signals with a discrete and finite set of harmonicsndJsition of the analog input. This enables baseband processing,
time-domain techniques and under additional assumptiongmely generating a low rate sequence for any specific band
polynomial-time algorithms can recover such a multitonef interest, without going through recovery of the Nyquist
signal from the samples of the random demodulator [10fkte sequence. In contrast, the recovery formulation in [9]
However, as elaborated on in Section VI, the discrete ajbprog10] couples the support and signal recovery. This resalts i
leads to a solution which is sensitive to design imperfestior CS problems of large dimensions, and precludes low rate
even slight model mismatches. Furthermore, the time-demairocessing. Section VI highlights other advantages of our
analysis in [10] aims at the recovery of the Nyquist ratmethod in terms of digital processing.
samples, which results in a huge-scale recovery problemThe current paper focuses on the engineering aspects of our
This leads to severe computational loads even with pusgstem. Numerical simulations are used to prove the concept
multitone signals. The time-domain approach also precludgnd the stability of the solution in the presence of noise.

baseband processing since interpolation to the Nyquistisat Ongoing work studies the theoretical aspects in more depth
an essential ingredient in the reconstruction. Finallg,itiodel  [12].

cannot properly treat true analog inputs.

A. Main contributions B. Outline

In this work we aim to combine the advantages of all The paper is organized as follows. Section Il describes the
previous approaches: The ability to treat analog multibamdultiband model and defines the goals for a practical samplin
models, a sampling stage with a practical implementatind, astage. We also detail limitations of multicoset in the widet
a spectrum-blind recovery stage which involves efficiegitdl regime. In Section 1ll, we describe the modulated wideband
processing. In addition, we would like a method that wilball sampling system and provide a frequency-domain analysis
for baseband processing, namely the ability to process aay @f the resulting samples. This leads to a concrete parameter
of the transmitted bands without first requiring interpimiat selection which guarantees a unique signal matching thbig
to the high Nyqusit rate. samples. We conclude the section with a discussion of the

Our first contribution is an analog system, referred to as thadeoff between number of channels, rate, and complexity.
modulated wideband converter, which is comprised of a baRecovery is discussed in Section IV. A design example and
of modulators and lowpass filters. Each channel resembées #uditional implementation aspects are presented in Sebtio
random demodulator of [9] with a few essential differencefn Section VI we compare our system with multicoset sam-
The signal is multiplied by a periodic waveform, whose périopling and the random demodulator.



Time shifts { = nMT

.

Il. FORMULATION AND BACKGROUND Model of a practical ADC device

A. Problem formulation . }
. . . " . x(t) . PR
Let z(t) be a real-valued continuous-time signalfip, with ' . o Analog D | pigia
bounded energy. Throughlou.t the paper, continuous signals AN . /| somples/see
are assumed to be bandlimited = [-1/2T,+1/2T).
Formally, the Fourier transform af(t), which is defined by @ (b)
o0 o Fi Fig. 2. Schematic implementation of multicoset sampling rémuires no
X(f)= / x(t)e 92t de, (1) filtering between the time shifts and the actual samplingvéler, the front-
—0o0 end of a practical ADC has an inherent bandwidth limitatievhich is

. deled in (b I ding th if ling.
is zero for everyf ¢ F. We denote byfuvo — 1/T the modeled in (b) as a lowpass preceding the uniform sampling

Nyquist rate ofz(t). For technical reasons, it is also assumed
that X (f) is piecewise continuous iffi.

We ftreat signals from the multiband modah defined
below.

Definition 1: The setM contains all signals(¢), such that
the support of the Fourier transfor®(f) is contained within
a union of N disjoint intervals (bands) itf, and each of the B. Multicoset using practical ADCs
band widths does not exceétl In multicoset sampling, samples oft) are obtained on a

Signals in M have an even numbeN of bands due to periodic and nonuniform grid which is a subset of the Nyquist
the conjugate symmetry o (f). The band positions are grid. Formally, denote:(nT') as the sequence of samples taken
arbitrary, and in particular, unknown in advance. A typicalt the Nyquist rate. Lef\/ be a positive integer, and’ =
spectral support of a signal from the multiband modélis {c,}'", be a set ofn distinct integers witt) < c¢; < M — 1.
illustrated in the example of Fig. 1, in which = 6 and The multicoset grid consists of. uniform sequences, called
B, fnvg are dictated according to the specifications of thepsets, such that th#gh coset is defined by
possible transmitters.

We wish to design a sampling system for signals from the Tey[n] = w (nMT +¢T), nel. )

model M that satisfies the following properties: Only m < M cosets are used, and thus the average sampling
1) The sampling rate should be as low as possible;  rate isn/MT, which is lower than the Nyquist rate/T".
2) the system has no prior knowledge of the band locations;A possible implementation of the sampling sequences (2)
and is depicted in Fig. 2(a). The building blocks ame uniform
3) the system can be implemented with existing anale@gmplers at raté /M T, where theith sampler is shifted by
devices and (preferably low rate) ADCs. ¢;T from the origin. Although this scheme seems intuitive and
The design of the sampling stage should match a corsgraightforward, practical ADCs introduce inherent baiutiv
sponding reconstruction stage, which converts the discréimitation, which is modeled as a preceding lowpass filter in
samples back to the continuous-time domain. This staf&. 2(b). This additional constraint becomes crucial fighh
may involve digital processing prior to reconstruction. Amate inputs. To understand this limitation, consider thiéboum
implicit (but crucial) requirement is that recovery invels sampler block, which should output pointwise samples of the
a reasonable amount of computations. Realtime applicationput at ratel/MT. An appropriate choice for this task is
may also necessitate short latency from input to output and ADC device with sampling rate = 1/MT. Practical
a constant throughput. Therefore, two main factors dicta#dCs have an additional property, termed analog (full-pgwe
the input spectrum range that the overall system can handiandwidth [13], which determines the maximal frequemncy
analog hardware at the required frequency that can corhert that the device can handle, as dictated by technology. Any
signal to digital, and a digital stage that can accommodwe tspectral content beyond Hz is attenuated and distorted.
computation load. Manufacturers thus usually recommend adding a preceding
In our previous work [5], we proved that the minimalanti-aliasing lowpass filter, with cutobfto further reject higher
sampling rate forM to allow perfect blind reconstruction frequencies. The ratib/r implies the complexity of the ADC
is 2N B, provided that2N B is lower than the Nyquist rate. circuit design, and is typically in the randge5r < b < 7r;
The case2NB > fnyg represents signals which occupysee the online table in [14]. A simplified model based on the
more than half of the Nyquist range. No rate improvemespecifications, r is depicted in Fig. 2(b).
is possible in that case (for arbitrary signal), and thus we The practical ADC model raises two issues. First, RF
assumeN B < fnyo in the sequel. Concrete algorithms foitechnology allows transmissions at rates which exceed the
blind recovery, achieving the minimal rate, were developexhalog bandwidthh of state-of-the-art devices, typically by
in [5] based on a multicoset sampling strategy. The neatders of magnitude. For example, ADC devices manufactured
section briefly describes this method, which achieves thg Analog Devices Corp. have front-end bandwidths which
goals of minimal rate and blindness. We also explain threach up tob =780 MHz [14]. Therefore, any attempt to
limitations of practical ADCs which influence the applid#hi acquire a wideband signal with a practical ADC results in
of multicoset to sampling wideband signals. As described loss of the spectral contents beyohdHz. The sample

later in Section IlI-A, the sampling scheme proposed in this
paper circumvents these limitations and has other advastag
in terms of practical implementation.



sequences (2) are attenuated and distorted and are no losgectrum is truncated by a lowpass filter with cutbff27%)
pointwise values ofc(¢). This limitation is fundamental and and the filtered signal is sampled at raf’;. Standard ADCs
holds even in other architectures of multicoseg(,a single can be used for that task. The design parameters are therefor
ADC triggered by a nonuniform clock). The second issue isthe number of channels:, the periodT,, the sampling rate
waste of resources which is less severe but applies also whé¢ff; and the mixing functiong;(¢) for 1 <i < m.

