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Uncertainty Relations for Analog Signals

Yonina C. Eldar

Abstract

In the past several years there has been a surge of reseastigating various aspects of sparse representations
and compressed sensing. Most of this work has focused onrtte-diimensional setting in which the goal is to
decompose a finite-length vector into a given finite dictignd/nderlying many of these results is the conceptual
notion of an uncertainty principle: a signal cannot be sggreepresented in two different bases. Here, we extend
these ideas and results to the analog, infinite-dimensisetiing by considering signals that lie in a finitely-
generated shift-invariant (SlI) space. This class of sgmakich enough to include many interesting special cases
such as multiband signals and splines. By adapting the mofi@oherence defined for finite dictionaries to infinite
Sl representations, we develop an uncertainty principtelai in spirit to its finite counterpart. We demonstrate
tightness of our bound by considering a bandlimited lowspasnb that achieves the uncertainty principle. Building
upon these results and similar work in the finite setting, Wwews how to find a sparse decomposition in an
overcomplete dictionary by solving a convex optimizatiamlgem. The distinguishing feature of our approach
is the fact that even though the problem is defined over anit@fthomain with infinitely many variables and
constraints, under certain conditions on the dictionascspm our algorithm can find the sparsest representation

by solving a finite dimensional problem.

. INTRODUCTION

Uncertainty relations date back to the work of Weyl and Helisgg who showed that a signal cannot be localized
simultaneously in both time and frequency. This basic @pieovas then extended by Landau, Pollack, Slepian and
later Donoho and Stark to the case in which the signals areestricted to be concentrated on a single interval
[1], [2], [3], [4]- The uncertainty principle has deep ptitphical interpretations. For example, in the context of
guantum mechanics it implies that a particle’s position amsmentum cannot be simultaneously measured. In
harmonic analysis it imposes limits on the time-frequeresotution [5].

Recently, there has been a surge of research into discre¢etamty relations in more general finite-dimensional
bases [6], [7], [8]. This work has been spurred in part by #lationship between sparse representations and the

emerging field of compressed sensing [9], [10]. In particutaveral works have shown that discrete uncertainty
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relations can be used to establish uniqueness of sparsengdesiiions in different bases representations. Further-

more, there is an intimate connection between uncertairiticiples and the ability to recover sparse expansions
using convex programming [6], [7], [11].

The vast interest in representations in redundant dictiesatems from the fact that the flexibility offered by
such systems can lead to decompositions that are extremalges namely use only a few dictionary elements.
However, finding a sparse expansion in practice is in gerzedifficult combinatorial optimization problem. Two
fundamental questions that are at the heart of overcompdgteesentations are how sparse a given signal can
be represented, and whether this sparse expansion can e ifow computationally efficient manner. In recent
years, several key papers have addressed both of theséogeasta discrete setting, in which the signals to be
represented are finite-length vectors [6], [7], [11], [1A]3], [14], [10], [8].

The discrete generalized uncertainty principle for pafrsrthonormal bases states that a vectoRi# cannot
be simultaneously sparse in two orthonormal bases. The euailmon-zero representation coefficients is bounded
below by the inverse coherence [6], [7], which is defined a&sl#igest absolute inner product between vectors
in each basis [15], [6]. The uncertainty relation was theedu® establish conditions under which a convex
optimization program can recover the sparsest possiblendeasition in a dictionary consisting of both bases [6],
[7], [11]. These basic results where later generalized 8j,[[tL2], [14] to representations in arbitrary dictionarie
and to other efficient reconstruction algorithms [14].

The classical uncertainty principle is concerned with exjiiag a continuous-time analog signal in the time
and frequency domains. However, the generalizationsrmaatlabove are mainly focused on the finite-dimensional
setting. In this paper, our goal is to extend these recerasidmd results to the analog domain by first deriving
uncertainty relations for more general classes of anatptpés and arbitrary analog dictionaries, and then sugggsti
concrete algorithms to decompose a continuous-time sig@la sparse expansion in an infinite-dimensional
dictionary.

In our development, we focus our attention on continuomgtsignals that lie in shift-invariant (SI) subspaces
of Ly [16], [17], [18]. Such signals can be expressed in termsradi combinations of shifts of a finite set of

generators:

N
2(t) =D > agln]ge(t —nT), 1)

(=1 nez
whereg,(t),1 < ¢ < N are the S| generatorg,[n| are the expansions coefficients, a@fds the sampling period.
Clearly, z(t) is characterized by infinitely many coefficienig[n]. Therefore, the finite results which provide
bounds on the number of non-zero expansion coefficients ins p& bases decompositions are not immediately
relevant here. Instead, we characterize analog sparsitiyeasumber of active generators that comprise a given

representation, where thi¢h generator is said to be activedf[n] is not identically zero.
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Starting with expansions in two orthonormal bases, we shwat the number of active generators in each

representation obeys an uncertainty principle similapint $o that of finite decompositions. The key to establighin
this relation is in defining the analog coherence betweervtbebases, by replacing the inner product in the finite
setting by the largest spectral value of the sampled crogelation between basis elements in the analog case.
The similarity between the finite and infinite cases can atseden by examining settings in which the uncertainty
bound is tight. In the discrete setting, the lower uncetyalimit is achieved by decomposing a Dirac comb into
the spike and Fourier bases, which are maximally incohddgnfTo generalize this result to the analog setting
we first develop an analog spike-Fourier pair and prove thiatraximally incoherent. The analog spike basis is
obtained by modulations of the basic low-pass filter (LPR)jclv is maximally spread in frequency. In the time
domain, these signals are given by shifts of the sinc fungctichose samples generate shifted spikes. The discrete
Fourier basis is replaced by an analog Fourier basis, intwthie elements are described by frequency shifts of
a narrow LPF in the continuous-time frequency domain. Tighs of the uncertainty relation is demonstrated by
expanding a comb of narrow LPFs in both bases.

