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Abstract— Conventional sub-Nyquist sampling methods for
analog signals exploit prior information about the spectral
support. In this paper, we consider the challenging problemof
spectrum-blind sub-Nyquist sampling of multiband signals. The
Fourier transform of such signals occupy only a small portion of
a wide spectrum, with unknown frequency support. Our primary
design goals are efficient hardware implementation and low com-
putational load on the supporting digital processing. We suggest
a system, named the modulated wideband converter, which first
multiplies the analog signal by a bank of periodic waveforms.
The product is then lowpass filtered and sampled uniformly at
low rate. We derive necessary and sufficient conditions ensuring
perfect recovery from the proposed system. In particular, the
waveform period and the uniform rate can be made as low as
the expected width of each band, which is orders of magnitude
smaller than the Nyquist rate. Reconstruction relies on recent
ideas developed in the context of analog compressed sensing, and
is comprised of a digital step which recovers the spectral support.
Our approach enables baseband processing, namely generating
a low rate sequence corresponding to any information band of
interest from the given samples, without going through the high
Nyquist rate. Numerical simulations demonstrate robustness as
well as several further hardware simplifications. In particular, the
ideas can be applied to a single channel with a higher sampling
rate. We compare our system with two previous approaches:
periodic nonuniform sampling, which is bandwidth limited by
existing hardware devices, and the random demodulator, which
is sensitive to parameter choice, has a high computational load,
and is restricted to multitone signals. In addition, both these
methods do not allow baseband processing. In the broader
context of Nyquist sampling, our scheme has the potential to
break through the bandwidth barrier of state-of-the-art analog
conversion technologies such as interleaved converters.

Index Terms— Analog to digital conversion, compressive sam-
pling, infinite measurement vectors (IMV), multiband sampling,
spectrum-blind reconstruction, sub-Nyquist sampling.

I. I NTRODUCTION

Radio frequency (RF) technology enables the modulation of
narrowband signals by high carrier frequencies. Consequently,
manmade radio signals are often sparse. That is, they consist
of a relatively small number of narrowband transmissions
spread across a wide spectrum range. A convenient way to
describe this class of signals is through a multiband model.
The frequency support of a multiband signal resides within
several continuous intervals spread over a wide spectrum.
Figure 1 depicts a typical communication application, the
wideband receiver, in which the received signal follows the
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Fig. 1. Three RF transmissions with different carriersfi. The receiver sees
a multiband signal (bottom drawing).

multiband model. The basic operations in such an application
are conversion of the incoming signal to digital, and low-
rate processing of some or all of the individual transmissions.
Ultimately, the digital product is transformed back to the
analog domain for further transmission.

Due to the wide spectral range of multiband signals, their
Nyquist rates may exceed the specifications of the best analog-
to-digital converters (ADCs) by orders of magnitude. Any
attempt to acquire a multiband signal must therefore exploit its
structure in an intelligent way. When the carrier frequencies
are known, a common practical engineering approach is to
employ baseband processing, in which an analog front-end
modulates the signal by a carrier frequency such that the
spectral contents of a band of interest are centered around the
origin. A lowpass filter follows in order to reject frequencies
due to the other bands. Conversion to digital is then performed
at a rate matching the actual information width of the band
of interest. Repeating the process for each band separately
results in a sampling rate which is the sum of the band
widths. This method achieves the minimal sampling rate, as
derived by Landau [1], which is equal to twice the actual
frequency occupancy. An alternative sampling approach that
does not require analog preprocessing was proposed in [2]. In
this strategy, periodic nonuniform sampling is used to directly
sample a multiband signal at an average rate approaching that
derived by Landau. Both baseband processing and the method
of [2] rely on knowledge of the carrier frequencies.

In scenarios in which the carrier frequencies are unknown
to the receiver, or change with time, a challenging task is to
design aspectrum-blindreceiver at a sub-Nyquist rate. In [3],
[4] a multicoset sampling strategy was developed, independent
of the signal support, to acquire multiband signals at low
rates. Although the sampling method is blind, in order to
recover the original signal from the samples, knowledge of the
frequency support is needed. Recently [5], we proposed a fully
spectrum-blind system based on multicoset sampling. Our
system does not require knowledge of the frequency support
in both the sampling and the recovery stages. To reconstruct
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the signal blindly, we developed digital algorithms that process
the samples and identify the unknown spectral support. Once
the support is found, the continuous signal is reconstructed
using closed-form expressions.

Periodic nonuniform sampling is a popular approach in
the broader context of wideband analog conversion when the
spectrum is fully occupied. Instead of implementing a single
ADC at a high-rateR, interleaved ADCs useM devices at
rateR/M with appropriate time shifts [6]–[8]. However, time
interleaving has two fundamental limitations. First, theM
lowrate samplers have to share an analog front-end which must
tolerate the input bandwidthR. With today’s technology the
possible front-ends are still far below the wideband regime.
Second, maintaining accurate time shifts, on the order of
1/RM , is difficult to implement. Multicoset sampling, is a
special case of interleaved ADC, in which only some of
the M branches are used. Consequently, the same limitations
apply. In Section II-B we discuss in more detail the difficulty
in implementing interleaved ADCs and multicoset sampling.
In practice, such systems are limited to intermediate input
frequencies and cannot deal with wideband inputs.

Recently, a new architecture to acquire analog signals, called
the random demodulator, was studied in the literature of
compressed sensing (CS) [9], [10]. In this approach, the signal
is modulated by a high-rate pseudorandom number generator,
integrated, and sampled at a low rate. This scheme can be
implemented using standard hardware devices. The random
demodulator was studied for a multitone model, which con-
tains signals with a discrete and finite set of harmonics. Using
time-domain techniques and under additional assumptions,
polynomial-time algorithms can recover such a multitone
signal from the samples of the random demodulator [10].
However, as elaborated on in Section VI, the discrete approach
leads to a solution which is sensitive to design imperfections or
even slight model mismatches. Furthermore, the time-domain
analysis in [10] aims at the recovery of the Nyquist rate
samples, which results in a huge-scale recovery problem.
This leads to severe computational loads even with pure
multitone signals. The time-domain approach also precludes
baseband processing since interpolation to the Nyquist rate is
an essential ingredient in the reconstruction. Finally, the model
cannot properly treat true analog inputs.

A. Main contributions

In this work we aim to combine the advantages of all
previous approaches: The ability to treat analog multiband
models, a sampling stage with a practical implementation, and
a spectrum-blind recovery stage which involves efficient digital
processing. In addition, we would like a method that will allow
for baseband processing, namely the ability to process any one
of the transmitted bands without first requiring interpolation
to the high Nyqusit rate.

Our first contribution is an analog system, referred to as the
modulated wideband converter, which is comprised of a bank
of modulators and lowpass filters. Each channel resembles the
random demodulator of [9] with a few essential differences.
The signal is multiplied by a periodic waveform, whose period

corresponds to the multiband model parameters. A square-
wave alternating at the Nyquist rate is one choice; other
possibilities and their advantages are also discussed. Thegoal
of the modulator is to alias the spectrum into baseband. The
modulated output is then lowpass filtered, and sampled at a
low rate. The rate can be as low as the expected width of an
individual transmission. We prove that an appropriate choice
of the parameters (waveform period, sampling rate) guarantees
that our system uniquely determines a multiband input signal.
In addition, we describe how to trade the number of channels
by a higher rate in each branch, at the expense of additional
processing. Theoretically, this method allows to collapsethe
entire system to a single channel operating at a rate lower
than Nyquist. Some essential differences and advantages with
respect to the random demodulator are detailed in Section VI.

Our second contribution is a recovery stage complementing
the sampling. Our algorithm relies on the machinery of blind
reconstruction, which we originally developed for multicoset
samples [5], and later extended to a broader setting in [11].In
contrast to [10], we use frequency domain analysis, a standard
tool in sampling theory, to express the relation between the
sample sequences and the unknown signal. As we show, the
frequency domain viewpoint allows to control the dimensions
of the recovery problem. A representative wideband scenario
is simulated in Section V-A and demonstrates recovery from
a low scale problem (up to 9 orders of magnitude below
the counterpart recovery of [10]). In addition, our method
separates the support recovery from the actual reconstruc-
tion of the analog input. This enables baseband processing,
namely generating a low rate sequence for any specific band
of interest, without going through recovery of the Nyquist
rate sequence. In contrast, the recovery formulation in [9],
[10] couples the support and signal recovery. This results in
CS problems of large dimensions, and precludes low rate
processing. Section VI highlights other advantages of our
method in terms of digital processing.

The current paper focuses on the engineering aspects of our
system. Numerical simulations are used to prove the concept
and the stability of the solution in the presence of noise.
Ongoing work studies the theoretical aspects in more depth
[12].

B. Outline

The paper is organized as follows. Section II describes the
multiband model and defines the goals for a practical sampling
stage. We also detail limitations of multicoset in the wideband
regime. In Section III, we describe the modulated wideband
sampling system and provide a frequency-domain analysis
of the resulting samples. This leads to a concrete parameter
selection which guarantees a unique signal matching the digital
samples. We conclude the section with a discussion of the
tradeoff between number of channels, rate, and complexity.
Recovery is discussed in Section IV. A design example and
additional implementation aspects are presented in Section V.
In Section VI we compare our system with multicoset sam-
pling and the random demodulator.
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II. FORMULATION AND BACKGROUND

A. Problem formulation

Let x(t) be a real-valued continuous-time signal inL2, with
bounded energy. Throughout the paper, continuous signals
are assumed to be bandlimited toF = [−1/2T, +1/2T ).
Formally, the Fourier transform ofx(t), which is defined by

X(f) =

∫ ∞

−∞

x(t)e−j2πftdt, (1)

is zero for everyf /∈ F . We denote byfNYQ = 1/T the
Nyquist rate ofx(t). For technical reasons, it is also assumed
that X(f) is piecewise continuous inf .