the Nyquist ratefnyg = b for some available device. For a In the sequel,p;(t) is chosen as a piecewise constant

signal with a sparse spectrum, multicoset reduces the g&ergunction that alternates between the levls for each of M
sampling rate by using only. out of M possible cosets, whereequal time intervals. Formally,

M > 1 is commonly used. Each coset in Fig. 2 samples at
rate fuvo/M . Therefore, the ADC samples at rat@\/, which Ty Ty
; . AP : () =i, k2 <t<(k+1)=E, 0<k<M-1, (3
is far less than standard ratibgr [14]. This implies sampling pilt) = i M (k+ )M 0 )
at a rate which is much lower than the maximal capability of
the ADC. with «;, € {+1,—1}, and p;(t + nT,) = pi(t) for every

As a consequence, implementing multicoset for widebaiidS Z- Other choices fop;(¢) are possible; Some examples
signals requires the design of a specialized fine-tuned ACe described in Section VI
circuit, in order to meet the wide analog bandwidth, and stil The system proposed in Fig. 3 has several advantages for
exploit the nonstandard ratib/r that is expected. Though Practical implementation:

this may be an interesting task for experts, it contradic((Al) Analog mixers are a provable technology in the wide-
the basic goal of our design - that is, using standard and  band regime [21], [22]. In fact, since transmitters use
available devices. In [15] a nonconventional ADC is desifjne mixers to modulate the information by a high-carrier
by means of high-rate optical devices. The hybrid optic—  frequency, the mixer bandwidth defines the input band-
electronic system introduces a front-end whose bandwidth  width.

reaches the wideband regime, at the expense and size o{&) Sign alternating functions can be implemented by a
optical system. Unfortunately, at present, this perforoean standard (high rate) shift register. Today’s technology
cannot be achieved with purely electronic technology. allows to reach alternation rates of 23 GHz [23] and

Another practical issue of multicoset sampling, which also  even 80 GHz [24].

exists in the optical implementation, arises from the tim@3) Analog filters are accurate and typically do not require

shift elements. Maintaining accurate time delays betwéen t more than a few passive elemenésg(, capacitors and
ADCs in the order of the Nyquist intervdl is difficult. Any coils) [25].
uncertainty in these delays influences the recovery from t®4) The sampling ratel /T, matches the cutoff off(f).
sampled sequences [16]. A variety of different algorithrangen Therefore, an ADC with a conversion rate= 1/7%, and
been proposed in the literature in order to compensate for any bandwidthh > 0.5r can be used to implement this
timing mismatches. However, this adds substantial coniplex block, whereH (f) serves as a preceding anti-aliasing
to the receiver [17], [18]. filter. In the sequel, we choose'T, on the order ofB,
which is the width of a single band af(t) € M. In
[1l. SAMPLING practice, this sampling rate allows flexible choice of an

We now present an alternative sampling scheme that uses ADC from a variety of commercial devices in the low
available devices and does not require non-zero time spachr  fate regime.
nization. The system is schematically drawn in Fig. 3 witif\>) Sampling is synchronized in all channels, that is there
its various parameters. In the next subsections, the scheme are no time shifts. This is beneficial since the trigger
is described and analyzed for arbitrary sets of parameters. for all ADCs can be generated accurated.gf, with
Later on, we specify a parameter choice, independent of the @ zero-delay synchronization device [26]). Moreover,
band locations, that approaches the minimal rate. Thetiegul the sampling sequences can be fed directly to a digital

system satisfies all requirements of our problem formutatio processor which operates at ratel’. In contrast, the
multicoset samples (2) arrive at different time points, and

additional hardware is required to buffer the sequences

A. System description before entering the digital part.

Our system exploits spread-spectrum techniques from com-
munication theory [19], [20], and is partially inspired Hyet
use of_these techniques in [9], [10]. An ana_llog mixing froan' Frequency domain analysis
end aliases the spectrum, such that a portion of energy from
each band appears in baseband. The system comprises sevek¥de now derive the relation between the sample sequences
channels implementing different mixtures, so that, in @ipte, y;[»n] and the unknown signat(t). This analysis is used for
a sufficiently large number of mixtures allows to recover several purposes in the following sections. First, for ffgag
relatively sparse multiband signal. a choice of parameters ensuring a unique mapping between
More specifically, the signat(¢) entersm channels simul- z(¢) and the sequenceg[n]. Second, we use this analysis
taneously. In theth channelx(t) is multiplied by a mixing to explain the reconstruction scheme. Finally, stabilibda
function p,(t), which is T,-periodic. After mixing, the signal implementation issues will also be based on this developmen



t =nT, Parameters:
F1(t) N\ yi[n] Symbol  Meaning
’3 h(t) > m number of sampling channels
Ty period of each p;(t)
(] Ts time-interval between ADC samples, corresponding to cutoff frequency of h(t)
M number of +1 intervals in each period of p;(t)

° ik the value p;(t) takes on the kth interval

pi(t) °
t =nT;
z(t) .' Z4(t) W) N vi[n] The mixing function p;(t) Frequency response of h(t)
. H(f)
. L A
aio * +1
+1 | |

b | eoe |
pm(t) ‘ ‘ .y >

* t=nT, 0 Rl T, >t T o >1

\ : : P 2T, 2T
Ty(t Ym !
L ( h(t) Ym[n] 1 [
Qi1

Fig. 3. The modulated wideband converter - a practical simgstage for multiband signals.

To this end, we introduce the definitions ith sequence;[n] is expressed as
fs=1/Ts, Fs=[-fs/2,+[s/2] (4a) Y (2 ITe) = Z yi[n]e 72/ Ts
fp = 1/Tp, fp = [—fp/2, +fp/2] (4b) n=-—oo
+Lo
Consider theith channel. Since;(t) is T,-periodic, it has =Y wX(f-1fp), feF,
a Fourier expansion l=—="Lo
- where ¥ is defined in (4b), and., is chosen as the smallest
pi(t) = Z cilej%lt (5) integer such that the above sum contains all possible nonzer
Pt ’ contributions of X (f) over F,. The exact value ofL, is
calculated by
where
S + S
. _f_+(LO+1)fp2J‘mHLO:{M}_L
cit = —/ pi(t)e T de. (6) 2 2 2fp
Ty Jo (10)
Expressing the Fourier transfor®( f) in terms of the Fourier The relation (9) ties the known DTFTs gf[n] to the unknown
series coefficients;; leads to X (f). This equation is the key to recovery oft). For our
purposes, it is convenient to write (9) in matrix form
Pi(f) =/ pit)e At = Y cud (f —1fp), (7) y(f) = Az(f), [feFs, (11)

= where y(f) is a vector of lengthm with ith element
with §(¢) denoting the Dirac delta function. The analog multiyi(f) = Yi(e/>/**). The unknown vectorz(f) =
plicationz(¢)p; (t) translates to a convolution in the frequencyz1(f), -+, 2(f)|" is of length
domain, L=2Ly+1 (12)

- d
XN B =Y caX(f—1f). 8 &
[==o0 2(f)=X(f+(i—Lo—-1)fp), 1<i<L,feF. (13)

Therefore, the input tdZ(f) is a linear combination of},- Them x L matrix A contains the coefficients; (6). Fig. 4
shifted copies ofX (f). SinceX (f) = 0 for f ¢ F, the above depicts the vectoz(f) and the effect of aliasin& (f) in f,-

sum contains (at most)fxvq/f,] nonzero terms for every shifted copies forV = 4 bands, aliasing rat¢, = 1/7;, > B

f- and two sampling rates. Each entry #ff) is a windowed
The filter H(f) has a frequency response which is an ideahifted interval ofX (f) whose length isf,. Thus, in order to
rectangular function, as depicted in Fig. 3. Consequeatlly recoverz(t), it is sufficient to determine(f) in the interval
frequencies in the intervaF, pass to the uniform sequencef € .

yi[n]. Thus the discrete-time Fourier transform (DTFT) of the The analysis so far holds for every choice Bf-periodic

functionsp;(t). Before proceeding, we discuss the role of each

1The ceiling operatoffa] returns the greater (or equal) integer which isparame_ter- The p?riqu determines the aliasing OX(f)
closest toa. by setting the shift intervals tof, = 1/7,. Equivalently,