We next address the problem of sparse decomposition in art@wplete dictionary, corresponding to using
more thanV generators if(1). In the finite setting, it can be shown tinalew certain conditions on the dictionary, a
sparse decomposition can be found using computationditreaft algorithms such as orthogonal matching pursuit
[19],[20] and/; optimization [21], [7], [11], [9]. However, directly genaizing these results to the analog setting is
challenging. Although in principle we can define @roptimization program similar in spirt to its finite countarp
it will involve infinitely many variables and constraints catherefore it is not clear how to solve it in practice.
Instead, we develop an alternative approach that leads toita-iimensional convex problem whose solution
can be used to find the analog sparse decomposition exagtlyxoiting recent results on analog compressed
sensing [22], [23], [24]. Our algorithm is based on a thregs process: In the first step we sample the analog
signal in a lossless manner and formulate the decompogitiololem in terms of sparse signal recovery from Sl
samples. In the second stage, we exploit results on infinitasorement models (IMV) and multiple measurement
vectors (MMV) [25], [24], [26], [27] in order to determine ¢hsparsity pattern, namely the indices of the active
generators, by solving a finite-dimensional convex optatian problem. Finally, we use this information in order
to simultaneously solve the resulting infinite set of equadiby inverting a finite matrix [25]. The importance of
the first step is in converting our decomposition probleno iah IMV so that we can apply results obtained in
that context. As we show, this is possible when the sampleskecorrelation between the two sets of orthonormal
generators is constant in frequency up to a possible freqpugependant normalization factor. Finally, we indicate
how these results can be extended to more general classégioharies.

The remainder of the paper is organized as follows. In Seffiave review the generalized discrete uncertainty

principle and introduce the class of analog signals we wituk on. The analog uncertainty principle is formulated
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and proved in Sectidnlll. In Sectidn]V we consider a dethiégample illustrating the analog uncertainty relation

and its tightness. In particular we introduce the analogiger of the maximally incoherent spike-Fourier pair.
Sparse decompositions in two orthonormal analog basesisresded in Sectidn]V. These results are extended to
arbitrary dictionaries in Sectidn VI.

In the sequel, we denote signals in by lower case lettere.g.,z(t), and S| subspaces df; by A. Vectors
in RN are written as boldface lowercase letters.,x, and matrices as boldface uppercase letéegs, A. The
ith element of a vectox is denotedr;. The identity matrix of appropriate dimension is writtenIag-or a given
matrix A, A¥ is its conjugate transposd,, is its ¢th column, andA’ is the ¢th row. The standard Euclidean
norm is denotedx||, = vVxfx, ||x||; = > lxi| is the/y norm ofx, and||x||o is the cardinality ofx namely the
number of non-zero elements. The complex conjugate of a konmumbera is denoteds. The Fourier transform
of a signalz(t) in Ly is defined asX (w) = [ z(t)e /“'dt. We use the convention that upper case letters
denote Fourier transforms. The discrete-time Fouriersfam (DTFT) of a sequence(n| in /5 is defined by

X(e?¥) =322 x[n]e /", To emphasize the fact that the DTFT2s-periodic we use the notatioX (¢/+).

n=—oo

II. PROBLEM FORMULATION
A. Discrete Uncertainty Principles

The generalized uncertainty principle in concerned witirspaf representations of a vectar ¢ RY in two
different orthonormal bases [6], [7]. Suppose we have twihomormal bases foR"Y: {¢,,1 < ¢ < N} and
{4p,,1 < £ < N}. Any vectorx in RY can then be decomposed uniquely in terms of each one of theeterv

sets:

N N
x =) age =) by 0y
(=1 (=1

Since the bases are orthonormal, the expansion coefficeatgiven bya, = ¢’x andb, = v x. Denoting by
&, ¥ the matrices with columne,, v, respectively,[(2) can be written as= ®a = ¥b, with a = ®x and
b=wlx

The uncertainty relation sets limits on the sparsity of teeanposition for any vectat € RY. Specifically, let
A = ||allp and B = ||b||p denote the number of non-zero elements in each one of thensixwes. The generalized

uncertainty principle [7], [6] states that

1 1
§(A+B)2@27M(¢7‘I,)7 )

wherep(®, ¥) is the coherence between the badeand ¥ and is defined by

(@, ®) = max | 1p, | @Y
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The coherence measures the similarity between basis eleniérs definition was introduced in [15] to heuris-

tically characterize the performance of matching pursant later used in [6], [7], [12], [14] in order to analyze
the basis pursuit algorithm.

It can easily be shown that/v/N < p(®,¥) < 1 [6]. The upper bound follows from the Cauchy-Schwarz
inequality and the fact that the bases elements have rnorfthe lower bound is the result of the fact that the
matrix M = & is unitary and consequentlyI”’ M = I. This in turn implies that the sum of the squared
elements ofM is equal toN. Since there aré/? variables, the value of each one cannot be smaller tHanN.
The lower bound ofi/v/N can be achieved, for example, by choosing the two orthorlobases as the spike
(identity) and Fourier bases [4]. With this choice, the utaiaty relation [(B) becomes

A+ B>2VAB > 2VN. (5)

Assumingy/N is an integer, the relations ifl(5) can all be satisfied withadity by choosingk as a Dirac comb
with spacingy/N, resulting inv/N non-zero elements. This follows from the fact that the Feutiansform of

x is also a Dirac comb with the same spacing and theretocan be decomposed both in time and in frequency
into /N basis vectors.

As we discuss in Section]V, the uncertainty principle presidnsight into how sparse a signalcan be
represented in an overcomplete dictionary consistingadnd ¥. It also sheds light on the ability to compute
such decompositions using computationally efficient atbors. Most of the research to date on sparse expansions
has focused on the discrete setting in which the goal is teesgmt a finite-length vector in RY in terms of
a given dictionary using as few elements as possible. Fase@l steps towards extending the notions and ideas
underlying sparse representations and compressed séoghwyanalog domain have been developed in [22], [24].
Here we would like to take a further step in this direction byeading the discrete uncertainty relations to the

analog domain.

B. Shift-Invariant Signal Expansions

In order to develop a general framework for analog uncettgininciples we first need to describe the set of
signals we consider. A popular model in signal and image ggsiong are signals that lie in S| spaces. A finitely
generated Sl subspace I is defined as [16], [17], [18]:

N
A= {x(t) =" ane(t —nT) : agln] e@}. (6)

{=1nez
The functions¢,(t) are referred to as the generators. 4f Examples of Sl spaces include multiband signals
[22] and spline functions [28], [25]. Expansions of the ty{g& are also encountered in communication systems,

when the analog signal is produced by pulse amplitude madaolan the Fourier domain, we can represent any



x(t) € A as

=

X(w) = A(eT)Py(w), Q)

(=1

where

ij Z CLZ jumT (8)

nez
is the DTFT ofay[n] at frequencyw’, and is2x /T periodic.