We treat signals from the multiband modelM defined
below.

Definition 1: The setM contains all signalsx(t), such that
the support of the Fourier transformX(f) is contained within
a union ofN disjoint intervals (bands) inF , and each of the
band widths does not exceedB.

Signals inM have an even numberN of bands due to
the conjugate symmetry ofX(f). The band positions are
arbitrary, and in particular, unknown in advance. A typical
spectral support of a signal from the multiband modelM is
illustrated in the example of Fig. 1, in whichN = 6 and
B, fNYQ are dictated according to the specifications of the
possible transmitters.

We wish to design a sampling system for signals from the
modelM that satisfies the following properties:

1) The sampling rate should be as low as possible;
2) the system has no prior knowledge of the band locations;

and
3) the system can be implemented with existing analog

devices and (preferably low rate) ADCs.

The design of the sampling stage should match a corre-
sponding reconstruction stage, which converts the discrete
samples back to the continuous-time domain. This stage
may involve digital processing prior to reconstruction. An
implicit (but crucial) requirement is that recovery involves
a reasonable amount of computations. Realtime applications
may also necessitate short latency from input to output and
a constant throughput. Therefore, two main factors dictate
the input spectrum range that the overall system can handle:
analog hardware at the required frequency that can convert the
signal to digital, and a digital stage that can accommodate the
computation load.

In our previous work [5], we proved that the minimal
sampling rate forM to allow perfect blind reconstruction
is 2NB, provided that2NB is lower than the Nyquist rate.
The case2NB ≥ fNYQ represents signals which occupy
more than half of the Nyquist range. No rate improvement
is possible in that case (for arbitrary signal), and thus we
assume2NB < fNYQ in the sequel. Concrete algorithms for
blind recovery, achieving the minimal rate, were developed
in [5] based on a multicoset sampling strategy. The next
section briefly describes this method, which achieves the
goals of minimal rate and blindness. We also explain the
limitations of practical ADCs which influence the applicability
of multicoset to sampling wideband signals. As described

t = nMT

x(t)

xc1
[n]∆t = c1T

Time shifts

t = nMT

xcm
[n]∆t = cmT

(a)

0
f

b

Analog Digital

r

samples/sec

Model of a practical ADC device

(b)

Fig. 2. Schematic implementation of multicoset sampling (a) requires no
filtering between the time shifts and the actual sampling. However, the front-
end of a practical ADC has an inherent bandwidth limitation,which is
modeled in (b) as a lowpass preceding the uniform sampling.

later in Section III-A, the sampling scheme proposed in this
paper circumvents these limitations and has other advantages
in terms of practical implementation.

B. Multicoset using practical ADCs

In multicoset sampling, samples ofx(t) are obtained on a
periodic and nonuniform grid which is a subset of the Nyquist
grid. Formally, denotex(nT ) as the sequence of samples taken
at the Nyquist rate. LetM be a positive integer, andC =
{ci}m

i=1 be a set ofm distinct integers with0 ≤ ci ≤ M − 1.
The multicoset grid consists ofm uniform sequences, called
cosets, such that theith coset is defined by

xci
[n] = x (nMT + ciT ) , n ∈ Z. (2)

Only m < M cosets are used, and thus the average sampling
rate ism/MT , which is lower than the Nyquist rate1/T .

A possible implementation of the sampling sequences (2)
is depicted in Fig. 2(a). The building blocks arem uniform
samplers at rate1/MT , where theith sampler is shifted by
ciT from the origin. Although this scheme seems intuitive and
straightforward, practical ADCs introduce inherent bandwidth
limitation, which is modeled as a preceding lowpass filter in
Fig. 2(b). This additional constraint becomes crucial for high
rate inputs. To understand this limitation, consider the uniform
sampler block, which should output pointwise samples of the
input at rate1/MT . An appropriate choice for this task is
an ADC device with sampling rater = 1/MT . Practical
ADCs have an additional property, termed analog (full-power)
bandwidth [13], which determines the maximal frequencyb
that the device can handle, as dictated by technology. Any
spectral content beyondb Hz is attenuated and distorted.
Manufacturers thus usually recommend adding a preceding
anti-aliasing lowpass filter, with cutoffb to further reject higher
frequencies. The ratiob/r implies the complexity of the ADC
circuit design, and is typically in the range1.5r ≤ b ≤ 7r;
see the online table in [14]. A simplified model based on the
specificationsb, r is depicted in Fig. 2(b).

The practical ADC model raises two issues. First, RF
technology allows transmissions at rates which exceed the
analog bandwidthb of state-of-the-art devices, typically by
orders of magnitude. For example, ADC devices manufactured
by Analog Devices Corp. have front-end bandwidths which
reach up tob =780 MHz [14]. Therefore, any attempt to
acquire a wideband signal with a practical ADC results in
a loss of the spectral contents beyondb Hz. The sample
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sequences (2) are attenuated and distorted and are no longer
pointwise values ofx(t). This limitation is fundamental and
holds even in other architectures of multicoset (e.g.,a single
ADC triggered by a nonuniform clock). The second issue is a
waste of resources which is less severe but applies also when
the Nyquist ratefNYQ = b for some available device. For a
signal with a sparse spectrum, multicoset reduces the average
sampling rate by using onlym out ofM possible cosets, where
M ≫ 1 is commonly used. Each coset in Fig. 2 samples at
ratefNYQ/M . Therefore, the ADC samples at rateb/M , which
is far less than standard ratiosb/r [14]. This implies sampling
at a rate which is much lower than the maximal capability of
the ADC.

As a consequence, implementing multicoset for wideband
signals requires the design of a specialized fine-tuned ADC
circuit, in order to meet the wide analog bandwidth, and still
exploit the nonstandard ratiob/r that is expected. Though
this may be an interesting task for experts, it contradicts
the basic goal of our design - that is, using standard and
available devices. In [15] a nonconventional ADC is designed
by means of high-rate optical devices. The hybrid optic–
electronic system introduces a front-end whose bandwidth
reaches the wideband regime, at the expense and size of an
optical system. Unfortunately, at present, this performance
cannot be achieved with purely electronic technology.

Another practical issue of multicoset sampling, which also
exists in the optical implementation, arises from the time
shift elements. Maintaining accurate time delays between the
ADCs in the order of the Nyquist intervalT is difficult. Any
uncertainty in these delays influences the recovery from the
sampled sequences [16]. A variety of different algorithms have
been proposed in the literature in order to compensate for
timing mismatches. However, this adds substantial complexity
to the receiver [17], [18].

III. SAMPLING

We now present an alternative sampling scheme that uses
available devices and does not require non-zero time synchro-
nization. The system is schematically drawn in Fig. 3 with
its various parameters. In the next subsections, the scheme
is described and analyzed for arbitrary sets of parameters.
Later on, we specify a parameter choice, independent of the
band locations, that approaches the minimal rate. The resulting
system satisfies all requirements of our problem formulation.

A. System description

Our system exploits spread-spectrum techniques from com-
munication theory [19], [20], and is partially inspired by the
use of these techniques in [9], [10]. An analog mixing front-
end aliases the spectrum, such that a portion of energy from
each band appears in baseband. The system comprises several
channels implementing different mixtures, so that, in principle,
a sufficiently large number of mixtures allows to recover a
relatively sparse multiband signal.

More specifically, the signalx(t) entersm channels simul-
taneously. In theith channel,x(t) is multiplied by a mixing
function pi(t), which is Tp-periodic. After mixing, the signal

spectrum is truncated by a lowpass filter with cutoff1/(2Ts)
and the filtered signal is sampled at rate1/Ts. Standard ADCs
can be used for that task. The design parameters are therefore
the number of channelsm, the periodTp, the sampling rate
1/Ts and the mixing functionspi(t) for 1 ≤ i ≤ m.

In the sequel,pi(t) is chosen as a piecewise constant
function that alternates between the levels±1 for each ofM
equal time intervals. Formally,

pi(t) = αik, k
Tp

M
≤ t ≤ (k+1)

Tp

M
, 0 ≤ k ≤ M−1, (3)

with αik ∈ {+1,−1}, and pi(t + nTp) = pi(t) for every
n ∈ Z. Other choices forpi(t) are possible; Some examples
are described in Section VI.

The system proposed in Fig. 3 has several advantages for
practical implementation:

(A1) Analog mixers are a provable technology in the wide-
band regime [21], [22]. In fact, since transmitters use
mixers to modulate the information by a high-carrier
frequency, the mixer bandwidth defines the input band-
width.

(A2) Sign alternating functions can be implemented by a
standard (high rate) shift register. Today’s technology
allows to reach alternation rates of 23 GHz [23] and
even 80 GHz [24].

(A3) Analog filters are accurate and typically do not require
more than a few passive elements (e.g.,capacitors and
coils) [25].

(A4) The sampling rate1/Ts matches the cutoff ofH(f).
Therefore, an ADC with a conversion rater = 1/Ts, and
any bandwidthb ≥ 0.5r can be used to implement this
block, whereH(f) serves as a preceding anti-aliasing
filter. In the sequel, we choose1/Ts on the order ofB,
which is the width of a single band ofx(t) ∈ M. In
practice, this sampling rate allows flexible choice of an
ADC from a variety of commercial devices in the low
rate regime.