- Consider the sign alternating functign(¢) which is de-
1 F\ 3 m 3 3 m } ﬂ } picted in Fig. 3. Calculating the coefficients in this setting
| ‘ | | | ; gives
e Ty A1
1 [ _i2m Tp
(/) Cit = 7 / > aire SE R ) gy (14)
‘ ‘ | PJO - k—o
—_— : ; ; ; ; ) i=1
l l | l l l i M-1 Ip
— ; i i i i 1 om M 2m
— |- B N L e [ ok ag
: . S N i NN s N P k=0 0
AN 1 T N 7 N Evaluating the integral we have
R i=Lo+1 E ! /_?—\ R /—?_\ ] i=Lo+1 dl = — e T dt = 1—6! l 0 (16)
| C‘ = o | | ST | /‘ Tp 0 W #
N w o AT .
R T~ 1 - wheref = ¢=727/M | and thus
0 =~ A1 M1
=t AL e cit =dy Z 0™ 17)
S T =
—N v — 1 | it = : -
‘ ‘ ”'}' Note thatc; = ¢; ;. Let F be theM x M discrete Fourier
fs=1 o x (%) fe=5f, transform matrix (DFT) whoséth column is
Fig. 4. The relation between the Fourier transfoff(f) and the vector . — |g0-(i—-1) pgl-G-1) | g(M—l)-(i—l)]T 1<i<L
setz(f), of (13). In the left panefs = f, so that the length ok(f) is ‘ ’ ’ ’ ==
L = 11. The right pane demonstratgs = 5 f;,, which givesL = 15. Entries (18)

in locationsi < Lo (i > Lo + 1) contain shifted and windowed copies ofwhere as beford = ¢—727/M_DefineF to be theM x L
éi\(t{y) ZFozthLeOr;g-]hlt (left) of the frequency axis. No shift occurs the middle matrix with F; = Fk for k=i — Ly (WhGI’GFk+M is gsed if
' ' k < 1). Note thatF is a re-ordered column subset Bf and

for M = L, F is unitary. Then,

Fhe aliasing ratef, (;ontrols the way the ba_nds are arranged y(f) =SFDz(f), f¢€F., (19)
in the spectrum slicez(f), as Fig. 4 depicts. We choose . . . .
f» > B so that each band contributes only a single nonzegformulates (:(le)hm terms gf the: XIM sign matrixs, with
element toz(f), and consequently(f) has at mostN ik = @ik, and theL x L diagonal matrixD = diag(d;),
nonzeros. In practicg, is chosen slightly more tha® to where d; are defined in (16). The dependency on the sign
avoid edge effects. Thus, the paramdfgtis used to translate Palterns{aix } is further expanded in (20).

the multiband priorz(t) € M to a bound on the sparsityb Intuimely, a sign arl]ternatidng fun(_:tiopi(r:f) Is imEIem?r;lted
level of z(f). The sampling ratef; of a single channel sets y a shift register, wherd{ determines the number of flops.

. o .
the frequency rangé; in which (11) holds. It is clear from TheTcr:ock rate of_the Leg'Stqu/M) |shalso d_|ct§t$d t:jy
Fig. 4 that as long ag; > f,, recoveringz(t) from the M. The next section shows that = L, whereL is define

sample sequences[n] amounts to recovery of(f) from in (12), is one of the conditions for blind recovery. Sintés

y(f), for everyf € F,. The number of channets determines roughly fuvq/B for f, = B, this implies a large value fabf.
the overall sampling ratenf, of the system. The simplestm practice this is not an obstacle, since standard logiesggat

choice f, — f, ~ B, which is presented on the left pane O]and feedback can be used to generate a sign pattern of length
s — Jp = s L.
Fig. 4, allows to control the sampling rate at a resolution (ak.a m-sequence) with just a few components [19)], [20].

fp- Later on, we explain how to trade the number of Channé\rgonetheless, to redqge -the clock rate we chouse: L. The
m by a higher ratef, in each channel. Observe that setting'9" Pattemnsai,} initialize the shift register.

fp, fs determinesL by (10) and (12), which is the number Note ihat the_ magnltude of, decays ag move away.
of spectrum slices i(f) that may contain energy for somefrom L =0 Thls 'S a consequence OT _the spec_|f|c choice
z(t) € M. of sign alternating waveforms for the mixing functiopgt).

The role of the mixing functions appears implicitly in (11)LJnOIer this selection, spectrum regions.b{f) are weighted

through the coefficients:;;. Each p;(t) provides a single acgordlng tq their proxllmlty t_o the origin. In the presende o
. . : noise, the signal to noise ratio depends on the band location
row in the matrix A. Roughly speakingp;(¢) should have

many transients within the time peridd, so that its Fourier due to this asymmetry.

expansion (5) contains about dominant terms. Then, the )

channel outpuy;[n] is a mixture of all (nonidentically zero) C- Choice of parameters

spectrum slices ia(f). The function;(¢) should differ from An essential property of a sampling system is that the
each other to yield linearly independent rowsAn We next sample sequences match a unique analog infit since oth-
make these requirements precise for a specific choigg(of erwise recovery is impossible. The following theorems adsr

- the sign waveforms. that issue. The first theorem states necessary conditions on
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the system parameters to allow a unique mapping. A concretdf m < 2N, then sincerank(A) < m there exist twoN-
parameter selection which is sufficient for uniqueness, $parse vector&i; # 1y such thatAa; = Au,. The proof
provided in the second theorem. As a nice feature, the sanmv follows from the following construction. For a give¥i-
selection works with half as many sampling channels, wheparse vectom, choose a frequency interval C F, of
the band locations are known. Thus, the system appearindength B/2. Construct a vector(f) of spectrum slices, by
Fig. 3 can also replace baseband processing in the non-blietding z(f) = u for every f € A, andz(f) = 0 otherwise.
scenario. This may be beneficial for a receiver that switch€bearly, thatz(f) corresponds to some(t) € M (see below
between blind and non-blind modes according to availgbilian argument that treats the case that this constructioftsesu
of the transmitter carriers. More importantly, Fig. 3 susfge in a complex-valued:(t)). Follow this argument for,, Gy
a possible architecture in the broader context of ADC desigo provide Z;(t) # Z2(¢) within M. Since Aa; = Ao,
The analog bandwidth of the frontend, which is dictated byoth z,(¢), Z2(t) are mapped to the same samples. It can be
the mixers, breaks the conventional bandwidth limitatian iverified that since;; = ¢} _;, the existence of complex-valued
interleaved ADCs. 71(t) # Z»(t) implies the existence of a corresponding real-
For brevity, we use sparsity notations in the statements.valued pair of signals withirM, which have the same samples.
vector u is called K-sparse ifu contains no more thai The condition (22) comes from the structurekafFor M <
nonzero entries. The setipp(u) denotes the indices of the Myin, F1 = Fpr41. Now, setli; to be the zero vector except
nonzeros inu. The support of a collection of vectors over ghe valuel/d; on the first entry. Similarly, lefi, have zeros
continuous interval, such agF,) = {z(f) : f € F,}, is except forl/dar41 on the(M + 1)th entry. We can then use

defined by the arguments above to construct the sigaalg), #2(¢) from
1, 0s. It is easy to see that the signals (or their real-valued
supp(z(F;)) = | supp(a(f)). (21)  counterparts) are mapped to the same samples although they
Iery are different.
A vector collection is called jointlyK-sparse if its support The proof on the necessity ofi > 2N, M > M, for
contains no more thak  indices. fs > fp follows from the same arguments. u