In order to guarantee a unique stable representation ofignglsn A by a sequence of coefficienig|n], the
generatorsy,(t) are typically chosen to form a Riesz basis for. This means that there exists constamts 0

and (8 < oo such that

2
< Bllall?, 9)

N
> aln]ge(t — nT)

(=1 n€eZ

allal* <

where ||a]|? = Zé\’zl > nez lagn]|?, and the norm in the middle term is the standdrg norm. Condition [(D)
implies that anyz(t) € A has a unique and stable representation in terms of the seegierin]. By taking

Fourier transforms in({9) it follows that the generatgyst) form a Riesz basis if and only if [17]

ol < Myy(e?¥) < 81, ae.w, (10)
where
R¢1¢] (ej‘”) e R¢]¢m (ej‘”)
My (e7) = : : : , (11)
R¢m¢1 (ejw) M R¢7n¢m (ejw)

and for any two function®(t), ¢(¢) with Fourier transformsp(w), ¥(w),
jw ©_or ©._or
Ryy(e!) = = ;f ( k:> <T - k:> (12)

Note thatRy, (e/*) is the DTFT of the cross correlation sequengg(n] = (¢(t — nT),(t)), where the inner

product onL, is defined as

(s(t), z(t)) = /t i 3(t)x(t)dt. (13)

In Section’Vl we consider overcomplete signal expansionshich more thanV generatorsp,(¢) are used to
represent a signal(¢) in A. In this case[(9) can be generalized to allow for stable @mrapiete decompositions
in terms of a frame ford. The vectors{¢,(t),1 < ¢ < M} form a frame forA if there exist constants > 0 and

8 < oo such that

M
ollz()3 < DY [elt = nT), () < Bll(t)ll3 (14)



for all z(t) € A, where||z(t)3 = (z(t),z(t)).
Our main interest is in expansions of a sigré) in a Sl subspacel of Ls in terms of orthonormal bases for

A. The generatorg¢,(t)} of A form an orthonormal basis if
(Qﬁ@(t - TlT), ¢r (t - mT)> = 5nm5€r7 (15)

for all ¢, and n,m, whered,,, = 1 if n = m and 0 otherwise. Since(¢,(t — nT), ¢, (t — mT)) =

(pe(t — (n —m)T), ¢, (t)), (AB) is equivalent to
(Pe(t —nT), ¢r(t)) = dnodier- (16)
Taking the Fourier transform of (IL6), the orthonormalitynddion can be expressed in the Fourier domain as
Rg,o,(€7) = 3. 17)

Given an orthonormal basi§p,(t — nT)} for A, the unique representation coefficientgn| in (6) can be
computed as,[n] = (¢¢(t — nT),x(t)). This can be seen by taking the inner product @ in (6) with ¢,(t—mT)
and using the orthogonality relatiof_{15). Evidently, cartipg the expansion coefficients in an orthonormal
decomposition is straightforward. There is also a simplatienship between the energy oft) and the energy
of the coefficient sequence in this case, as incorporateldeirfidliowing proposition:

Proposition 1: Let {¢(t),1 < ¢ < N} generate an orthonormal basis for a S| subspaceand letz(t) =
S ez aen]e(t — nT). Then

2r N
o1 = 5= [ 73 e o as)
0 =1

where||z(t)||3 = (x(t),z(t)) and A,(e’*) is the DTFT ofay[n].
Proof: See AppendiX]I. [ |

C. Analog Problem Formulation

In the finite-dimensional setting, sparsity is defined inmerof the number of non-zero expansion coefficients
in a given basis. In an analog decomposition of the fdrm (i8re are in general infinitely many coefficients so
that it is not immediately clear how to define the notion oflagasparsity.

In our development, analog sparsity is measured by the nuoflenerators needed to represeft). In other

words, some of the sequencegn] in (1) may be identically zero, in which case

z(t) = > an]e(t —nT), (19)

[¢|=An€Z
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where the notatiofY| = A means a sum over at modtelements. Evidently, sparsity is defined by the energy of

the entire sequenag[n| and not be the values of the individual elements.
In general, the number of zero sequences depends on theecbbitasis. Suppose we have an alternative

representation

2(t) = D> belnvy(t — nT), (20)

|¢(|=BneZ
where{v,(t)} also generate an orthonormal basis for An interesting question is whether there are limitations
on A and B. In other words, can we have two representations that areltsineously sparse so that bathand

B are small? This question is addressed in the next sectioreaigd to an analog uncertainty principle, similar
to (3). In Sectior IV we prove that the relation we obtain ghti by constructing an example in which the lower
limits are satisfied.

As in the discrete-setting we expect to be able to use feweerg#ors in a Sl expansion by allowing for an
overcomplete dictionary. In particular, if we expan(t) using both sets of orthonormal bases we may be able to
reduce the number of sequences in the decomposition beybataan be achieved using each basis separately.
The problem is how to find a sparse representation in the ghationary in practice. Even in the discrete setting
this problem is NP-complete. However, results of [7], [13R], [14] show that under certain conditions a sparse
expansion can be determined by solving a convex optimiagtimblem. Here we have an additional essential
complication due to the fact that the problem is defined oveindinite domain so that it has infinitely many
variables and infinitely many constraints. In Section V wewghhat despite the combinatorial complexity and
infinite dimensions of the problem, under certain condgi@n the bases functions, we can recover a sparse

decomposition by solving a finite-dimensional convex optation problem.

IIl. UNCERTAINTY RELATIONS IN S| SPACES

We begin by developing an analog of the discrete uncertgimiyciple for signalsz(¢) in Sl subspaces.
Specifically, we show that the minimal number of sequencesiired to expresse(t) in terms of any two
orthonormal bases has to satisfy the same inequality (3) tHeidiscrete setting, with an appropriate modification
of the coherence measure.

Theorem 1:Suppose we have a signa(t) € A where A is a subspace of,. Let {¢y(t),1 < ¢ < N} and
{we(t),1 < ¢ < N} denote two orthonormal generators dfso thatz(t) can be expressed in both bases with

coefficient sequenceg[n], by[n]:

2(t) = > Y adn]et —nT) =Y > bnlye(t — nT). (21)

|t|=An€ez |t|=B neZ



Then,

~(A+B)>VAB > , (22)
(A4+5) (@, 0)
where
w(®, ) = max ess sup ‘mer(ejw) , (23)

and R (e7*) is defined by[(IR).