(A5) Sampling is synchronized in all channels, that is there
are no time shifts. This is beneficial since the trigger
for all ADCs can be generated accurately (e.g., with
a zero-delay synchronization device [26]). Moreover,
the sampling sequences can be fed directly to a digital
processor which operates at rate1/Ts. In contrast, the
multicoset samples (2) arrive at different time points, and
additional hardware is required to buffer the sequences
before entering the digital part.

B. Frequency domain analysis

We now derive the relation between the sample sequences
yi[n] and the unknown signalx(t). This analysis is used for
several purposes in the following sections. First, for specifying
a choice of parameters ensuring a unique mapping between
x(t) and the sequencesyi[n]. Second, we use this analysis
to explain the reconstruction scheme. Finally, stability and
implementation issues will also be based on this development.
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1
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Frequency response of h(t)

Parameters:

Symbol Meaning
m number of sampling channels
Tp period of each pi(t)
Ts time-interval between ADC samples, corresponding to cutoff frequency of h(t)
M number of ±1 intervals in each period of pi(t)
αik the value pi(t) takes on the kth interval

The mixing function pi(t)

αi,0

αi,1

x̃m(t) ym[n]

x̃1(t) y1[n]

Fig. 3. The modulated wideband converter - a practical sampling stage for multiband signals.

To this end, we introduce the definitions

fs = 1/Ts, Fs = [−fs/2, +fs/2] (4a)

fp = 1/Tp, Fp = [−fp/2, +fp/2]. (4b)

Consider theith channel. Sincepi(t) is Tp-periodic, it has
a Fourier expansion

pi(t) =

∞∑

l=−∞

cile
j 2π

Tp
lt
, (5)

where

cil =
1

Tp

∫ Tp

0

pi(t)e
−j 2π

Tp
lt
dt. (6)

Expressing the Fourier transformPi(f) in terms of the Fourier
series coefficientscil leads to

Pi(f) =

∫ ∞

−∞

pi(t)e
−j2πftdt =

∞∑

l=−∞

cilδ (f − lfp) , (7)

with δ(t) denoting the Dirac delta function. The analog multi-
plicationx(t)pi(t) translates to a convolution in the frequency
domain,

X(f) ∗ Pi(f) =
∞∑

l=−∞

cilX (f − lfp) . (8)

Therefore, the input toH(f) is a linear combination offp-
shifted copies ofX(f). SinceX(f) = 0 for f /∈ F , the above
sum contains (at most)⌈fNYQ/fp⌉ nonzero terms1, for every
f .

The filterH(f) has a frequency response which is an ideal
rectangular function, as depicted in Fig. 3. Consequently,only
frequencies in the intervalFs pass to the uniform sequence
yi[n]. Thus the discrete-time Fourier transform (DTFT) of the

1The ceiling operator⌈a⌉ returns the greater (or equal) integer which is
closest toa.

ith sequenceyi[n] is expressed as

Yi(e
j2πfTs) =

∞∑

n=−∞

yi[n]e−j2πfnTs

=

+L0∑

l=−L0

cilX (f − lfp) , f ∈ Fs, (9)

whereFs is defined in (4b), andL0 is chosen as the smallest
integer such that the above sum contains all possible nonzero
contributions ofX(f) over Fs. The exact value ofL0 is
calculated by

−fs

2
+ (L0 + 1)fp ≥ fNYQ

2
→ L0 =

⌈
fNYQ + fs

2fp

⌉

− 1.

(10)

The relation (9) ties the known DTFTs ofyi[n] to the unknown
X(f). This equation is the key to recovery ofx(t). For our
purposes, it is convenient to write (9) in matrix form

y(f) = Az(f), f ∈ Fs, (11)

where y(f) is a vector of lengthm with ith element
yi(f) = Yi(e

j2πfTs). The unknown vectorz(f) =
[z1(f), · · · , zL(f)]T is of length

L = 2L0 + 1 (12)

and

zi(f) = X(f + (i −L0 − 1)fp), 1 ≤ i ≤ L, f ∈ Fs. (13)

The m × L matrix A contains the coefficientscil (6). Fig. 4
depicts the vectorz(f) and the effect of aliasingX(f) in fp-
shifted copies forN = 4 bands, aliasing ratefp = 1/Tp ≥ B
and two sampling rates. Each entry ofz(f) is a windowed
shifted interval ofX(f) whose length isfs. Thus, in order to
recoverx(t), it is sufficient to determinez(f) in the interval
f ∈ Fp.

The analysis so far holds for every choice ofTp-periodic
functionspi(t). Before proceeding, we discuss the role of each
parameter. The periodTp determines the aliasing ofX(f)
by setting the shift intervals tofp = 1/Tp. Equivalently,
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f

0

fp ≥ B

0

2

NYQf

X(f)

X
(

2

)

NYQf

fs = 5fp

i = 1

i = L0

i = L0 + 1

i = L

0

z(f)

i = 1

i = L0

i = L0 + 1

i = L

fs = fp

Value corresponds

to

M
m

in
=

1
1

Fig. 4. The relation between the Fourier transformX(f) and the vector
set z(f), of (13). In the left pane,fs = fp so that the length ofz(f) is
L = 11. The right pane demonstratesfs = 5fp which givesL = 15. Entries
in locationsi ≤ L0 (i > L0 + 1) contain shifted and windowed copies of
X(f) to the right (left) of the frequency axis. No shift occurs forthe middle
entry, i = L0 + 1.

the aliasing ratefp controls the way the bands are arranged
in the spectrum slicesz(f), as Fig. 4 depicts. We choose
fp ≥ B so that each band contributes only a single nonzero
element to z(f), and consequentlyz(f) has at mostN
nonzeros. In practicefp is chosen slightly more thanB to
avoid edge effects. Thus, the parameterTp is used to translate
the multiband priorx(t) ∈ M to a bound on the sparsity
level of z(f). The sampling ratefs of a single channel sets
the frequency rangeFs in which (11) holds. It is clear from
Fig. 4 that as long asfs ≥ fp, recoveringx(t) from the
sample sequencesyi[n] amounts to recovery ofz(f) from
y(f), for everyf ∈ Fp. The number of channelsm determines
the overall sampling ratemfs of the system. The simplest
choicefs = fp ≃ B, which is presented on the left pane of
Fig. 4, allows to control the sampling rate at a resolution of
fp. Later on, we explain how to trade the number of channels
m by a higher ratefs in each channel. Observe that setting
fp, fs determinesL by (10) and (12), which is the number
of spectrum slices inz(f) that may contain energy for some
x(t) ∈ M.

The role of the mixing functions appears implicitly in (11)
through the coefficientscil. Each pi(t) provides a single
row in the matrixA. Roughly speaking,pi(t) should have
many transients within the time periodTp so that its Fourier
expansion (5) contains aboutL dominant terms. Then, the
channel outputyi[n] is a mixture of all (nonidentically zero)
spectrum slices inz(f). The functionspi(t) should differ from
each other to yield linearly independent rows inA. We next
make these requirements precise for a specific choice ofpi(t)
- the sign waveforms.

Consider the sign alternating functionpi(t) which is de-
picted in Fig. 3. Calculating the coefficientscil in this setting
gives

cil =
1

Tp

∫ Tp

M

0

M−1∑

k=0

αike
−j 2π

Tp
l
“

t+k
Tp

M

”

dt (14)

=
1

Tp

M−1∑

k=0

αike−j 2π
M

lk

∫ Tp

M

0

e
−j 2π

Tp
lt
dt. (15)

Evaluating the integral we have

dl =
1

Tp

∫ Tp

M

0

e
−j 2π

Tp
lt
dt =

{
1
M l = 0
1−θl

2jπl l 6= 0
(16)

whereθ = e−j2π/M , and thus

cil = dl

M−1∑

k=0

αikθlk. (17)

Note thatcil = c∗i,−l. Let F̄ be theM × M discrete Fourier
transform matrix (DFT) whoseith column is

F̄i =
[

θ0·(i−1), θ1·(i−1), · · · , θ(M−1)·(i−1)
]T

, 1 ≤ i ≤ L,

(18)
where as beforeθ = e−j2π/M . Define F to be theM × L
matrix with Fi = F̄k for k = i−L0 (whereF̄k+M is used if
k < 1). Note thatF is a re-ordered column subset ofF̄, and
for M = L, F is unitary. Then,

y(f) = SFDz(f), f ∈ Fs, (19)

reformulates (11) in terms of them×M sign matrixS, with
Sik = αik, and theL × L diagonal matrixD = diag(dl),
where dl are defined in (16). The dependency on the sign
patterns{αik} is further expanded in (20).

Intuitively, a sign alternating functionpi(t) is implemented
by a shift register, whereM determines the number of flops.
The clock rate of the register(Tp/M)−1 is also dictated by
M . The next section shows thatM ≥ L, whereL is defined
in (12), is one of the conditions for blind recovery. SinceL is
roughlyfNYQ/B for fp = B, this implies a large value forM .
In practice this is not an obstacle, since standard logic gates
and feedback can be used to generate a sign pattern of length
M (a.k.a, m-sequence) with just a few components [19], [20].
Nonetheless, to reduce the clock rate we chooseM = L. The
sign patterns{αik} initialize the shift register.

Note that the magnitude ofdl decays asl move away
from l = 0. This is a consequence of the specific choice
of sign alternating waveforms for the mixing functionspi(t).
Under this selection, spectrum regions ofX(f) are weighted
according to their proximity to the origin. In the presence of
noise, the signal to noise ratio depends on the band locations
due to this asymmetry.