Theorem 1 (Necessary conditions)et z(¢) be an arbitrary ~ We point out that the necessary conditions/en)/ may
signal within the multiband modelM, which is sampled change with other choices ¢f. However,f,, = B is sufficient
according to Fig. 3 withf, = B. Necessary conditions to for our purposes, and allows to reduce the total samplirey rat
allow exact spectrum-blind recovery (of an arbitrargt) ¢ as low as possible. In addition, note that it is recommended
M) are f, > f,, m > 2N. For mixing with sign waveforms (though not necessary) to hasé < 2”~'. This requirement

an additional necessary requirement is stems from the fact tha® is defined over a finite alphabet
{+1,—-1} and thus cannot have more thaf ! linearly
M > Mpyn 22 VNYQ + 1-‘ +1. (22) independent columns. Therefore, in a sense, the degrees of
2fp 2 freedom inA = SFD are decreasédior M > 2™~1. We

Note that forf, = f,, Mmin = L of (12); see also Fig. 4. next show that the conditions of Theorem 1 are also sufficient

Proof: Observe that according to (9) and Fig. 4, thér blind recovery, under additional conditions. _
frequency transform of théth entry ofz(f) sumsf,-shifted ~ Theorem 2 (Sufficient conditions)et z(¢) be an arbitrary
copies of X (f). If f, < f,, then the sum lacks contributionsSignal within the multiband modelM, which is sampled
from X (f) for somef € F. An arbitrary multiband signal according to Fig. 3 with sign waveforms(t). If
may contain an information band within those frequencies. 1. f, > f, > B,

Thus, fs > f, is necessary. 2. M > Mpin, Where Mpin is defined in (22),

The other conditions are necessary to allow enough linearly3. m > N for non-blind reconstruction om > 2N for
independent equations in (11) for arbitraryt) € M. To blind,
prove the argument om, first consider the linear system= 4. Every2N columns ofSF are linearly independent,

Au for the m x L matrix A of (11). In addition, assume
fs = fp — B. Substituting these values into (10)'(12) and 2Note that repeating the arguments of the prooffér> 2™~ allows to

. . VA h h construct spectrum slices(f) in the null space oSF. However, these do
using fnyq = 2N B givesL > 2N, namely as more than o necessarily correspond iqt) € M and thus this requirement is only a
2N columns. recommendation.



TABLE |

can be solved by trading the number of sampling channels for
POSSIBLE PARAMETER CHOICES FOR MULTIBAND SAMPLING

a higher sampling raté;.
Model To complete the sampling design, we need to specify how
N=6 B=50MHz fyvq=10GHz to select the matridS, namely the sign patterny,;}. This
choice effects the reconstruction stability. In Section Wwe
describe the mechanism for recoverin@) from the given
samplesy;[n] and address the choice §fv; }.

Sampling parameters
Option A Option B
fo=I9 ~ 513 MHz | f, = I ~ 51.3 MHz
fs = fp = 51.3 MHz fs = 5fp =~ 256.4 MHz

m > 2N =12 m>[2N] =3 D. Trading channels for sampling rate

M = Min = 195 M =199 The burden on hardware implementation is highly impacted
Mpmin=L =195 Mpmin = 195, L = 199 by the total number of hardware devices, which includes the
Ratem fs > 615 MHz Ratem fs > 770 MHz mixers, the lowpass filters and the ADCs. Clearly, it would

be beneficial to reduce the number of channels as low as
possible. We now examine a method which reduces the number
then, for everyf € F,, the vectorz(f) is the uniqueV-sparse Of channels at the expense of a higher sampling fate each
solution of (19). channel and additional digital processing.
Proof: The choicef, > B ensures that every band can SUPPOSefs = qfp, with odd ¢ = 2¢’ + 1. To analyze this
contribute only a single non-zero value #0f). Fig. 4 and choice, consider théh channel of (11) forf € 7,

the earlier explanations provide a proof of this statemAat. oo

a consequence,(f) is N-sparse for every € F;. vi(f +kfp) = Z caX(f+kfp—1fp) (23)
Recall thatM > L is necessary. Under this condition, l=—00

D contains nonzero diagonal entries, sine= 0 only for +Lo—k

| = +kM for somek > 1. This implies thaD is nonsingular = > X)) (24)

and rank(SFD) = rank(SF). Thus linear independence I=—Lo—k

of any column subset oSF implies corresponding linear Lo

independence fo8FD. = Y ciaunX(f—1f) (25)

In the non-blind setting, the band locations imply the sup- I==Lo
port supp(z(f)) for every f € F,. The other two conditions where—¢' < k < ¢. The first equality follows from a change
(on m, SF) ensure that (19) can be inverted on the propef variable, and the second from the definitionZaf in (10),
column subset, thus providing the uniqueness claim. A dosevhich implies thatX (f — If,) = 0 over f € F, for every
form expression is given in (33) below. ll| > Lo — ¢’. Now, according to (25), a system with =

In blind recovery, the nonzero locations off) are un- ¢f, providesq equations onf, for each physical channel.
known. We therefore rely on the following result from theEquivalently,m hardware branches (including all components)
CS literature: AK-sparse vecton is the unique solution of amounts tang channels having; = f,. Eq. (28) expands this
v = Au if every 2K columns ofA are linearly independent relation. Note that the sign patterns do not appear explicit
[27]. This condition translates inta. > 2N and the condition as in (19).
on SF of the theorem. L Theorem 2 ensures thatf) has N nonzero elements for

To reduce the sampling rate to minimal we may chooswery f € F,. Nonetheless, as detailed in the next section,
fs = fp = B andm = 2N (for the blind scenario). This for efficient recovery it is more interesting to determine th
translates to an average sampling rate2df B, which is joint sparsity level ofz(f) over Fs. As Fig. 4 depicts, over
the lowest possible for(t) € M [5]. Table | presents two f € F,, z(f) is 2N-jointly sparse, whereas over the wider
parameter choices for a representative signal model. @ptio rangef € Fs, z(f) may have a larger joint support set. It is
in the table useg; = f, and leads to a sampling rate as lowherefore beneficial to truncate the sequences appear{@8)n
as 615 MHz, which is slightly above the minimal r&&’ B  to the intervalF,, prior to reconstruction. In terms of digital
= 600 MHz. Option B is discussed in the next section. processing, the left-hand-side of (28) is obtained from the

Recall the proof of Theorem 1, which shows thathas input sequence;[n] as follows. For every-¢' < k < ¢, the
L > 2N columns. Therefore, ifn = 2N is sufficiently small, frequency shifiy;(f + kf,) is carried out by time modulation.
the requiremenf\/ > L may contradict the recommendatiorThen, the sequence is lowpass filteredilpyjn| and decimated
M < 2m~1 This situation is rare due to the exponential natutey ¢. The filter hp[n] is an ideal lowpass filter with digital
of the upper bound; it does not happen in the examples @ftoff 7/q, wherer corresponds to half of the input sampling
Table 1. Nonetheless, if it happens, then we may vig) € rate f,. This processing yields the rafg = f,/q sequences
M as conceptually havingN bands, each of widtfB/p, and

~ ~1 . —j2m kfp nTs
set f, = B/p. The upper bound od/ grows exponentially giwlnl = (yl[n]e ) *hpln] ’n:ﬁq (26)
with p while the lower bound grows only linearly, thus for - (yi[n]e—j%” ’m) xhpn]| (27)
some integep > 1 we may have a valid selection far. This n=nq

approach requires: = 2pN branches which corresponds to &onceptually, the sampling system consistsnaf channels
large number of sampling channels. Fortunately, this 8dna which generate the sequences (27) with= f,.



vi(f —d'fp) Ciy—Lo—q' e Ci,Lo—q'

: : : : |
yi(f) = Ci,—Lg o Ci—1 G CGiipooc Ci,Lo z(f) ), fe Fp- (28)
: : : : |

yi(f +4d'fp) Ci,—Lo+q’ e Ci,Lo+q’

Table | presents a parameter choice, entitled Option B, Continuous to finite (CTF) block

which makes use of this strategy. Thus, instead of the pegpos mooooooo " Reconstruct joint support ]
setting of Theorem 2 withn > 12 channels, uniqueness can v(») |

| |
Construct a frame 1 V'

| VeV = E —1 'S
be guaranteed from only channels. Observe that the lowest — 7| | Virv() 7 Sparsest matr U | |8 = Y70p(09) T
sampling rate in this setting is higher than the minial B, Lo o
since the strategy expands each channel to an integer number
g of sequences. In the exampl8, channels are digitally Fig. 5. Recovery of the joint suppoff = supp(u(A)).
expanded t@q = 15 channels. In Section V-C we demonstrate
empirical evidence for this approach, when using a finite _
impulse response (non-ideal) filter to approximasin). |supp(u(A))| < K. In words, the nonzero entries of each
Theoretically, this strategy allows to collapse a systeth wivectoru(}) lie within a set of at mosf indices. _
m channels to a single channel with sampling rate= mf,. ~ When the support = supp(u(A)) is known, recovering