The coherenceu(®, ¥) of (23) is a generalization of the notion of discrete coheeerfd) defined for
finite-dimensional bases. To see the analogy, note fhat(e’~) is the DTFT of the correlation sequence
repn] = (¢t —nT),4(t)). On the other hand, the finite-dimensional coherence canriiewas;(®, ¥) =
maxy, |, ©,|, wherex is the discrete Fourier transform sf

Proof: Without loss of generality, we assume that(t)||2 = 1. Since{¢,(t)} and {¢,(t)} both generate

orthonormal bases, we have from Proposifibn 1 that

T 27TA T or B
1=— Ap(e7)Pdw = — By (e7)|?dw. 24
%O;\Ae)wzﬂjogrz(e)w (24)

Using the norm constraint and expressikigw) once in terms ofb,(w) and once in terms o¥(w):

— 1 o 2
L = or | o ’X(w)‘ dw
1 [ &K &
= %/ ZZ Z(GJWT)B (GJWT)¢Z(W)\PT(w)dw
X y=1r=1

T 2?” A JwT JwT Jjw
< %/O DD A |Br(eT)| | Ry, (€7) ] duw
(=1 r=1
2r A B
< MBI [T a1 Y () @)
™ 0 = r=1

where the second equality follows from rewriting the intdgsver the entire real line as the sum of integrals over
intervals of length2w /T as in [99) in AppendiXll, and the second inequality is a restil23). Applying the
Cauchy-Schwarz inequality to the integral in](25) we have

2z A B
[ S 1A 3 e
0 =1 r=1
1/2

2n /A 2 2x / B 2
T wT T (.UT
< {/0 (;‘Ag(e] )|> dw/o (;wg(eﬂ )\) dw] : (26)
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Using the same inequality we can upper bound the suri_in (26):

(ZW ) ) <AZ|A@ (). 27)

/=1

Combining with [26) and[(25) leads to

2 A 2r B
T T Z AT A Z iWT |2
= p(®, U)VAB, (28)

1/2
1 < p(@® V)VAB

where we used (24). Using the well-known relation betweenahthmetic and geometric means completes the
proof. [ |

An interesting question is how smal(®, ¥) can be made by appropriately choosing the bases. From Thébre
the smallep.(®, ¥), the stronger the restriction on the sparsity in both deasitions. As we will see in Sectiénl V,
such a limitation is helpful in recovering the true sparsefficients. In the finite setting we have seen that
1/V/N < u(®,®) <1 [6]. The next theorem shows that the same bounds hold in the@Tase.

Theorem 2:Let {¢y(t),1 < ¢ < N} and {¢,(t),1 < ¢ < N} denote two orthonormal generators of a Sl

subspaced C L, and letyu(®, V) = maxy,, esssup | Rg,y, (¢/*)|, where Ry, (e7+) is defined by[(IR). Then

1
— < (P, V) < 1. 29
Proof: We begin by proving the upper bound, which follows immediateom the Cauchy-Schwarz inequality

and the orthonormality of the bases:

| Ry, (¢7)] < (Rmm(ﬁj“)waT(6j“))1/2 =1, (30)

where the last equality is a result 6f {17). Therefqrép, ¥) < 1.

To prove the lower bound, note that singgt) is in A for each?, we can express it as

ZZ& n)iy(t — nT) (31)

r=1neZ

for some coefficients’[n], or in the Fourier domain,

N
w) =Y AT T, (). (32)
r=1

Since||¢¢(t)|| = 1 and{¢,(¢)} are orthonormal, we have from Propositidn 1 that

T 17X 0 ors|?
_W/O S| dw=1, 1<e<N. (33)
r=1
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Now, using [(32) and the orthonormality conditidn(17) itléevs that

(@) > |Ryy ()]

N
= | AU Ry, ()] = |4l (34)
s=1
Therefore,
or N 9 N or N 2
/ > Row () dw =3 / > |t dw = 2x. (35)
0 l,r=1 =170 =1
If u(®,¥) < 1/V'N, then,|Ry,y ()| < 1/V/N a.e. onw and
or N ) 9
/ > Ry, ()] dw < 27N, (36)
0 lr=1
which contradicts[(35). [ |

It is easy to see that the lower bound [1(29) is achieveldjfy, (e/~) = 1/v/N for all £, andw. In this case
the uncertainty relatiori_(22) becomes
A+ B>2VAB > 2VN. (37)

As discussed in Sectidn Il, in the discrete setting witV an integer, the inequalities in (37) are achieved using the
spike-Fourier basis and equal to a Dirac comb. In the next section we show that equali{37) can be satisfied
in the analog case as well using a pair of bases that is anadogothe spike-Fourier pair, and a bandlimited

signalz(t) equal to a low-pass comb.

IV. ACHIEVING THE UNCERTAINTY PRINCIPLE
A. Minimal Coherence

Consider the spacd of signals bandlimited t¢—=N/T,7N/T|. As we show below, any signal id can be
expressed in terms aV Sl generators. We would like to choose two orthonormal haaeslogous to the spike-
Fourier pair inR”, for which the coherence achieves its lower limitlgh/N. To this end, we first highlight the
essential properties of the spike-Fourier baseR’iy and then choose an analog pair with similar charactesistic

The basic properties of the spike-Fourier pair are illusttain Fig.[1. The first element of the spike basis,
is equal to a constant in the discrete Fourier domain, astifited in the left-hand side of Figl 1. The remaining
basis vectors are generated by shifts in time, or modulatiorfrequency, as depicted in the bottom part of the
figure. In contrast, the first vector of the Fourier basis @rse in frequency: it is represented by a single frequency
component as illustrated in the right-hand side of the figlitee rest of the basis elements are obtained by shifts

in frequency.
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@, (k) ¥, (k)

01 l N-1 01 l N-1
D, (k)e—jZﬂk(/—l)/N ¥, (k—0)

]I e 060 I

01 N-1 01 N-1

Fig. 1. Discrete Fourier-domain representation of the espiGurier bases ilR". The left-hand side is the discrete Fourier transform of
the spike basis. The right-hand side represents the disEtrier transform of the Fourier basis.

We now construct two orthonormal bases férwith minimal coherence by mimicking these properties in the
continuous-time Fourier domain. Since we are considehegtass of signals bandlimited taV/7T", we only treat
this frequency range. As we have seen, the basic elemeng spike basis occupies the entire frequency spectrum.
Therefore, we choose our first analog basis signél) to be constant over the frequency rarigerN/T, 7 N/T].