C. Choice of parameters

An essential property of a sampling system is that the
sample sequences match a unique analog inputx(t), since oth-
erwise recovery is impossible. The following theorems address
that issue. The first theorem states necessary conditions on
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






Y1(e
j2πfTs)

Y2(e
j2πfTs)
...

Ym(ej2πfTs)








︸ ︷︷ ︸

y(f)

=






α1,0 · · · α1,M−1

...
. . .

...
αm,0 · · · αm,M−1






︸ ︷︷ ︸

S





| · · · | · · · |
F̄−L0

· · · F̄0 · · · F̄L0

| · · · | · · · |





︸ ︷︷ ︸

F






d−L0

. . .
dL0






︸ ︷︷ ︸

D











X(f − L0fp)
...

X(f)
...

X(f + L0fp)











︸ ︷︷ ︸

z(f)

(20)

the system parameters to allow a unique mapping. A concrete
parameter selection which is sufficient for uniqueness, is
provided in the second theorem. As a nice feature, the same
selection works with half as many sampling channels, when
the band locations are known. Thus, the system appearing in
Fig. 3 can also replace baseband processing in the non-blind
scenario. This may be beneficial for a receiver that switches
between blind and non-blind modes according to availability
of the transmitter carriers. More importantly, Fig. 3 suggests
a possible architecture in the broader context of ADC design.
The analog bandwidth of the frontend, which is dictated by
the mixers, breaks the conventional bandwidth limitation in
interleaved ADCs.

For brevity, we use sparsity notations in the statements. A
vector u is called K-sparse ifu contains no more thanK
nonzero entries. The setsupp(u) denotes the indices of the
nonzeros inu. The support of a collection of vectors over a
continuous interval, such asz(Fp) = {z(f) : f ∈ Fp}, is
defined by

supp(z(Fp)) =
⋃

f∈Fp

supp(z(f)). (21)

A vector collection is called jointlyK-sparse if its support
contains no more thanK indices.

Theorem 1 (Necessary conditions):Let x(t) be an arbitrary
signal within the multiband modelM, which is sampled
according to Fig. 3 withfp = B. Necessary conditions to
allow exact spectrum-blind recovery (of an arbitraryx(t) ∈
M) arefs ≥ fp, m ≥ 2N . For mixing with sign waveforms
an additional necessary requirement is

M ≥ Mmin
△
=2

⌈
fNYQ

2fp
+

1

2

⌉

+ 1. (22)

Note that forfs = fp, Mmin = L of (12); see also Fig. 4.
Proof: Observe that according to (9) and Fig. 4, the

frequency transform of theith entry ofz(f) sumsfp-shifted
copies ofX(f). If fs < fp, then the sum lacks contributions
from X(f) for somef ∈ F . An arbitrary multiband signal
may contain an information band within those frequencies.
Thus,fs ≥ fp is necessary.

The other conditions are necessary to allow enough linearly
independent equations in (11) for arbitraryx(t) ∈ M. To
prove the argument onm, first consider the linear systemv =
Au for the m × L matrix A of (11). In addition, assume
fs = fp = B. Substituting these values into (10),(12) and
usingfNYQ ≥ 2NB givesL > 2N , namelyA has more than
2N columns.

If m < 2N , then sincerank(A) ≤ m there exist twoN -
sparse vectors̄u1 6= ū2 such thatAū1 = Aū2. The proof
now follows from the following construction. For a givenN -
sparse vectoru, choose a frequency interval∆ ⊂ Fp of
length B/2. Construct a vectorz(f) of spectrum slices, by
letting z(f) = u for everyf ∈ ∆, andz(f) = 0 otherwise.
Clearly, thatz(f) corresponds to somex(t) ∈ M (see below
an argument that treats the case that this construction results
in a complex-valuedx(t)). Follow this argument for̄u1, ū2

to provide x̄1(t) 6= x̄2(t) within M. Since Aū1 = Aū2,
both x̄1(t), x̄2(t) are mapped to the same samples. It can be
verified that sincecil = c∗i,−l, the existence of complex-valued
x̄1(t) 6= x̄2(t) implies the existence of a corresponding real-
valued pair of signals withinM, which have the same samples.

The condition (22) comes from the structure ofF. ForM <
Mmin, F1 = FM+1. Now, setû1 to be the zero vector except
the value1/d1 on the first entry. Similarly, let̂u2 have zeros
except for1/dM+1 on the(M + 1)th entry. We can then use
the arguments above to construct the signalsx̂1(t), x̂2(t) from
û1, û2. It is easy to see that the signals (or their real-valued
counterparts) are mapped to the same samples although they
are different.

The proof on the necessity ofm ≥ 2N, M ≥ Mmin for
fs > fp follows from the same arguments.

We point out that the necessary conditions onm, M may
change with other choices offp. However,fp = B is sufficient
for our purposes, and allows to reduce the total sampling rate
as low as possible. In addition, note that it is recommended
(though not necessary) to haveM ≤ 2m−1. This requirement
stems from the fact thatS is defined over a finite alphabet
{+1,−1} and thus cannot have more than2m−1 linearly
independent columns. Therefore, in a sense, the degrees of
freedom inA = SFD are decreased2 for M > 2m−1. We
next show that the conditions of Theorem 1 are also sufficient
for blind recovery, under additional conditions.

Theorem 2 (Sufficient conditions):Let x(t) be an arbitrary
signal within the multiband modelM, which is sampled
according to Fig. 3 with sign waveformspi(t). If

1. fs ≥ fp ≥ B,
2. M ≥ Mmin, whereMmin is defined in (22),
3. m ≥ N for non-blind reconstruction orm ≥ 2N for

blind,
4. Every2N columns ofSF are linearly independent,

2Note that repeating the arguments of the proof forM > 2m−1 allows to
construct spectrum slicesz(f) in the null space ofSF. However, these do
not necessarily correspond tox(t) ∈ M and thus this requirement is only a
recommendation.



8

TABLE I

POSSIBLE PARAMETER CHOICES FOR MULTIBAND SAMPLING.

Model
N = 6 B = 50 MHz fNYQ = 10 GHz

Sampling parameters
Option A Option B

fp =
fNYQ
195

≈ 51.3 MHz fp =
fNYQ
195

≈ 51.3 MHz
fs = fp ≈ 51.3 MHz fs = 5fp ≈ 256.4 MHz
m ≥ 2N = 12 m ≥ ⌈ 2N

5
⌉ = 3

M = Mmin = 195 M = 199

Mmin = L = 195 Mmin = 195, L = 199

Ratemfs ≥ 615 MHz Ratemfs ≥ 770 MHz

then, for everyf ∈ Fs, the vectorz(f) is the uniqueN -sparse
solution of (19).

Proof: The choicefp ≥ B ensures that every band can
contribute only a single non-zero value toz(f). Fig. 4 and
the earlier explanations provide a proof of this statement.As
a consequence,z(f) is N -sparse for everyf ∈ Fs.

Recall thatM ≥ L is necessary. Under this condition,
D contains nonzero diagonal entries, sincedl = 0 only for
l = ±kM for somek > 1. This implies thatD is nonsingular
and rank(SFD) = rank(SF). Thus linear independence
of any column subset ofSF implies corresponding linear
independence forSFD.

In the non-blind setting, the band locations imply the sup-
port supp(z(f)) for everyf ∈ Fs. The other two conditions
(on m, SF) ensure that (19) can be inverted on the proper
column subset, thus providing the uniqueness claim. A closed-
form expression is given in (33) below.

In blind recovery, the nonzero locations ofz(f) are un-
known. We therefore rely on the following result from the
CS literature: AK-sparse vectoru is the unique solution of
v = Au if every 2K columns ofA are linearly independent
[27]. This condition translates intom ≥ 2N and the condition
on SF of the theorem.

To reduce the sampling rate to minimal we may choose
fs = fp = B and m = 2N (for the blind scenario). This
translates to an average sampling rate of2NB, which is
the lowest possible forx(t) ∈ M [5]. Table I presents two
parameter choices for a representative signal model. Option A
in the table usesfs = fp and leads to a sampling rate as low
as 615 MHz, which is slightly above the minimal rate2NB
= 600 MHz. Option B is discussed in the next section.

Recall the proof of Theorem 1, which shows thatA has
L > 2N columns. Therefore, ifm = 2N is sufficiently small,
the requirementM ≥ L may contradict the recommendation
M ≤ 2m−1. This situation is rare due to the exponential nature
of the upper bound; it does not happen in the examples of
Table I. Nonetheless, if it happens, then we may viewx(t) ∈
M as conceptually havingρN bands, each of widthB/ρ, and
set fp = B/ρ. The upper bound onM grows exponentially
with ρ while the lower bound grows only linearly, thus for
some integerρ ≥ 1 we may have a valid selection forM . This
approach requiresm = 2ρN branches which corresponds to a
large number of sampling channels. Fortunately, this situation

can be solved by trading the number of sampling channels for
a higher sampling ratefs.

To complete the sampling design, we need to specify how
to select the matrixS, namely the sign patterns{αik}. This
choice effects the reconstruction stability. In Section IV, we
describe the mechanism for recoveringx(t) from the given
samplesyi[n] and address the choice of{αik}.

D. Trading channels for sampling rate

The burden on hardware implementation is highly impacted
by the total number of hardware devices, which includes the
mixers, the lowpass filters and the ADCs. Clearly, it would
be beneficial to reduce the number of channels as low as
possible. We now examine a method which reduces the number
of channels at the expense of a higher sampling ratefs in each
channel and additional digital processing.