However, each channel requirggigital filters to reduce the u(A) from the known vector set(A) = {v(}) : A€ A} is
rate back tof,, which increases the computational load. |possible if the submatriA g, which contains the columns of
addition, asy grows, approximating a digital filter with cutoff A indexed byS, has full column rank. In this case,
is 7/q requires more taps. At

Tée next section discusses the reconstruction stage, which us(A) = Asv(d) (302)
takes then sample sequenceg|n] (or themgq decimated se- u;(\) =0, i¢S (30Db)
qguenceg; ,[n]) and recovers the Nyquist rate sequenteT’) i i _
or the analog version(t). As we explain, the reconstructionWhereTuS(/\) (}:;)ntaln? ogly the entries of()) indexed bysS
stage also allows to output a digital sequence correspgnd@dAs = (Ag As)” Ag is the (Moore-Penrose) pseudoin-
to any specific band of interest. This sequence is generated@S€ 0fAs. For unknown suppors, (29) is still invertible
low rate, namely without going through the recovery of thif & = |S| is known, and every set ofK columns fromA

Nyquist rate sequence(nT). is linearly independent [11], [27], [28]. In general, findithe
support ofu(A) is NP-hard because it may require a combi-
IV. RECONSTRUCTION natorial search. Nevertheless, recent advances in cosiyges

sampling and sparse approximation delineate situatioresavh

In th|s. section f, = f, is assumed under the Int(.arpreu’morﬂ)olynomiaI—time recovery algorithms correctly identify for
that the input sequences were expanded and decimated ea{.p]

i needed. Recovery of () from the sequences,] boiis G . T1S challenge is referied o as a muliple measure-
down to recovery of the sparsestf) of (11) for every b :

. The sparsest solution of a linear system, for unknown
f € 5. The system (11) falls into a broader frameworléu portS, has no closed-form solution. Thus, whénhas

of sparse solutions to a parameterized set of linear systems . dinali f d he infini
[11]. The relevant results are quoted and are then specijiedqlmte cardinality, refereed to as the infinite measuremen
' ectors (IMV) problem [11], solving fom(A) conceptually

the_mulnba_n_d scenario. The recovery stage Is devel_oped r%uires an independent treatment for infinitely many sgste
arbitrary mixing functions. Stability aspects are desedlitfor [11]. To avoid this difficulty of IMV, we proposed in [5]

alternating sign functions; (t). [11] a two step flow which recovers the support Setrom a
finite-dimensional system, and then uses (30) to recay#).
A. IMV model The algorithm begins with the construction of a (finite) fam
Let A be anm x M matrix with m < M. The constants V for v(A). Then, it finds the (unique) solutioly to the
m, M are arbitrary in this section, but later on we apply th®IMV systemV = AU that has the fewest nonzero rows. The

results toA of (11) which explains this notation. Consider anain result is thatS = supp(u(A)) equalssupp(U), namely
parameterized family of linear systems the index set of the nonidentically zero rows Bf These
operations are grouped in a block entitled continuous taefini
vA) = Au(d), Aeh, (29) (CTF), depicted in Fig. 5. Therefore, the support recoveuy c
indexed by a fixed seA that may be infinite. Letu(A) = be accomplished by solving only a finite dimensional problem
{u(A) : A€ A} be a collection ofM-dimensional vectors In the next section, we specify the CTF block for multiband
that solves the entire family of systems. We will assume thedconstruction. Some additional insights into the CTF bloc

the vectors inu(A) are jointly K-sparse in the sense thafare given in the specific context of our problem.
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B. Multiband reconstruction C. Architecture and advantages

The system (11) clearly obeys the IMV model with= F;. Fig. 6 depicts a high-level architecture of the entire recgv
In order to use the CTF block, we need to construct a frdémeflow. The sample sequences entering the digital domain are
for the measurement sg{A). Such a frame can be obtainedexpanded by the factar= f,/f, (if needed) and are bundled

by computing [11] together. The application layer triggers the CTF block on
initialization and when identifying that the spectral sapp
Q- vyt (f)df (31) has changed. The digital signal processor (DSP) treats the
feF, samples, based on the recovered support, and outputs base-
+00 band sequences for each spectrum slice. An analog back-end
= Z ylnly™ [n], (32) interpolates the sequences and sums them up accordingto (36
n=-00 The controller has the ability to selectively activate thgitdl
) recovery of any specific band of interest, and in particubar t
wherey[n] = [yi[n],--- sym[n]]" i the vector of samples yroqyce an analog counterpart (at baseband) by overriding t
at time instances7,. Then, any matrixV, for which Q = g|evant carrier frequencies.

VVH is a frame fory(F,) [11]. The CTF block, Fig. 5,

CTF and sampling rate. The frame construction step of
can then be used to recover the sup@det supp(z(Fy)). It pind P

the CTF conceptually merges the infinite collectie(¥;) to

follows that, a finite basis or frame, which preserves the original support
+ For the CTF to work in the multiband reconstruction, the
zs[n] = Agy[n] (33a) sampling rate must be doubled due to a specific property
z;[n] =0, i¢5S, (33b) that this scenario exhibits. Observe that under the choices
of Theorem 2,z(F,) is jointly 2N-sparse, while each(f)
wherez[n] = [z1[n],---, 2.[n]]" and z[n] is the inverse- js N-sparse. This stems from the continuity of the bands

DTFT of z;(f). Therefore, once the support is recovered, thghich permits each band to have energy in (at most) two
sequences;[n] are generated at the input rafe. At this spectrum pieces withitF,. Therefore, when aggregating the
point, we may recover:(t) by either of the two following frequencies the suppoktupp(z(F,)) cannot contain more
options. If fnvq is not prohibitively large, then we can generatghan 2N indices. An algorithm which makes use of several
the Nyquist rate sequences(nT’) digitally and then use CTF instances and gains back this factor was proposed in
an analog lowpass (with cutoff/2T’) to recoverz(t). The [5]. Although the same algorithm applies here as well, we
digital sequence(nT’) is generated by shifting each spectrurdo not pursue this direction so as to avoid additional digita
slice z;(f) to the proper position in the spectrum, and thegomputations.

summing up the contributions. In terms of digital procegsin  pmv recovery complexity. The CTF block requires to

the sequences;[n] are first zero padded: solve an MMV system, which is a known NP-hard problem.
_ In practice, sub-optimal polynomial-time CS algorithmsyma
%[n) = { z(n) "= nL.’ neZ be used for this computation [11], [28], [32], [33]. The m@ric

0 otherwise. (34) for tractability is an increase in the sampling rate. In the

next section, we quantify this effect for a specific recovery
r?jlpproach. We refer the reader to [28], [33], [34] for theioadt
guarantees regarding MMV recovery algorithms.
Realtime processingStandard CS algorithms, for the finite
- omifynT A scenario, couple the tasks of support recovery and the
zn] = a(nT) = Z(zi[”] * haln))e*mhE. - (35) construction of tEe entire solution. Irl?pthe infinite };ceoari
however, the separation between the two tasks has a significa
The alternative option is to handle the sequengps directly advantage. The support recovery step yields an MMV system,
by analog hardware. Every;[n] passes through an analogvhose dimensions aren x L. Thus, we can control the
lowpass filter with cutofff, /2 and gives (the complex-valued)recovery problem size by setting the number of channels
zi(t). Then, m, and settingL via f,, fs in (12). Once the support is
known, the actual recovery has a closed form (33), and can
— ) : ) : : be carried out in realtime. Indeed, even the recovery of the
=(t) ieS;LO R{zilt)} cos(@mifyt) + Z(z:(t)) sin(@mifyt), Nyquist rate sequence (34)-(36), can be done at a constant
(36) rate. Had these tasks been coupled, the reconstructioa stag
whereR(-),Z(-) denote the real and imaginary part of theiwould have to recover the Nyquist rate signal directly. Imtu
argument, respectively. We emphasize that although the arthe CS algorithm would have to run on a huge-scale system,
ysis of Section III-B was carried out in the frequency domaimictated by the ambient Nyquist dimension, which is time and
the recovery ofz(t) is done completely in the time-domain,memory consuming. This point is discussed in further detail
via (32)-(36). in Section VI.
The next section summarizes the recovery flow and its Spectrum-blind baseband processing.The frame con-
advantages from a high-level viewpoint. struction step in the CTF (31) is theoretically noncausal.