The remaining basis elements are generated by shifts indfnag (¢) or modulations in frequency:

\/%e_j“(f_l)T/N, we (—=nN/T,nN/T);

Py(w) = (38)

0, otherwise

corresponding to

o0ty = [ X sine( — (¢~ 7)), (39)

with 7" = T'/N. The normalization constant is chosen to ensure that this bastors have unit norm. We refer to
{¢¢(t —nT)} as the analog spike basis. Note that the samples @j at timesnT” create a shifted spike, further
justifying the analogy. The Fourier transform of the anadpike basis is illustrated in the left-hand side of Fig. 2.

To construct the second orthonormal basis, we chag$e) to be sparse in frequency, as in the discrete case.
The remaining elements are obtained by shifts in frequeBirce we haveV generators, we divide the interval
(=7 N/T,7N/T] into equal sections of lengthr/T", and choose each,(w) to be constant over the corresponding

interval, as illustrated in Fid.]2. More specifically, let

Ty ={w:we (20 — (N +2))/T, (20 — N)/T]}, (40)
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D () ¥, ()
+—>
1 1 1
N N “an N
T l T T l T
(Dl(a))e—jm(nl)rm ¥ (0-,) 27T
1 1 1 1
“an N o B
T T T T

Fig. 2. Continuous Fourier-domain representation of th@anspike-Fourier bases id. The left-hand side is the Fourier transform of
the spike basis. The right-hand side represents the Fduaiesform of the Fourier basis.

be the/th interval. Then

VT, weI;
y(w) = _ (41)
0, otherwise

The analog pair of bas€®,(w), ¥y(w)} is referred to as the analog spike-Fourier pair. In ordeotomete the
analogy with the discrete spike-Fourier bases we need to #t both analog sets are orthonormal and generate

A, and that their coherence is equalltdy/N. The latter follows immediately by noting that

Le—jw(r—l)T/N’ w e T, ;
By(w) Uy (w) = 4 VN - (42)
0, otherwise

Since the length of, is 27/T, replicas at distancer/T" will not overlap. Therefore,R,,, ()| = 1/v/N, and
w(®, ) =1/y/N.

It is also easy to see thdt),(t),1 < ¢ < N} generated since anyz(t) € A can be expressed in the form
©) (or (@)) by choosingd,(e’“T) = X (w) for w € Z,. Note, that if X (w) is zero on one of the intervalg,,

then A,(e’“) will also be zero, leading to the multiband structure stddie [22]. Since the intervals on which

U,(w) are non-zero do not overlap, the basis is also orthogonallfi orthonormality follows from our choice
of scaling.
Proving that{¢,(¢)} generate an orthonormal basis is a bit more tricky. To setethieae functions spad note

that from Shannnon’s sampling theorem, any functi¢t) bandlimited tor /7" with 7" = T'/N can be written as

z(t) = Y a(nT")sinc((t — nI")/T"). (43)

ne”
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Expressing[(43) as

N
2(t) = >3 agn]sinc((t - (¢ — )T’ —nT))/T")

{=1nez
TXN
= 7 2 2 adnléet - nT), (44)
(=1 nez
with a¢[n] = 2((¢ — 1)T" 4+ nT'), we see thaf{¢,(t)} generated. To show orthonormality of the basis, note that
. 1 . NoLo
wajr(ejw) — Ne]w(ﬁ—r)/N Z e—]27rk(é—r)/N — 57‘[7 (45)
k=0
where we used the relation N
e—j27rk(€—r)/N = N&,y. (46)
k=0

B. Tightness of the Uncertainty Relation

Given any signak:(¢) in A, the uncertainty relation for the analog spike-Fourier géates that the number of
non-zero sequences in the spike and Fourier bases mudy $aify. We now show that whey/N is an integer,
these inequalities can be achieved with equality with am@ppate choice of:(¢), so that the uncertainty principle
is tight. To determine such a signa(t), we again mimic the construction in the discrete case.

As we discussed in Secti@d I, when using the finite Founékes pair, we have equalities ih (37) whanc RV
is a Dirac comb withy/N non-zero values, equally spaced, as illustrated in thehkmfid side of Fig[13. This
follows from the fact that the Dirac comb has the same formdthkime and frequency. To construct a signal in
A satisfying the analog uncertainty relation, we replacéndamrier-domain Dirac in the discrete setting by a LPF
of width 27 /T in the analog Fourier domain. To ensure that thereya\e non-zero intervals ifi—=N/T, =N /T],
the frequency spacing between the LPFs is sént¢/N /T, as depicted in the right-hand side of Fig. 3. Clearly
such a signal can be represented in frequencw/fy basis functions¥,, (w), with m = VN — 1) + 1. It

therefore remains to show thatt) can also be expanded in time usingV signalse,,(t).

27l T
—p
[ BN I ] — [ I N ]
1
0 JN N-+N N-1 2N 2z INIT  N-2JN =N
T —> T

Fig. 3. Discrete and analog signals satisfying the unaastagrinciple with equality. The left-hand side is the diser Fourier transform
of the Delta comb. The right-hand side represents the arfedogier transform of the LPF comb.

To write z(¢) of Fig.[3 in time, note thatX (w) is equal to the product of a LPF with cut-offN/T and a
periodic train of LPFs with widti2r /7" and period2rv/N /T. Such a periodic function can be expressed in time
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as

y(t) =Y a®)s(t — (n/VN)T) = a(n/VN)s(t — (n/VN)T) (47)

neZ neL

wherea(t) is the inverse Fourier transform of a LPF with widh /7", centered at-7(N — 1)/T. Therefore,

x(t) = (Za(n/\/ﬁ)a(t_(n/mm>*sinc(tN/T)

neL

= > a(n/VN)sinc((t — (n/VN)T)/T"), (48)

neL

with 7" = T//N. Definingn = rv/N + s we can replace the sum ih_(48) overby the sum over ands, where

r ranges over all integers andover the integers in the rande, /N — 1]. This leads to the expansion

VN-1
z(t) = > > a(r+s/VN)sinc((t — (r+s/VN)T)/T')

s=0 rez

T VN
- \/;Z > alr+ (s = )/VN) /e _rysa (= 1T), (49)

s=1reZ

in which only /N generating functiong,(t) are used.
We conclude that the signait) of (8) can be expressed in terms of shifts\N basis vectorsy(t) or v N

vectorsiyy(t), and therefore achieves the lower uncertainty limit.