Supposefs = qfp, with odd q = 2q′ + 1. To analyze this
choice, consider theith channel of (11) forf ∈ Fp:

yi(f + kfp) =

∞∑

l=−∞

cilX(f + kfp − lfp) (23)

=

+L0−k∑

l=−L0−k

ci,(l+k)X(f − lfp) (24)

=

+L0∑

l=−L0

ci,(l+k)X(f − lfp) (25)

where−q′ ≤ k ≤ q′. The first equality follows from a change
of variable, and the second from the definition ofL0 in (10),
which implies thatX(f − lfp) = 0 over f ∈ Fp for every
|l| > L0 − q′. Now, according to (25), a system withfs =
qfp providesq equations onFp for each physical channel.
Equivalently,m hardware branches (including all components)
amounts tomq channels havingfs = fp. Eq. (28) expands this
relation. Note that the sign patterns do not appear explicitly
as in (19).

Theorem 2 ensures thatz(f) hasN nonzero elements for
every f ∈ Fs. Nonetheless, as detailed in the next section,
for efficient recovery it is more interesting to determine the
joint sparsity level ofz(f) over Fs. As Fig. 4 depicts, over
f ∈ Fp, z(f) is 2N -jointly sparse, whereas over the wider
rangef ∈ Fs, z(f) may have a larger joint support set. It is
therefore beneficial to truncate the sequences appearing in(25)
to the intervalFp, prior to reconstruction. In terms of digital
processing, the left-hand-side of (28) is obtained from the
input sequenceyi[n] as follows. For every−q′ ≤ k ≤ q′, the
frequency shiftyi(f +kfp) is carried out by time modulation.
Then, the sequence is lowpass filtered byhD[n] and decimated
by q. The filter hD[n] is an ideal lowpass filter with digital
cutoff π/q, whereπ corresponds to half of the input sampling
ratefs. This processing yields the ratefp = fs/q sequences

ỹi,k[ñ] =
(
yi[n]e−j2π kfp nTs

)
∗ hD[n]

∣
∣
n=ñq

(26)

=
(

yi[n]e−j 2π
q

kn
)

∗ hD[n]
∣
∣
∣
n=ñq

. (27)

Conceptually, the sampling system consists ofmq channels
which generate the sequences (27) withfs = fp.
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









yi(f − q′fp)
...

yi(f)
...

yi(f + q′fp)











=











ci,−L0−q′ · · · ci,L0−q′

...
. . .

...
ci,−L0

· · · ci,−1 ci,0 ci,1 · · · ci,L0

...
. . .

...
ci,−L0+q′ · · · ci,L0+q′















|
z(f)
|



 , f ∈ Fp. (28)

Table I presents a parameter choice, entitled Option B,
which makes use of this strategy. Thus, instead of the proposed
setting of Theorem 2 withm ≥ 12 channels, uniqueness can
be guaranteed from only3 channels. Observe that the lowest
sampling rate in this setting is higher than the minimal2NB,
since the strategy expands each channel to an integer number
q of sequences. In the example,3 channels are digitally
expanded to3q = 15 channels. In Section V-C we demonstrate
empirical evidence for this approach, when using a finite
impulse response (non-ideal) filter to approximatehD[n].

Theoretically, this strategy allows to collapse a system with
m channels to a single channel with sampling ratefs = mfp.
However, each channel requiresq digital filters to reduce the
rate back tofp, which increases the computational load. In
addition, asq grows, approximating a digital filter with cutoff
is π/q requires more taps.

The next section discusses the reconstruction stage, which
takes them sample sequencesyi[n] (or themq decimated se-
quences̃yi,k[ñ]) and recovers the Nyquist rate sequencex(nT )
or the analog versionx(t). As we explain, the reconstruction
stage also allows to output a digital sequence corresponding
to any specific band of interest. This sequence is generated at
low rate, namely without going through the recovery of the
Nyquist rate sequencex(nT ).

IV. RECONSTRUCTION

In this section,fs = fp is assumed under the interpretation
that the input sequences were expanded and decimated earlier
if needed. Recovery ofx(t) from the sequencesyi[n] boils
down to recovery of the sparsestz(f) of (11) for every
f ∈ Fs. The system (11) falls into a broader framework
of sparse solutions to a parameterized set of linear systems
[11]. The relevant results are quoted and are then specified to
the multiband scenario. The recovery stage is developed for
arbitrary mixing functions. Stability aspects are described for
alternating sign functionspi(t).

A. IMV model

Let A be anm × M matrix with m < M . The constants
m, M are arbitrary in this section, but later on we apply the
results toA of (11) which explains this notation. Consider a
parameterized family of linear systems

v(λ) = Au(λ), λ ∈ Λ, (29)

indexed by a fixed setΛ that may be infinite. Letu(Λ) =
{u(λ) : λ ∈ Λ} be a collection ofM -dimensional vectors
that solves the entire family of systems. We will assume that
the vectors inu(Λ) are jointly K-sparse in the sense that

v(Λ)

Reconstruct joint support
V

S =
⋃

i

supp(Ūi)
SSolve V = AU for

sparsest matrix Ū

Construct a frame
V for v(Λ)

Continuous to finite (CTF) block

Fig. 5. Recovery of the joint supportS = supp(u(Λ)).

| supp(u(Λ))| ≤ K. In words, the nonzero entries of each
vectoru(λ) lie within a set of at mostK indices.

When the supportS = supp(u(Λ)) is known, recovering
u(Λ) from the known vector setv(Λ) = {v(λ) : λ ∈ Λ} is
possible if the submatrixAS , which contains the columns of
A indexed byS, has full column rank. In this case,

uS(λ) = A
†
Sv(λ) (30a)

ui(λ) = 0, i /∈ S (30b)

whereuS(λ) contains only the entries ofu(λ) indexed byS
andA

†
S = (AH

S AS)−1AH
S is the (Moore-Penrose) pseudoin-

verse ofAS . For unknown supportS, (29) is still invertible
if K = |S| is known, and every set of2K columns fromA

is linearly independent [11], [27], [28]. In general, finding the
support ofu(Λ) is NP-hard because it may require a combi-
natorial search. Nevertheless, recent advances in compressive
sampling and sparse approximation delineate situations where
polynomial-time recovery algorithms correctly identifyS for
finite Λ. This challenge is referred to as a multiple measure-
ment vectors (MMV) problem [28]–[33].

The sparsest solution of a linear system, for unknown
supportS, has no closed-form solution. Thus, whenΛ has
infinite cardinality, refereed to as the infinite measurement
vectors (IMV) problem [11], solving foru(Λ) conceptually
requires an independent treatment for infinitely many systems
[11]. To avoid this difficulty of IMV, we proposed in [5],
[11] a two step flow which recovers the support setS from a
finite-dimensional system, and then uses (30) to recoveru(Λ).
The algorithm begins with the construction of a (finite) frame
V for v(Λ). Then, it finds the (unique) solution̄U to the
MMV systemV = AU that has the fewest nonzero rows. The
main result is thatS = supp(u(Λ)) equalssupp(Ū), namely
the index set of the nonidentically zero rows ofŪ. These
operations are grouped in a block entitled continuous to finite
(CTF), depicted in Fig. 5. Therefore, the support recovery can
be accomplished by solving only a finite dimensional problem.

In the next section, we specify the CTF block for multiband
reconstruction. Some additional insights into the CTF block
are given in the specific context of our problem.



10

B. Multiband reconstruction

The system (11) clearly obeys the IMV model withΛ = Fs.
In order to use the CTF block, we need to construct a frameV

for the measurement sety(Λ). Such a frame can be obtained
by computing [11]

Q =

∫

f∈Fs

y(f)yH(f)df (31)

=
+∞∑

n=−∞

y[n]yT [n], (32)

where y[n] = [y1[n], · · · , ym[n]]T is the vector of samples
at time instancesnTs. Then, any matrixV, for which Q =
VVH , is a frame fory(Fs) [11]. The CTF block, Fig. 5,
can then be used to recover the supportS = supp(z(Fp)). It
follows that,

zS [n] = A
†
Sy[n] (33a)

zi[n] = 0, i /∈ S, (33b)

where z[n] = [z1[n], · · · , zL[n]]T and zi[n] is the inverse-
DTFT of zi(f). Therefore, once the support is recovered, the
sequenceszi[n] are generated at the input ratefs. At this
point, we may recoverx(t) by either of the two following
options. IffNYQ is not prohibitively large, then we can generate
the Nyquist rate sequencesx(nT ) digitally and then use
an analog lowpass (with cutoff1/2T ) to recoverx(t). The
digital sequencex(nT ) is generated by shifting each spectrum
slice zi(f) to the proper position in the spectrum, and then
summing up the contributions. In terms of digital processing,
the sequenceszi[n] are first zero padded:

z̃i[ñ] =

{
zi(n) ñ = nL, n ∈ Z

0 otherwise. (34)

Then, z̃i[ñ] is interpolated to the Nyquist rate, using an
ideal (digital) filter. Finally, the interpolated sequences are
modulated in time and summed:

x[n] = x(nT ) =
∑

i∈S

(z̃i[n] ∗ hI [n])e2πifpnT . (35)

The alternative option is to handle the sequenceszi[n] directly
by analog hardware. Everyzi[n] passes through an analog
lowpass filter with cutofffs/2 and gives (the complex-valued)
zi(t). Then,

x(t) =
∑

i∈S,i>L0

R{zi(t)} cos(2πifpt) + I(zi(t)) sin(2πifpt),

(36)
whereR(·), I(·) denote the real and imaginary part of their
argument, respectively. We emphasize that although the anal-
ysis of Section III-B was carried out in the frequency domain,
the recovery ofx(t) is done completely in the time-domain,
via (32)-(36).