Then, z;[n] is interpolated to the Nyquist rate, using a
ideal (digital) filter. Finally, the interpolated sequeacare
modulated in time and summed:

€S
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yn) . Samples bundle Bascband
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Fig. 6. High-level architecture for efficient multiband oastruction.

Nonetheless, empirical evidence shows that a few sampf@scessor running at the Nyquist rate.
suffice to approximate; We discuss this issue further in
Section V-A. The CTF is executed only when the spectrl. Choosing the sign patterns

support changes, and thus the short delay introduced by itStheorem 2 requires that for uniqueness, e\&¥y columns
execution is negligible on average. This practically aowof SF must be linearly independent. To apply the CTF block
realtime processing (at low rate) of any specific informatiothe requirement is strengthened to every columns, which
band of interest. In particular, there is no need to recovgfso implies the minimal number of rows B [5]. Verifying

the Nyquist rate signal before a higher application layer cghat a set of sign patternsy;;,} satisfies such a condition is
access the digital information. This aspect is another prent  computationally difficult because one must check the rank of
advantage over the system of [9], [10]. every set ofAN columns fromSF. In practice, when noise is

Robustness and sensitivityThe entire system, samplingPrésent or when solving the MMV by sub-optimal polynomial-
and reconstruction, is robust against inaccuracies indnarp- time CS algorithms, the number of rows B should be

etersf,, f,. This is a consequence of setting the parametdp$reased beyoneh = 4N. A preliminary discussion on how
according to Theorem 2, with only the inequaliti¢gs > tO chooseS, which appears in the conference version of this

f» > B. In particular, f, is chosen above the minimal towork [35], is summarized below. A more rigorous treatment

ensure safety guard regions against hardware inaccuracié®eyond the current scope, and will be investigated inildeta
Furthermore, observe that the exact valuesfoff, do not N [12]. _

appear anywhere in the recovery flow: the expanding equation Consider the systenv. = Au, whereu is an unknown
(27), the frame construction (32), the CTF block - Fig. 5, angParse vectoty is the measurement vector, ardis of size
the recovery equations (33). Only the ragie- f,/f, is used, ™ X M. A matrix A is said to _have the r_estncted isometry
which remains unchanged if the a single clock circuitry isdis ProPerty (RIP) [29] of order, if there exists) < dx < 1

in the design. In addition, in the recovery of the NyquiseraSuch that

sequence (35), only the ratit/T, .is used, which remains (1=6x)ull®> < |Au® < (1 + 6x)|ul? (37)
fixed for the same reasons. If using the analog recovery of ,

x() with (36), then, is provided to the back-end from thelOf €Very K-sparse vecton [29]. The requirement of Theo-
same clock triggering the sampling stage. The recovengis af€M 2 thus translates @y < 1. The RIP requirement is also
stable in the presence of noise as numerically demonstiratedfard to Verify for a given matrix. Instead, it can be easier to
Section V-A. The next subsection briefly discusses the ehoig"0Ve that a randond, chosen from some distribution, has

of the sign patterns which impacts stability in some sendf€ RIP with high probability. In particular, it is known tha
A forthcoming publication [12] studies sensitivity, robuess @ndom sign matrix, whose entries are drawn independently
and stability aspects in more detail. with equal probability, has the RIP of orddd if m >

_ ) ) CKlog(M/K), whereC is a positive constant independent
Finally we point out an advantage with respect to the recopt everything [36]. The log factor is necessary [37]. The RIP
holds for this strategy with a different sampling mati fixed unitary transform of the rows [36]. This implies that if
[5]. However, the IMV system holds only with respect G5 js a random sign matrix, theBF has the RIP of orde2 N
a (Nyquist rate) zero padded version of (2). Consequentfyy the above dimension selection. Note titis ignored in
constructing a fram& from the multicoset low rate sequencesgis analysis, since the diagonal has nonzero entries argd th
(2) requires interpolating the lowrate sequences (2) to thg,n(Du) = supp(u) for any vectoru.

Nyquist rate. Only then ca®) be computed (see Eq. (61)- To advance, observe that solving farwould require the
(62) in [5]). In contrast, the current mixing stage has thgombinatorial search implied by

advantage that the IMV is expressed directly in terms of the )

lowrate sequenceg[n], and the computation df) in (32) is min [uflo s:t.v = Au. (38)
_carned out directly on the input sequences. In fact,_ one MaYnopular approach is to approximate the sparsest solutjon b
implement an adaptive frame construction at the input rate .

f,. Digital processing at ratg, is obviously preferred over a min [[ufl; s.t.v = Au. (39)
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The relaxed program, named basis pursuit (BP) [38], is conve 30
and can be tackled with polynomial-time solvers [29]. Many
works have analyzed the basis pursuit method and its ability 08
to recover the sparsest vectorFor example, ifox < v/2—1

then (39) recovers the sparsedi39]. The squared error of the g 0.6
recovery in the presence of noise or model mismatch was also = 10

shown to be bounded under the same condition [39]. Similar ? 5 0.4
conditions were shown to hold for other recovery algorithms 0

In particular, [34] proved a similar argument for a mix&g ¢, -5 02
program in the MMV setting (which incorporates the joint _10

sparsity prior). 20 40 60 80 100

# sampling channels (m)

In practice, the matridS is not random once the sampling
stage IS_ mplemented, ,and,lts RI_P constant Cam,th be Calﬂf{. 7. Image intensity represents percentage of corrgaiti set recovery
lated efficiently. Extensive simulations on synthesizeth@dg@ie 3 = s, for reconstruction from different number of sampling semgesm
a common tool to evaluate the performance and the stabiliyd under several SNR levels.

(e.g.,see [11], [28], [31]). Clearly, the numerical results do

not ensure a desired RIP constant. Nonetheless, for pahctic

applications, the behavior observed in simulations may be

sufficient. The discussion above implies that stable ren;ove1

2 2 i imi
of the MMV of Fig. 5 requires roughly 0log(||=|I*/l|w]|*), with the standard, norms. To imitate

the analog filtering and sampling, we use a lengthy digital
m =~ 4N log(M/2N) (40) FIR filter followed by decimation at the appropriate factor.
éfter removing the delay caused by this filter, we end up
with 40 samples per channel at ragtg which corresponds to
observing the signal for 780 nsecs. We emphasize that these
steps are required only when simulating an analog hardware
numerically. In practice, the continuous signals passuihino
A. Design example an analog filter €.g.,a 3rd order Chebyshev type-I), and there
To evaluate the performance of the proposed system (sg#10 need for decimation or a dense time grid.
Fig. 3) we simulate the act of the system on test signals
contaminated with white Gaussian noise.

channels to estimate the correct support, using polynemi
time algorithms.