V. RECOVERY OF SPARSEREPRESENTATIONS
A. Discrete Representations

One of the important implications of the discrete uncetyaprinciple is its relation with sparse approximations
[6], [7], [13], [14]. Given two orthonormal baseB, ¥ for RY an interesting question is whether one can reduce
the number of non-zero expansion coefficients required poegentx by decomposing € RY in terms of the

concatenated dictionary

DZ[@ \I:} (50)

In many cases such a representation can be much sparsehthaedomposition in either of the bases alone.
The difficulty is in actually finding a sparse expansiwr= D~ in which v has as few non-zero components as
possible. Sinc® has more columns than rows, the set of equatiorsD~ is underdetermined and thereforean
have multiple representations Finding the sparsest choice can be translated into the icanobial optimization
problem

H})i/n I7vllo s.t. x=D~. (51)
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Clearly, [51) is NP-complete in general and cannot be soéféidiently. The surprising result of [6], [7], [11] is

that if the coherence(®, ¥) between the two bases is small enough with respect to theigpaf ~, then the
sparsest possiblg is unique and can be found by the basis pursuit algorithm irchvthe non-convex, norm
is replaced by the convef norm:

H})i/n 7|1 s.t. x =D~. (52)

Proposition 2: Let D = [® ¥] be a dictionary consisting of two orthonormal bases withezehceu(®, ¥) =
maxy . @4, |. If a vectorx has a sparse decompositiorinsuch thatc = D and||v|lo < 1/u(®, ¥) then this
representation is unique, namely there cannot be angtheith ||v|lo < 1/u(®, ¥) andx = D~’. Furthermore,
if

V2-0.5

v[lo < W’ (53)

then the unique sparse representation can be found by gdlwi?, optimization problem[{52).
As detailed in [6], [7], the proof of Propositidd 2 followsoim the generalized discrete uncertainty principle.
Another useful result on dictionaries with low coherencéhist every set ok < 2/u(®, ¥) — 1 columns are
linearly independent [13, Theorem 6]. This result can beedtin terms of the Kruskal-rank dd [29], which is
the maximal numbeg such that every set af columns ofD is linearly independent.
Proposition 3: Let D = [® ¥]| be a dictionary consisting of two orthonormal bases withezehceu(®, ¥).

Theno(D) > 2/u(®,¥) — 1 whereo(D) is the Kruskal rank oD.

B. Analog Representations

We would now like to generalize these recovery results taatheog setup. However, it is not immediately clear
how to extend the finité¢; basis pursuit algorithm of (52) to the analog domain.

To set up the analog sparse decomposition problem, suppeseve a signak(¢) that lies in a spacel, and
let {¢ps(t — nT)},{1e(t —nT)} be two orthonormal generators gf with 1 < ¢ < N. Our goal is to represent
z(t) in terms of the joint dictionaryf{d,(t — nT'),1 < ¢ < 2N} with

Pu(t), 1<{<N;
dy(t) = (54)
Ye-n(t), N+1<L<2N,

using as few non-zero sequences as possible. Denotingrbythe vector at point: whose elements arg[n],
our problem is to choose the vector sequefpg such that

2N

w(t) =Y ylnlde(t — nT), (55)

{=1n€eZ
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and~y,[n] is identically zero for the largest possible number of iedi¢. We can count the number of non-zero

sequences by first computing tiig-norm of each sequence. Clearly[n] is equal0 for all » if and only if its
3 norm [|y,[n]|l2 = (3, [vZ[n]])}/? is zero. Therefore, the number of non-zero sequenges is equal to|c||o
wherec, = ||y[n]||2. For ease of notation, we dendtg|2o = ||c|lo, and similarly ||~y|/2,1 = |/c||1. Finding the

sparsest decomposition_{55) can then be written as

2N
m’)i/n [Vl st @) =D > velnlde(t — nT). (56)
(=1 nez

Problem [(56) is the analog version 6f [51). However, in addito being combinatorial as its finite counterpart,
(58) also has infinitely many variables and constraints.
In order to extend the finite-dimensional decompositionltsgo the analog domain, there are two main questions

we need to address:

1) Is there a unique sparse representation for any inpuakigra given dictionary?
2) How can we compute a sparse expansion in practice, namiely &6), despite the combinatorial complexity

and infinite dimensions?

The uniqueness condition of Propositidn 2 can be readilgreded to the analog case, since its proof is based on
the uncertainty relatiori {3) which is identical {0 122) witte appropriate modification to the coherence measure.
Proposition 4: Suppose that a signalt) € .4 has a sparse representation in the joint dictiorfatyt — nT")}
of (54) which consists of two orthonormal bases (t —nT),y(t —nT)} for 1 < £ < N.If ||y]l2,0 < 1/u(T, @)
wherep (¥, ®) is the coherence defined Hy {23), then this representatianigie.
The second more fundamental question is how to find a unigaesepepresentation when it exists. We may
attempt to develop a solution by replacing thieenorm in [56) by an/; norm, as in the finite-dimensional case.

This leads to the convex program

2N
min [ylles st 2(t) =) elnlde(t —nT). (57)

(=1 nez
However, in practice, it is not clear how to solVe](57) sincis idefined over an infinite set of variablegn], and
has infinitely many constraints (for al.
In Sectior . V-D we show tha(56) can be converted into an edeit finite-dimensional problem whé¥i ., (/)
of (11) can be written as
My (/) = AZ(e7*). (58)

Here A is a fixed matrix independent of, andZ(e’*) is an invertible diagonal matrix with diagonal elements
Zy(e?¥). The columns ofA are normalized such thats sup Z,(e/“) = 1 for all £. As an example, consider the

case in whichA is the space of signals bandlimited#dv/T", as in Sectiof IV. Thew,(t), v, (t) defined by[(3B),



(@1) satisfy [(58) withA = (T'//v/N)I and Z,(e’*) = exp{—jw(¢{ — 1)T/N}. N

Our main result is that under the condition](58) we can cdr@®) into a multiple measurement vector (MMV)
problem in which our goal is to represent a setmfvectorsxy,...,x,, using a finite-dimensional dictionary
D = [I A] with common sparsity, namely the non-zero elements in tipasion of then vectors are all supported
on a fixed location set. In order to develop these resultshénrtext section we review the MMV model and a
recently developed generalization to the case in whichdeisirable to jointly decompose infinitely many vectors
x; in terms of a given dictionar). This extension is referred to as the infinite measurememtein@MV) [23].