The next section summarizes the recovery flow and its
advantages from a high-level viewpoint.

C. Architecture and advantages

Fig. 6 depicts a high-level architecture of the entire recovery
flow. The sample sequences entering the digital domain are
expanded by the factorq = fs/fp (if needed) and are bundled
together. The application layer triggers the CTF block on
initialization and when identifying that the spectral support
has changed. The digital signal processor (DSP) treats the
samples, based on the recovered support, and outputs base-
band sequences for each spectrum slice. An analog back-end
interpolates the sequences and sums them up according to (36).
The controller has the ability to selectively activate the digital
recovery of any specific band of interest, and in particular to
produce an analog counterpart (at baseband) by overriding the
relevant carrier frequencies.

CTF and sampling rate. The frame construction step of
the CTF conceptually merges the infinite collectionz(Fs) to
a finite basis or frame, which preserves the original support.
For the CTF to work in the multiband reconstruction, the
sampling rate must be doubled due to a specific property
that this scenario exhibits. Observe that under the choices
of Theorem 2,z(Fp) is jointly 2N -sparse, while eachz(f)
is N -sparse. This stems from the continuity of the bands
which permits each band to have energy in (at most) two
spectrum pieces withinFp. Therefore, when aggregating the
frequencies the supportsupp(z(Fp)) cannot contain more
than 2N indices. An algorithm which makes use of several
CTF instances and gains back this factor was proposed in
[5]. Although the same algorithm applies here as well, we
do not pursue this direction so as to avoid additional digital
computations.

MMV recovery complexity. The CTF block requires to
solve an MMV system, which is a known NP-hard problem.
In practice, sub-optimal polynomial-time CS algorithms may
be used for this computation [11], [28], [32], [33]. The price
for tractability is an increase in the sampling rate. In the
next section, we quantify this effect for a specific recovery
approach. We refer the reader to [28], [33], [34] for theoretical
guarantees regarding MMV recovery algorithms.

Realtime processing.Standard CS algorithms, for the finite
Λ scenario, couple the tasks of support recovery and the
construction of the entire solution. In the infinite scenario,
however, the separation between the two tasks has a significant
advantage. The support recovery step yields an MMV system,
whose dimensions arem × L. Thus, we can control the
recovery problem size by setting the number of channels
m, and settingL via fp, fs in (12). Once the support is
known, the actual recovery has a closed form (33), and can
be carried out in realtime. Indeed, even the recovery of the
Nyquist rate sequence (34)-(36), can be done at a constant
rate. Had these tasks been coupled, the reconstruction stage
would have to recover the Nyquist rate signal directly. In turn,
the CS algorithm would have to run on a huge-scale system,
dictated by the ambient Nyquist dimension, which is time and
memory consuming. This point is discussed in further detail
in Section VI.

Spectrum-blind baseband processing.The frame con-
struction step in the CTF (31) is theoretically noncausal.
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y1[n]

Controller

ym[n]

Samples bundle

CTF
DSPSupport Analog back-end

Baseband
sequences

Transmitter carriers

x(t)

Override

Expand

sequences

1:q

Fig. 6. High-level architecture for efficient multiband reconstruction.

Nonetheless, empirical evidence shows that a few samples
suffice to approximateQ; We discuss this issue further in
Section V-A. The CTF is executed only when the spectral
support changes, and thus the short delay introduced by its
execution is negligible on average. This practically allows
realtime processing (at low rate) of any specific information
band of interest. In particular, there is no need to recover
the Nyquist rate signal before a higher application layer can
access the digital information. This aspect is another prominent
advantage over the system of [9], [10].

Robustness and sensitivity.The entire system, sampling
and reconstruction, is robust against inaccuracies in the param-
etersfs, fp. This is a consequence of setting the parameters
according to Theorem 2, with only the inequalitiesfs ≥
fp ≥ B. In particular,fp is chosen above the minimal to
ensure safety guard regions against hardware inaccuracies.
Furthermore, observe that the exact values offs, fp do not
appear anywhere in the recovery flow: the expanding equations
(27), the frame construction (32), the CTF block - Fig. 5, and
the recovery equations (33). Only the ratioq = fs/fp is used,
which remains unchanged if the a single clock circuitry is used
in the design. In addition, in the recovery of the Nyquist rate
sequence (35), only the ratioT/Tp is used, which remains
fixed for the same reasons. If using the analog recovery of
x(t) with (36), thenfp is provided to the back-end from the
same clock triggering the sampling stage. The recovery is also
stable in the presence of noise as numerically demonstratedin
Section V-A. The next subsection briefly discusses the choice
of the sign patterns which impacts stability in some sense.
A forthcoming publication [12] studies sensitivity, robustness
and stability aspects in more detail.

Finally we point out an advantage with respect to the recon-
struction of a multicoset based receiver. The IMV formulation
holds for this strategy with a different sampling matrixA
[5]. However, the IMV system holds only with respect to
a (Nyquist rate) zero padded version of (2). Consequently,
constructing a frameV from the multicoset low rate sequences
(2) requires interpolating the lowrate sequences (2) to the
Nyquist rate. Only then canQ be computed (see Eq. (61)-
(62) in [5]). In contrast, the current mixing stage has the
advantage that the IMV is expressed directly in terms of the
lowrate sequencesyi[n], and the computation ofQ in (32) is
carried out directly on the input sequences. In fact, one may
implement an adaptive frame construction at the input rate
fs. Digital processing at ratefs is obviously preferred over a

processor running at the Nyquist rate.

D. Choosing the sign patterns

Theorem 2 requires that for uniqueness, every2N columns
of SF must be linearly independent. To apply the CTF block
the requirement is strengthened to every4N columns, which
also implies the minimal number of rows inS [5]. Verifying
that a set of sign patterns{αik} satisfies such a condition is
computationally difficult because one must check the rank of
every set of4N columns fromSF. In practice, when noise is
present or when solving the MMV by sub-optimal polynomial-
time CS algorithms, the number of rows inS should be
increased beyondm = 4N . A preliminary discussion on how
to chooseS, which appears in the conference version of this
work [35], is summarized below. A more rigorous treatment
is beyond the current scope, and will be investigated in detail
in [12].

Consider the systemv = Au, where u is an unknown
sparse vector,v is the measurement vector, andA is of size
m × M . A matrix A is said to have the restricted isometry
property (RIP) [29] of orderK, if there exists0 ≤ δK < 1
such that

(1 − δK)‖u‖2 ≤ ‖Au‖2 ≤ (1 + δK)‖u‖2 (37)

for everyK-sparse vectoru [29]. The requirement of Theo-
rem 2 thus translates toδ2N < 1. The RIP requirement is also
hard to verify for a given matrix. Instead, it can be easier to
prove that a randomA, chosen from some distribution, has
the RIP with high probability. In particular, it is known that a
random sign matrix, whose entries are drawn independently
with equal probability, has the RIP of orderK if m ≥
CK log(M/K), whereC is a positive constant independent
of everything [36]. The log factor is necessary [37]. The RIP
of matrices with random signs remains unchanged under any
fixed unitary transform of the rows [36]. This implies that if
S is a random sign matrix, thenSF has the RIP of order2N
for the above dimension selection. Note thatD is ignored in
this analysis, since the diagonal has nonzero entries and thus
supp(Du) = supp(u) for any vectoru.

To advance, observe that solving foru would require the
combinatorial search implied by

min
u

‖u‖0 s.t. v = Au. (38)

A popular approach is to approximate the sparsest solution by

min
u

‖u‖1 s.t. v = Au. (39)
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The relaxed program, named basis pursuit (BP) [38], is convex
and can be tackled with polynomial-time solvers [29]. Many
works have analyzed the basis pursuit method and its ability
to recover the sparsest vectoru. For example, ifδ2K ≤

√
2−1

then (39) recovers the sparsestu [39]. The squared error of the
recovery in the presence of noise or model mismatch was also
shown to be bounded under the same condition [39]. Similar
conditions were shown to hold for other recovery algorithms.
In particular, [34] proved a similar argument for a mixedℓ2/ℓ1

program in the MMV setting (which incorporates the joint
sparsity prior).

In practice, the matrixS is not random once the sampling
stage is implemented, and its RIP constant cannot be calcu-
lated efficiently. Extensive simulations on synthesized data are
a common tool to evaluate the performance and the stability
(e.g., see [11], [28], [31]). Clearly, the numerical results do
not ensure a desired RIP constant. Nonetheless, for practical
applications, the behavior observed in simulations may be
sufficient. The discussion above implies that stable recovery
of the MMV of Fig. 5 requires roughly

m ≈ 4N log(M/2N) (40)

channels to estimate the correct support, using polynomial-
time algorithms.

V. NUMERICAL SIMULATIONS

A. Design example

To evaluate the performance of the proposed system (see
Fig. 3) we simulate the act of the system on test signals
contaminated with white Gaussian noise.

More precisely, we evaluate the performance on 500 noisy
test signals of the formx(t) + w(t), wherex is a multiband
signal andw is a white Gaussian noise process. The multiband
model of Table I is used hereafter. The signal consists of 3
pairs of bands (totalN = 6), each of widthB = 50 MHz,
constructed using the formula

x(t) =

3∑

i=1

√

EiB sinc(B(t − τi)) cos(2πfi(t − τi)), (41)

where sinc(x) = sin(πx)/(πx). The energy coefficients are
Ei = {1, 2, 3} and the time offsets areτi = {0.4, 0.7, 0.2}
µsecs. The exact valuesX(f) takes on the support do not
affect the results and thusEi, τi are fixed in all our simula-
tions. For every signal the carriersfi are chosen uniformly at
random in[−fNYQ/2, fNYQ/2] with fNYQ = 10 GHz.