V. NUMERICAL SIMULATIONS

The support of the input signal is reconstructed franx

More precisely, we evaluate the performance on 500 noi&y channels. (More precisel, = supp(z(F5)) is recovered.)
test signals of the form(t) + w(t), wherez is a multiband e follow the procedure described in Fig. 5 to reduce the
signal andw is a white Gaussian noise process. The multibarlflV system (19) to an MMV system. Due to TheoremQ,

model of Table | is used hereafter. The signal consists ofl3€xPected to have (at motV = 12 dominant eigenvectors.
pairs of bands (totalV = 6), each of widthB = 50 MHz, The noise space, which is associated with the remaining-neg|
constructed using the formula gible eigenvalues is discarded by simple thresholdirig { is

used in the simulations). Then, the fraiMes constructed and
> - the MMV is solved using simultaneous orthogonal matching
z(t) = Z EiBsine(B(t — ) cos(2mfi(t — 7)), (41) pursuit [31], [32]. We slightly modified the algorithm to eet
=t o a symmetric pair of support indices in every iteration, lolase
wheresinc(z) = sin(mz)/(mz). The energy coefficients areihe conjugate symmetry of (f). Success recovery is declared
E; = {1,2,3} and the time offsets are; = {0.4,0.7,0.2} \when the estimated support set is equal the true support,
pusecs. The exact values (f) takes on the support do notg — g As explained, recovery of the Nyquist rate signal can
affect the results and thus;, 7; are fixed in all our simula- pe carried out by (35)-(36). Fig. 7 reports the percentage of
tions. For every signal the carriefs are chosen uniformly at ¢orrect support recoveries for various numberef channels

random in[—fNYQ/2, fNYQ/2] with fNYQ =10 GHz. and several SNRs.
We design the sampling stage according to "Option A” of

Table I. Specifically.fs = f, = fnvo/195 ~ 51.3 MHz. The The results show that in the high SNR regime, correct
number of channels is set ta. = 100, where each mixing recovery is accomplished when usifng> 35 channels, which
functionp;(t) alternates sign at mostf = Mmin = 195 times. amounts to less than 18% of the Nyquist rate. This rate con-
Each signy;y, is chosen uniformly at random and fixed for théorms with (40) which predicts an order éfV log(M/2N) ~
duration of the experiment. To represent continuous sfgimal 30 channels for stable recovery. A saving factor 2 is possible
simulation, we place a dense grid of 50001 equispaced poiiftaising more than a single CTF block and a complicated
in the time interval0, 1usec$. The time resolution under this processing (see [5] for details) or by brute-force MMV so$re
choice,T/5, is used for accurate representation of the signaith exponential recovery time. An obvious trend which
after mixing, which is not bandlimited. The Gaussian noisgppears in the results is that the recovery rate is inversely
is added and scaled so that the test signal has the despegportional to the SNR level and to the number of channels
signal-to-noise ratio (SNR), where the SNR is defined to be used for reconstruction.
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Fig. 8. Percentage of correct support recovery, when digthie sign patterns 5 10 15 20
randomly only for the first- channels. Results are presented for (a) SNR=25 # sampling channels (1)
dB and (b) SNR=10 dB.

Fig. 9. The recovery rate for different SNR levels when usfag= qfp.

B. Simplifying the mixing stage

Each channel needs a mixing functipyit), which suppos- V1. RELATED WORK

edly requires a shift register a¥/ flip flops. In the setting  We now compare the modulated wideband converter, Figs. 3

of Fig. 7, every channel require®/ = 195 flip flops with and 6, to multicoset sampling [5] and the random demodulator

a clock operating at7;,/M)~! = 10 GHz. Without delving [9], [10]. Multicoset sampling was described in SectiorBlI-

into the circuit level, the high clock frequency may requiwe reconstruction from these samples shares the architeofure

implement each register as a chain of discrete devices. Fig. 6. The random demodulator is briefly described next.
We propose a simple method to reduce the total number of

flip flops by sharing the same register for a few channels, and

using consecutive taps to produce several mixing functiofis 1€ random demodulator

simultaneously. This strategy however reduces the degreefig. 10 presents the random demodulator of [9], [10]. The

of freedom inS and may affect the recovery performancenput signalf(t) is first mixed by a sign waveform with a long

To qualitatively evaluate this approach, we generated sigeriod, produced by a pseudorandom sign generator which

matricesS whose firstr rows are drawn randomly as beforealternates at ratd¥. The mixed output is then integrated

Then, theith row, » < i < m, is five cyclic shifts (to the and dumped at a constant ral resulting in the sequence

right) of the (i —r)th row. Fig. 8 reports the recovery succesg[n|, 1 < n < Ng. The design parameters are the rdtésRk

for several choices of and two SNR levels. As evident, thisand the number of sample€x.

strategy enables a saving of 80% of the total number of flip

flips, with no empirical degradation in performance. t=%

1) FO ) [ Yl

C. Collapsing analog channels (”T
p(

Section 11I-D introduced a method to collapgesampling
. . . . Pseudorandom

channels to a single channel with a higher sampling rate = Seed . | o crator at
fs = qfp. To evaluate this strategy, we choose the parameter rate W
set "Option B” of Table I. Specifically, the system design of
Section V-A is now changed t¢, = 5fp with m = 20 Fig. 10. Block diagram of the random demodulator.
physical channels.

In the simulation, the time interval in which the signal is The act of the random demodulator was studied for multi-
observed is extended 10, 4usec$, such that every channeltone signals:
records (after filtering and sampling) about 500 samples. Th ft) = Z Aped 2™t (42)
extended window enables accurate digital filtering in ortder weN
separate each sequence te 5 different equations. We design
a 100-tap digital FIR filter with the MATLAB command
h=fir1(100, 1/¢) to approximate the optimal filtek p[n] QC{0,£A,£2A, -, £(Q —1)A,QA}.  (43)
of Section IlI-D. Then, for theéth sample sequenag(n], h is
convolved with each of the modulated versigng]e’?™/9*,  We denote byV the set of signals obeying this model, whose
where —¢’ < I < ¢ = 2. Fig. 9 reports the recovery parameters ard<, Q and the frequency resolutioA. The
performance for different SNR levels and versus the numbsormalizationA = 1 Hz is used in [10]. For this choice, the
of sampling channels. The performance trend remains asp@rameters are set i = ), andR is an integer dividingV'.
Fig. 7. In particular35/q = 7 channels achieve an acceptablén addition Ny = R, which means observing(¢) over the
recovery rate. This implies a significant saving in hardwatane interval0 < ¢ < 1. Time-domain analysis fof(t) € A/
components. shows thatkR samples on the intervale [0, 1) correspond to

whereQ is a finite set of K out of  harmonics
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W samples taken by an integrate-and-dump block on Nyquit
rate intervals. The relation is expressed as

= = = Original
Reconstructed

Yy = Ps = @H‘?Dq’F S, (44) ?

wherey € C* collects the samples. The unknown vectaf

length W contains the coefficients,,, up to constant factors.

Therefore,s is K-sparse. In (44), the sampling matriix of

size Rx W consists of dV-square reordered DFT matrii, Time (se0)

and®y, Pp represent the act of the integrator-and-dump and @

the sign waveform, respectively. To recoeirom y, any CS Fig. 11. Recovery of a multitone signal from random dematulaamples

algorithm for sparse recovery may be used. Roughly speakimgder design imperfections. The original and reconstclstgnal are plotted

R should be on the order of.7K log(W/K + 1) to allow in (a) on a short time interval. The frequency transforms réhjeal many
4108 . spurious tones due to the clock shift.

stable recovery [10]. Thenf(¢) is constructed using and

(42).