In Section V-D we show how these ideas can be used to find thsegiadecomposition in a Sl subspace when

(58) holds, by first solving a finite-dimensional convex opiation problem.

C. MMV and IMV Models

The basic results of [7], [12], [13] on expansion in dictiora consisting of two orthonormal bases can be
generalized to the MMV problem in which we would like to jdindecomposen vectorsx;,1 < ¢ < m in a
dictionary D. Denoting byX the matrix with columnsx;, our goal is to seek a matrik with columns~; such
that X = DI" andT has as few non-zero rows as possible. In this case, not omlgdk representation vectgr
sparse, but in addition the vectors share a joint sparsitgpa The results in [26], [27], [30] establish that under

the same conditions as Propositldn 2, the uniffuean be found by solving an extension of theprogram:
mIi‘n ls(T)|ly s.t. X =DTI. (59)

Here s(T) is a vector whoséth element is equal tgT*| whereT* is the ¢th row of T', and the norm is an
arbitrary vector norm. WheR is equal to a single vectey, |T'¢|| = || for any choice of norm and(59) reduces
to the standard, optimization problem[(52).

Proposition 5: Let X be anN x m matrix with columnsx;, 1 < i < m that have a joint sparse representation
in the dictionaryD = [® W] consisting of two orthonormal bases, so tlat= DI' with [|s(T')|lp = k. If

k< 1/u(®,¥) whereu(®, ¥) = maxy, |¢+p,|, then this representation is unique. Furthermore, if

V2 -0.5
Rk (60)

then the unique sparse representation can be found by gdiv#l) with any vector norm.
The MMV model has been recently generalized to the IMV casehith there are infinitely many vectoss

of length V, and infinitely many coefficient vectorg.

x(\) =Dy(A\), A€A, (61)
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where A is some set whose cardinality can be infinite. In particulamay be uncountable, such as the set of

frequenciesv € [—m, 7). The k-sparse IMV model assumes that the vectpy$))}, which we denote for brevity
by v(A), share a joint sparsity pattern, so that the non-zero elerar all supported on a fixed location set of
size k [23]. This model was first introduced in [22] in the contexthdind sampling of multiband signals, and
later analyzed in more detail in [23].

A major difficulty with the IMV model is that it is not clear inrpctice how to determine the entire solution set
~(A) since there are infinitely many equations to solve. Thusiguan/¢; optimization, or a greedy approach, are
not immediately relevant here. A possible suboptimal stnatis to convert the problem into an MMV by solving
(61) only over a finite choice of values However, clearly this approach cannot guarantee thatdbat®mns will
be satisfied for all\. Instead, it was shown in [23] thdt (61) can be converted taitefiMMV without loosing
any information by a set of operations that are grouped uaddock refereed to as the continuous-to-finite (CTF)
block. The essential idea is to first recover the suppory(@f), namely the non-zero location set, by solving a
finite MMV, and then reconstrucy(A) from the datax(A) and the knowledge of the support, which we denote
by S. The reason for this separation is that orftés known, the linear relation of (61) becomes invertible whe
the coherence is low enough.

To see this, leDg denote the matrix containing the subset of the column®ofhose indices belong t§.

The system of((61) can then be written as
x(A) =Dgv%(\), A€, (62)

where the superscript®()) is the vector that consists of the entriesf\) in the locationsS. Since~(A) is

k-sparse,

S| < k. In addition, from Propositioql3 it follows that if.(®, ¥) < 1/k then everyk columns ofD
are linearly independent. Therefol2s consists of linearly independent columns implying tliBs)'Dg = I,
where(Dg)f = (D?DS)_1 D# is the Moore-Penrose pseudo-inversef. Multiplying (62) by (Ds) on the
left gives

Y3(A) = (Ds)x(1), AeA. (63)

The elements iny(\) not supported orb are all zero. Thereforé (63) allows for exact recoveryyol) once the
finite setS is correctly identified.

In order to determines by solving a finite-dimensional problem we exploit the fdwttspan(x(A)) is finite,
sincex(\) is of length N. Thereforespan(x(A)) has dimension at mosY. In addition, it is shown in [23] that
if there exists a solution sef(A) with sparsityk, and the matriXD has Kruskal ranks-(D) > 2k, then every
finite collection of vectors spanning the subspsgen(x(A)) contains sufficient information to recoverexactly.

Therefore, to findS all we need is to construct a matr® whose range space is equalsiean(x(A)). We are
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then guaranteed that the linear system

V =DU (64)

has a uniqué-sparse solutio®J whose row support is equal This result allows to avoid the infinite structure of
(61) and to concentrate on finding the finite §elby solving the single MMV system of (64). The solution can be
determined using afy relaxation of the form[{39) wittV replacingX, as long as the conditions of Propositidn 5
hold, namely the coherence is small enough with respectespiarsity.

In practice, a matrixXV with column span equal tepan(x(A)) can be constructed by first forming the matrix
Q= [\ca x(M\)x (\)d)\, assuming that the integral exists. EvafysatisfyingQ = V'V will then have a column
span equal tepan(x(A)) [23]. In particular, the columns oV can be chosen as the eigenvector€omultiplied
by the square-root of the corresponding eigenvalues.

We summarize the steps enabling a finite-dimensional solut the IMV problem in the following theorem.

Theorem 3:Consider the system of equatioris 1(61) whdde = [® | is a dictionary consisting of two
orthonormal bases with coherenpé®, ¥) = max,, |¢p v, |. Suppose[(B1) has k-sparse solution set(A)
with support setS. If the Kruskal ranks (D) > 2k, then~(A) is unique. In addition, leV be a matrix whose
column-space is equal tpan(x(A)). Then, the linear systetW = DU has a uniqué:-sparse solutiodJ whose
row support is equal t&. Denoting byDg the columns ofD whose indices belong t§, the non-zero elements

~%(\) are given byy®(\) = (Dg)x()). Finally, if

V2-05
SEX I (65)

theno(D) > 2k and the unique spardé can be found by solvind (59) with any vector norm.

D. Analog Dictionaries

We now return to the analog decomposition problém (56) armivshow to exploit the results presented in
the previous section on IMV models in order to find the spdrSésexpansion by solving a finite-dimensional
problem. Our approach is comprised of three steps:

1) Convert[(56) into an IMV system.