We design the sampling stage according to ”Option A” of
Table I. Specifically,fs = fp = fNYQ/195 ≃ 51.3 MHz. The
number of channels is set tom = 100, where each mixing
functionpi(t) alternates sign at mostM = Mmin = 195 times.
Each signαik is chosen uniformly at random and fixed for the
duration of the experiment. To represent continuous signals in
simulation, we place a dense grid of 50001 equispaced points
in the time interval[0, 1µsecs]. The time resolution under this
choice,T/5, is used for accurate representation of the signal
after mixing, which is not bandlimited. The Gaussian noise
is added and scaled so that the test signal has the desired
signal-to-noise ratio (SNR), where the SNR is defined to be
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Fig. 7. Image intensity represents percentage of correct support set recovery
Ŝ = S, for reconstruction from different number of sampling sequencesm̄
and under several SNR levels.

10 log(‖x‖2/‖w‖2), with the standardl2 norms. To imitate
the analog filtering and sampling, we use a lengthy digital
FIR filter followed by decimation at the appropriate factor.
After removing the delay caused by this filter, we end up
with 40 samples per channel at ratefs, which corresponds to
observing the signal for 780 nsecs. We emphasize that these
steps are required only when simulating an analog hardware
numerically. In practice, the continuous signals pass through
an analog filter (e.g.,a 3rd order Chebyshev type-I), and there
is no need for decimation or a dense time grid.

The support of the input signal is reconstructed fromm̄ ≤
m channels. (More precisely,S = supp(z(Fp)) is recovered.)
We follow the procedure described in Fig. 5 to reduce the
IMV system (19) to an MMV system. Due to Theorem 2,Q

is expected to have (at most)2N = 12 dominant eigenvectors.
The noise space, which is associated with the remaining negli-
gible eigenvalues is discarded by simple thresholding (10−9 is
used in the simulations). Then, the frameV is constructed and
the MMV is solved using simultaneous orthogonal matching
pursuit [31], [32]. We slightly modified the algorithm to select
a symmetric pair of support indices in every iteration, based on
the conjugate symmetry ofX(f). Success recovery is declared
when the estimated support set is equal the true support,
Ŝ = S. As explained, recovery of the Nyquist rate signal can
be carried out by (35)-(36). Fig. 7 reports the percentage of
correct support recoveries for various numbersm̄ of channels
and several SNRs.

The results show that in the high SNR regime, correct
recovery is accomplished when usingm̄ ≥ 35 channels, which
amounts to less than 18% of the Nyquist rate. This rate con-
forms with (40) which predicts an order of4N log(M/2N) ≃
30 channels for stable recovery. A saving factor 2 is possible
if using more than a single CTF block and a complicated
processing (see [5] for details) or by brute-force MMV solvers
with exponential recovery time. An obvious trend which
appears in the results is that the recovery rate is inversely
proportional to the SNR level and to the number of channels
m̄ used for reconstruction.
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Fig. 8. Percentage of correct support recovery, when drawing the sign patterns
randomly only for the firstr channels. Results are presented for (a) SNR=25
dB and (b) SNR=10 dB.

B. Simplifying the mixing stage

Each channel needs a mixing functionpi(t), which suppos-
edly requires a shift register ofM flip flops. In the setting
of Fig. 7, every channel requiresM = 195 flip flops with
a clock operating at(Tp/M)−1 = 10 GHz. Without delving
into the circuit level, the high clock frequency may requireto
implement each register as a chain of discrete devices.

We propose a simple method to reduce the total number of
flip flops by sharing the same register for a few channels, and
using consecutive taps to produce several mixing functions
simultaneously. This strategy however reduces the degrees
of freedom inS and may affect the recovery performance.
To qualitatively evaluate this approach, we generated sign
matricesS whose firstr rows are drawn randomly as before.
Then, theith row, r < i ≤ m, is five cyclic shifts (to the
right) of the(i− r)th row. Fig. 8 reports the recovery success
for several choices ofr and two SNR levels. As evident, this
strategy enables a saving of 80% of the total number of flip
flips, with no empirical degradation in performance.

C. Collapsing analog channels

Section III-D introduced a method to collapseq sampling
channels to a single channel with a higher sampling rate
fs = qfp. To evaluate this strategy, we choose the parameter
set ”Option B” of Table I. Specifically, the system design of
Section V-A is now changed tofs = 5fp, with m = 20
physical channels.

In the simulation, the time interval in which the signal is
observed is extended to[0, 4µsecs], such that every channel
records (after filtering and sampling) about 500 samples. The
extended window enables accurate digital filtering in orderto
separate each sequence toq = 5 different equations. We design
a 100-tap digital FIR filter with the MATLAB command
h=fir1(100,1/q) to approximate the optimal filterhD[n]
of Section III-D. Then, for theith sample sequenceyi[n], h is
convolved with each of the modulated versionsyi[n]ej2π/q ln,
where −q′ ≤ l ≤ q′ = 2. Fig. 9 reports the recovery
performance for different SNR levels and versus the number
of sampling channels. The performance trend remains as in
Fig. 7. In particular,35/q = 7 channels achieve an acceptable
recovery rate. This implies a significant saving in hardware
components.
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Fig. 9. The recovery rate for different SNR levels when usingfs = qfp.

VI. RELATED WORK

We now compare the modulated wideband converter, Figs. 3
and 6, to multicoset sampling [5] and the random demodulator
[9], [10]. Multicoset sampling was described in Section II-B;
reconstruction from these samples shares the architectureof
Fig. 6. The random demodulator is briefly described next.

A. The random demodulator

Fig. 10 presents the random demodulator of [9], [10]. The
input signalf(t) is first mixed by a sign waveform with a long
period, produced by a pseudorandom sign generator which
alternates at rateW . The mixed output is then integrated
and dumped at a constant rateR, resulting in the sequence
y[n], 1 ≤ n ≤ NR. The design parameters are the ratesW, R
and the number of samplesNR.

t = n

R

f(t) y[n]

Pseudorandom
±1 generator at

rate W

Seed

∫
t

t−
1

R

f(t) · pc(t)

pc(t)

Fig. 10. Block diagram of the random demodulator.

The act of the random demodulator was studied for multi-
tone signals:

f(t) =
∑

w∈Ω

awej2πwt, (42)

whereΩ is a finite set ofK out of Q harmonics

Ω ⊂ {0,±∆,±2∆, · · · ,±(Q − 1)∆, Q∆} . (43)

We denote byN the set of signals obeying this model, whose
parameters areK, Q and the frequency resolution∆. The
normalization∆ = 1 Hz is used in [10]. For this choice, the
parameters are set toW = Q, andR is an integer dividingW .
In addition NR = R, which means observingf(t) over the
time interval0 ≤ t < 1. Time-domain analysis forf(t) ∈ N
shows thatR samples on the intervalt ∈ [0, 1) correspond to
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W samples taken by an integrate-and-dump block on Nyquist
rate intervals. The relation is expressed as

y = Φs = ΦHΦDΦF s, (44)

wherey ∈ CR collects the samples. The unknown vectors of
lengthW contains the coefficientsaw, up to constant factors.
Therefore,s is K-sparse. In (44), the sampling matrixΦ of
sizeR×W consists of aW -square reordered DFT matrixΦF ,
andΦH,ΦD represent the act of the integrator-and-dump and
the sign waveform, respectively. To recovers from y, any CS
algorithm for sparse recovery may be used. Roughly speaking,
R should be on the order of1.7K log(W/K + 1) to allow
stable recovery [10]. Then,f(t) is constructed usings and
(42).

Among the assumptions made in [10], the following are
essential for the random demodulator to function, at least from
a theoretical viewpoint:

(R1) The inputf(t) lies (or can be well approximated) on the
grid (43);

(R2) The grid resolution is∆ = (NR/R)−1, which explains
the time interval of 1 second for a model with 1 Hz
frequency resolution;

(R3) W/R is an integer;
(R4) Integrate-and-dump architecture (rather than an accurate

lowpass); and
(R5) the waveformpc(t) is constant over time-intervals of

length1/W .

To relax some of these constraints, the authors of [10] regard
any deviation from the multitone modelN as an additive
noise. In addition, forR which does not divideW , it is
proposed to modifyΦH. However this modification is signal
dependent.

B. Detailed comparison

Table II highlights the differences between the spectrum-
blind methods under consideration. The Whittaker, Kotelńikov,
and Shannon (WKS) theorem, namely uniform sampling at the
Nyquist rate, is added for reference. To simplify the discussion
we assume thatfs = fp for the modulated wideband converter.