Among the assumptions made in [10], the following argre muititone signals and no noise) may be extremely diffi-
essentlal_forth_e ran(_jom demodulator to function, at leashf cult, since the slightest model mismatch (which is inevitab
a theoretical viewpoint: in real life) has a significant impact on the recovery error.
(R1) The inputf(t) lies (or can be well approximated) on theSimilar sensitivity appears in the requirement for acaurat
grid (43); time delays in multicoset sampling. In contrast, the WKS
(R2) The grid resolution isA = (Ng/R)~!, which explains theorem is insensitive to the exact sampling rate, as long as
the time interval of 1 second for a model with 1 Hzt is above twice the maximal frequency. In Section IV-B we
frequency resolution;, discussed robustness of our recovery algorithm in the poese
(R3) W/R is an integer; of hardware inaccuracies.
(R4) Integrate-and-dump architecture (rather than an aceurat We now consider the wideband scenario that was simulated
lowpass); and in Section V-A, namelyN = 6, B = 50 MHz and fyyq = 10
(R5) the waveformp.(t) is constant over time-intervals of GHz. The dimension of the sensing matikx = SFD in
length1/W. (19) is m x M, and in particular Fig. 7 shows that stable
To relax some of these constraints, the authors of [10] cegdecovery is achieved (empirically) withe = 35, M = 195. In
any deviation from the multitone mode\” as an additive contrast, the matri® has dimension& x W, whereW is the
noise. In addition, forR which does not dividelV’, it is Nyquist rate. An analog multiband signal requires abut
proposed to modifyby;. However this modification is signal NV B tone$ to approximate it within\” [10]. Consequently, in
dependent. the wideband examplep has huge dimension$? = 10'°
columns andR = 2.6 - 10° rows (even in the toy-example
. . above,® is of moderate size). Our approach enjoys several
B. Detailed comparison advantages due to the large difference in the dimensions of
Table Il highlights the differences between the spectrurd, ®:
blind methods under consideration. The Whittaker, Kokein, « Section V-A demonstrates that the CTF requires recording
and Shannon (WKS) theorem, namely uniform sampling at the about40-35 = 1400 samples, corresponding to observing
Nyquist rate, is added for reference. To simplify the disturs the signal for780 nsecs. To solve (44)Nr = R

— — —Original
Reconstructed

0.735 0.74 0.745 0.75

Frequency (Hz)

(b)

we assume thaf, = f, for the modulated wideband converter.
Before considering the table in detail, we present a simple,
toy-example that highlights the difficulty in implementitige
random demodulator. LetV = 1 kHz, R = 100 Hz and
observe the signaf(t) = 3cos(2m120t) + 4 cos(2m 350¢) .
for t € [0,1). Applying the random demodulator tg(¢)
gives Np = R = 100 samples. Using basis pursuit (39)
we can reconstruqf(t) = f(t) exactly. In practice, however,
the ratesR, W are triggered by a clock signal, whose fre-
guency varies with temperature, humidity and other factors
We considered 1% frequency inaccuracy, nhamily= 101
Hz andW’ = 1.01 kHz. In this case, simple reconstruction
via basis pursuit leads to a complex-valued sigﬁal). By
adding constraints that enforce a real-valued solution, we

2.6 - 10° samples are needed.

CS recovery algorithms require (sometimes implicitly) to
computeAl,, ®%. This is a highly demanding task with
the dimensions ofb.

Now, suppose the band (or the tone) positions are un-
changed for several seconds. In this scenario, there is
no need to execute any sparse recovery algorithm, but
only to apply A%, !, repeatedly on the new samples.
One should again recor samples (= 1 second delay)
before applying@TS to the samples. Then, abokiR =

780 - 10° million instructions per second (MIPS) are
performed when calculating the nonzero coefficients in
s. In contrast, (33) is applied at the input rate and

obtain the reconstructqat) of Fig. 11(a), with the normalized  3in fact, [10] show that analog multiband signals are not wpjproximated
squared-erroﬂf _ fNHQ/HfHQ = 1.7. The frequency contents Within V', unless convolving them by a window function prior to samgli

are compared in Fig. 11(b). This example demonstrates tk

Theoretically, the convolved version can be stably recontd, although it
ot clear which window function to choose and how to extthe original

practical implementation of the random demodulator (ew&n fanalog signal from the windowed solution.
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WKS theorem Mutlicoset Random demodulator Modulated wagebconverter
y[n] = z(nTs) Eq. (2) Fig. 10 Fig. 3
Model B-Bandlimited Multiband M Multitone N Multiband M
Type Continuous Continuous Discrete parameterization tiGoous
> Model parameters Jé; N,B,T K,Q,A N,B,T
§ Sampling parameters Ts m, M,C R, W, Ng, pc(t) m, M, fp, fs, oug
F  Restrictions 1/Ts > 28 see [5] R1-(R5) Theorem 2
Rate granularity AnyT's m/MT R=W/r,r €Z mfs
Analysis domain Frequency Frequency Time Frequency
Design sensitivity Low High High Low
Number of channels 1 m 1 m
Sensing matrix dimensions None m x M (small) R x W (huge) (mfs/fp) X M (small)
o Memory req. (support recovery) Constaxin R Constantxm
% Memory req. None R None
g Latency real time real time Ngr/R =1 sec real time
MIPS' 2Nm/T RK 2Nmfs
Baseband processing Yes Yes

Technology barrier [14], [23]

ADC's front-end bandwidth-{ GHz)

CS algorithm&~10 MHz)

Waveform generator~23 GHz)

* After support is recovered.  # Our estimate.

requires no recording of samples. The computation radeer 1/W time intervals, for (44) to hold. In contrast, the

is 2Nm = 420 multiplications per sample intervdl,, or

mixing functionsp;(t) are only required to bé&),-periodic,

2Nmf, = 22-10% MIPS, which is 6 orders of magnitudesuch that their Fourier series contains enough dominarit coe
ficients ¢;;. For example, a sawtooth waveform with varying
We are now in a position to explain the spectrum-blin@mplitudes, wherel;,/M is the duration of a single teeth,
baseband processing ability of our approach, which is adiravould also be appropriate fgs;(¢). This choice avoids the
consequence of the above discussion. Suppose the an4liggontinuities in the sign waveform, which are a major seur
input has a time-varying spectral content. In practice,ghhi for analog noise. The random demodulator, however, cannot
level application layer triggers the CTF when the previodscorporate such a waveform for.(¢) unless compromising
recovered support becomes invalid. The CTF introducesCB @ signal dependent matriky. Such dependence is not

lower than [10].

short latency £ 1 usec in our simulations). Then, eaelin] is
a digital sequence at (the low) rafe, where fori € S, z;[n|

desired of course when the signal is unknown. The integrate-
and-dump, a first-order lowpass filter, has also a main role in

corresponds to a specific b&hdhe recovery architecture ofthe time-domain analysis, while arbitrary high-order aate
Fig. 6 allows to select a specific band of interest for furthd@wpass filters are allowed in Fig. 3.
processing (at ratefs) by generating only the appropriate

sequencez;[n].

setting only after the support is recovered.

We now compare several other aspects between the syst
starting with rate granularity. To design a signal indepamnd
random demodulatoR must divideV, whereW is fixed to
the Nyquist rate off (¢). Thus, for example, foiV = 10 GHz,
there is a significant rate increase betwéer 1.25 GHz and
R = 2.5 GHz. In contrast, Fig. 3 allows rate granularity a
stepsf, = B. The experiment in Section V-A demonstrateS
recovery from sampling at rat&s f, ~ 1.8 GHz, which saves
30% of the sampling rate with respeBt= 2.5 GHz.

The choice of analog devices is also interesting to compare
The time-domain analysis in [10] requirgs(t) to be constant

In contrast, [10] aim at the recovery of
the Nyquist rate sequence. The latency and computational
loads of this approach do not allow baseband processing. %lpéo
explained in Section IV-B, for multicoset sampling, thenfia b
construction in the CTF requires interpolating the seqaencr,
to the Nyquist rate, thus baseband processing appliessn t

IC

in Table II.

To

conclude, we point out the technology barrier of each
roach. The front-end of a practical ADC limits the ap-
ability of the multicoset as explained in Section II-B.
Uniform sampling at the Nyquist rate shares the same barrier
fhe above discussion shows that the computational load and
memory requirements in the digital domain are the bottlenec
eof the random demodulator approach. Therefore the size of
ag’problems that can be solved with available DSPs limits
the recovery. We estimate th#t ~ 1 MHz may be already
quite demanding using convex solvers, wherdas: 10 MHz

is probably the barrier using greedy methods. In fact, unifo
§ampling at 10 MHz seems to be preferred in this setting. Our
system is limited by the technology for generating the p#cio
waveformsp;(t), which depends on the specific choice of
waveform. The applicability range of each method appears
Our approach, Figs. 3 and 6, provides many
advantages for standard analog applications in the widkban
regime. Furthermore, even at low rates, the realtime peitgs

4If the band splits between two spectrum sliceszify), then a simple becomes a significant benefit over both Nyquist rate sampling
and the random demodulator [10].

merging operation generates a sequence atXAe
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