Before considering the table in detail, we present a simple
toy-example that highlights the difficulty in implementingthe
random demodulator. LetW = 1 kHz, R = 100 Hz and
observe the signalf(t) = 3 cos(2π 120t) + 4 cos(2π 350t)
for t ∈ [0, 1). Applying the random demodulator tof(t)
gives NR = R = 100 samples. Using basis pursuit (39)
we can reconstruct̂f(t) = f(t) exactly. In practice, however,
the ratesR, W are triggered by a clock signal, whose fre-
quency varies with temperature, humidity and other factors.
We considered 1% frequency inaccuracy, namelyR′ = 101
Hz andW ′ = 1.01 kHz. In this case, simple reconstruction
via basis pursuit leads to a complex-valued signalf̂(t). By
adding constraints that enforce a real-valued solution, we
obtain the reconstructed̂f(t) of Fig. 11(a), with the normalized
squared-error‖f − f̃‖2/‖f‖2 = 1.7. The frequency contents
are compared in Fig. 11(b). This example demonstrates that
practical implementation of the random demodulator (even for
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Fig. 11. Recovery of a multitone signal from random demodulator samples
under design imperfections. The original and reconstructed signal are plotted
in (a) on a short time interval. The frequency transforms (b)reveal many
spurious tones due to the clock shift.

pure multitone signals and no noise) may be extremely diffi-
cult, since the slightest model mismatch (which is inevitable
in real life) has a significant impact on the recovery error.
Similar sensitivity appears in the requirement for accurate
time delays in multicoset sampling. In contrast, the WKS
theorem is insensitive to the exact sampling rate, as long as
it is above twice the maximal frequency. In Section IV-B we
discussed robustness of our recovery algorithm in the presence
of hardware inaccuracies.

We now consider the wideband scenario that was simulated
in Section V-A, namelyN = 6, B = 50 MHz andfNYQ = 10
GHz. The dimension of the sensing matrixA = SFD in
(19) is m × M , and in particular Fig. 7 shows that stable
recovery is achieved (empirically) withm = 35, M = 195. In
contrast, the matrixΦ has dimensionsR×W , whereW is the
Nyquist rate. An analog multiband signal requires aboutK =
NB tones3 to approximate it withinN [10]. Consequently, in
the wideband example,Φ has huge dimensions:W = 1010

columns andR = 2.6 · 109 rows (even in the toy-example
above,Φ is of moderate size). Our approach enjoys several
advantages due to the large difference in the dimensions of
A,Φ:

• Section V-A demonstrates that the CTF requires recording
about40·35 = 1400 samples, corresponding to observing
the signal for780 nsecs. To solve (44),NR = R =
2.6 · 109 samples are needed.

• CS recovery algorithms require (sometimes implicitly) to
computeA†

S , Φ
†
S . This is a highly demanding task with

the dimensions ofΦ.
• Now, suppose the band (or the tone) positions are un-

changed for several seconds. In this scenario, there is
no need to execute any sparse recovery algorithm, but
only to applyA

†
S , Φ

†
S repeatedly on the new samples.

One should again recordR samples (= 1 second delay)
before applyingΦ†

S to the samples. Then, aboutKR =
780 · 109 million instructions per second (MIPS) are
performed when calculating the nonzero coefficients in
s. In contrast, (33) is applied at the input rate and

3In fact, [10] show that analog multiband signals are not wellapproximated
within N , unless convolving them by a window function prior to sampling.
Theoretically, the convolved version can be stably reconstructed, although it
is not clear which window function to choose and how to extract the original
analog signal from the windowed solution.
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TABLE II

METHODS FOR WIDEBAND SPECTRUM-BLIND RECOVERY.

WKS theorem Mutlicoset Random demodulator Modulated wideband converter
y[n] = x(nTs) Eq. (2) Fig. 10 Fig. 3

T
he

or
y

Model β-Bandlimited MultibandM Multitone N Multiband M

Type Continuous Continuous Discrete parameterization Continuous
Model parameters β N, B, T K, Q, ∆ N, B, T

Sampling parameters Ts m, M, C R, W, NR, pc(t) m, M, fp, fs, αik

Restrictions 1/Ts > 2β see [5] (R1)-(R5) Theorem 2
Rate granularity AnyTs m/MT R = W/r, r ∈ Z mfs

Analysis domain Frequency Frequency Time Frequency

P
ra

ct
ic

e

Design sensitivity Low High High Low
Number of channels 1 m 1 m

Sensing matrix dimensions None m × M (small) R × W (huge) (mfs/fp) × M (small)
Memory req. (support recovery) Constant×m R Constant×m

Memory req.* None R None
Latency* real time real time NR/R =1 sec real time
MIPS* 2Nm/T RK 2Nmfs

Baseband processing Yes* Yes

Technology barrier [14], [23] ADC’s front-end bandwidth (∼1 GHz) CS algorithms♯(∼10 MHz) Waveform generator (∼23 GHz)

* After support is recovered. ♯ Our estimate.

requires no recording of samples. The computation rate
is 2Nm = 420 multiplications per sample intervalTs, or
2Nmfs = 22 ·103 MIPS, which is 6 orders of magnitude
lower than [10].

We are now in a position to explain the spectrum-blind
baseband processing ability of our approach, which is a direct
consequence of the above discussion. Suppose the analog
input has a time-varying spectral content. In practice, a high-
level application layer triggers the CTF when the previous
recovered support becomes invalid. The CTF introduces a
short latency (∼ 1 µsec in our simulations). Then, eachzi[n] is
a digital sequence at (the low) ratefs, where fori ∈ S, zi[n]
corresponds to a specific band4. The recovery architecture of
Fig. 6 allows to select a specific band of interest for further
processing (at ratefs) by generating only the appropriate
sequencezi[n]. In contrast, [10] aim at the recovery of
the Nyquist rate sequence. The latency and computational
loads of this approach do not allow baseband processing. As
explained in Section IV-B, for multicoset sampling, the frame
construction in the CTF requires interpolating the sequences
to the Nyquist rate, thus baseband processing applies in this
setting only after the support is recovered.

We now compare several other aspects between the systems,
starting with rate granularity. To design a signal independent
random demodulatorR must divideW , whereW is fixed to
the Nyquist rate off(t). Thus, for example, forW = 10 GHz,
there is a significant rate increase betweenR = 1.25 GHz and
R = 2.5 GHz. In contrast, Fig. 3 allows rate granularity at
stepsfp = B. The experiment in Section V-A demonstrates
recovery from sampling at rate35fs ≃ 1.8 GHz, which saves
30% of the sampling rate with respectR = 2.5 GHz.

The choice of analog devices is also interesting to compare.
The time-domain analysis in [10] requirespc(t) to be constant

4If the band splits between two spectrum slices inz(f), then a simple
merging operation generates a sequence at rate2fs.

over 1/W time intervals, for (44) to hold. In contrast, the
mixing functionspi(t) are only required to beTp-periodic,
such that their Fourier series contains enough dominant coef-
ficients cil. For example, a sawtooth waveform with varying
amplitudes, whereTp/M is the duration of a single teeth,
would also be appropriate forpi(t). This choice avoids the
discontinuities in the sign waveform, which are a major source
for analog noise. The random demodulator, however, cannot
incorporate such a waveform forpc(t) unless compromising
on a signal dependent matrixΦH. Such dependence is not
desired of course when the signal is unknown. The integrate-
and-dump, a first-order lowpass filter, has also a main role in
the time-domain analysis, while arbitrary high-order accurate
lowpass filters are allowed in Fig. 3.

To conclude, we point out the technology barrier of each
approach. The front-end of a practical ADC limits the ap-
plicability of the multicoset as explained in Section II-B.
Uniform sampling at the Nyquist rate shares the same barrier.
The above discussion shows that the computational load and
memory requirements in the digital domain are the bottleneck
of the random demodulator approach. Therefore the size of
CS problems that can be solved with available DSPs limits
the recovery. We estimate thatW ≈ 1 MHz may be already
quite demanding using convex solvers, whereasW ≈ 10 MHz
is probably the barrier using greedy methods. In fact, uniform
sampling at 10 MHz seems to be preferred in this setting. Our
system is limited by the technology for generating the periodic
waveformspi(t), which depends on the specific choice of
waveform. The applicability range of each method appears
in Table II. Our approach, Figs. 3 and 6, provides many
advantages for standard analog applications in the wideband
regime. Furthermore, even at low rates, the realtime processing
becomes a significant benefit over both Nyquist rate sampling
and the random demodulator [10].
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VII. C ONCLUSIONS

We presented a sub-Nyquist sampling system, the modu-
lated wideband converter, which is designed independently
of the spectral support of the input signal. The analog front-
end supports wideband applications and can also be used to
sample wideband inputs occupying the entire spectral support.
A spectrum-blind recovery stage was also developed consisting
of digital support recovery and an analog back-end. The digital
operations required for the support recovery require only a
small number of observations, thus introducing a short delay.
Once the support is known, various realtime computations are
possible. Recovery of the original signal at the Nyquist rate is
only one possible application. Perhaps more important is the
ability to digitally process any information band at a low rate,
which we refer to as spectrum-blind baseband processing.

Our approach is compared to other sub-Nyquist strategies,
such as nonuniform sampling and the random demodulator.
The detailed discussion highlights the main advantages of our
method both in terms of hardware implementation and light
computational loads.

In this paper we focused on the engineering aspects of the
system. In [12] we will examine various tradeoffs regardingthe
mixing waveforms used in our front-end, including guarantees
on stable recovery. We are currently also implementing our
system on board to demonstrate real-time applicability.

The current work embeds theorems and algorithms from
compressed sensing (CS), an emerging research field which
exploits sparsity for dimension reduction. The mainstreamline
of CS papers studies sparsity for discrete and finite vectors.
The random demodulator expands this approach by parame-
terizing continuous signals in a finite setting. In contrast, this
work continues the line of [5], [11] and belongs to a recently-
developed framework within CS [34], [40], [41], which studies
signals from a truly continuous domain. Within this analog
framework, we propose selecting a practical implementation
among the various possible sampling stages covered by [40].
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