2) Use the reduction from IMV to MMV in order to find the activergeratorsi,(t),¢ € S.

3) Invert the system of equations ov8rto find the sparse decomposition, namely the smallest nummber

non-zero sequenceg|n|.
The last two steps were detailed in the previous sectiorenitains to show how (56) can be transformed into an
IMV.
Problem [(56) does not have the form of an IMV since the signdld decomposed(t) is not a set of finite-

dimensional vectors and the dictionary is not described Hinite matrix. However, as we now show, using
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several manipulations it can be converted into an IMV moWé. begin by noting that sincgp,(¢)} generate an

orthonormal basis for, x(t) is uniquely determined by th& sequences of samples
ce[n] = (¢e(t — nT), x(t)) = r(nT), (66)

wherer(t) is the convolutionr(t) = ¢(—t) * z(t). Indeed, orthonormality of ¢,(¢)} immediately implies that

w(t) = > > eln]o(t —nT). (67)

(=1 nez
Therefore, constraining(¢) is equivalent to imposing restrictions on the expansiorffents ¢,[n]. Taking the

inner products on both sides ¢f (56) with respectt¢t — nT') leads to

2N
eml = 323 elnl (6 (t — mT), do(t —nT))

(=1 n€ezZ
2N

= > > wlnlaplm —n], (68)
(=1 n€ezZ

wherea,¢[n] = (¢, (t — nT),d,(t)). Taking the Fourier transform of (68) results in
Cr(e™) = Ty(e/)Ane(e™), 1<r <N, (69)
=1

Thus, instead of findingy[n] to satisfy the constraints if_(b6) we can alternatively steksmallest number of
functionsT'y(e’*) that satisfy [(ED).

To simplify (69) we use the definitio (54) df(¢). Since(¢,. (t — nT'), ¢e(t)) = §,00,0 and the Fourier transform
of (¢, (t —nT),v(t)) is equal toRy, , (¢’*), (69) can be written as

2N
Cr(e?) =Tp(e) + > Ty(el*)Ryy, (). (70)
(=N+1

Denoting byc(e?“), v(e?) the vectors with elementS,(e/«), T'y(e’*) respectively, we can expre$s{70) as

o) = [ T Myy(e) | 7). (72)
Our sparse recovery problein {56) is therefore equivalent to

min ~(el¥ 2,0
v |l (_ )l | | 72)
s. t. C(ejw) = [ I M(M,(ejw) ]7(€]w).
The minimization in [(7R) is very similar to the IMV problerhX[p Indeed, we seek a set of vecteyswith
joint sparsity that have the smallest number of non-zersr@md satisfy an infinite set of linear matrix relations.

However, in contrast td (61), the matrix here dependsvoiherefore, Theorem] 3 cannot be applied since it is
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not clear what matrix figures in the finite MMV representatidlonetheless, iV, (e’“) has the form[(58), then

(72) can be converted to a finite MMV problem. Indeed, let tihgt fV elements ofy(e/*) be denoted by(e/)

and the remainingV elements byb(e’“). Then [72) becomes

mingq  [a(e’)]2,0 + [d(e’)]l2,0

s.t. c(e/v) = { I A ] Z((j;)) } ) (73)

whered(e?¥) = Z(e/*)b(e’?), and we used the fact that sinZge’*) is diagonal and invertiblel|b(e/*)|2o =
[d(e?*)]|2,0 SO that the two vector sequences have the same sparsityefr¢@3) has the required IMV form. It
can be solved by first finding the sparsest matiixhat satisfieaC = [I A]U where the columns o€ form a

basis for the span ofc(e’“), —m < w < 7}. To determineU we consider the convex program
min [s(U)[1 s.t. C = [ I A ] U. (74)

Let S denote the rows iU that are not identically zero and lef [n] be the corresponding sequenee®], ¢ € S.

Then

v () = { (DEDs)'Dc(e?v), (75)

Z5' ()
whereS” denotes the rows i$ betweenN + 1 and2N. The remaining sequencesg, ¢ ¢ S are identically zero.

Propositior b provides conditions under whi¢hl(74) will fittee sparsest representation assuming fas a
unitary matrix. These conditions are stated in terms of titeecence.(I, A). In order to apply these results to our
problem, we need to relate the coherep¢g, A) to that of the continuous-time orthonormal bagg®, ¥), and
to establish thaf is unitary. It is easy to see thatI, A) = u(®P, V). This follows immediately from the fact that
w(I,A) = max; ; |A;;|, and u(®, ¥) = max; j sup,, [[AZ(e’?)];;]. Sincesup,, |Ze(e??)| =1, (I, A) = p(®, ¥).
The next proposition establishes thatis a unitary matrix.

Proposition 6: Let {¢,(¢)}, {¢¢(t)} be two generators of orthonormal bases for the S| subsgadeet A =
My (e7)Z71(e7%) where My (e7%) is defined by[(Il1) and(e’) is an invertible diagonal matrix satisfying
max | Z;(e/*)| = 1. ThenA" A =1.

Proof: See Appendix]I. [

We summarize our results on analog sparse decompositiathg ifollowing theorem.

Theorem 4:Let {¢(t),1 < ¢ < N} and{yy(t),1 < ¢ < N} denote two orthonormal generators of a subspace
A of Ly with coherence:(¥, ®). Let z(t) be a signal ind and suppose there exists sequencgs|, by[n| such
that

N
2(t) = > ) (agn]e(t — nT) + be[nlibe(t — nT)) (76)

(=1 n€ezZ
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with & = |jal2,0 + ||bll2,0 satisfyingk < (v2 — 0.5)/u(®, ®). Let My, (e?“) be the cross-correlation matrix

defined by [(Il) and suppose that it can be writtenMig,(e/) = AZ(e/*), where Z(e?*) is an invertible
diagonal matrix with diagonal elemeni (e/*) satisfyingmax,, Z,(¢’“) = 1. Then, the sequencasg[n] andb,[n]
can be found by solving

minp . [[s(T1)[1 + [Is(T2)[lx
r, ] (77)

S. t. C:[I A} r
2

Here C is chosen such that its columns form a basis for the rangéctf’“),w € (—m, x|} where thefth

component ofc(e/*) is the Fourier transform at frequencyof ¢,[n] = (¢,(t — nT), z(t)), ands(T;) is a vector
whose/th element is equal t§T%|| where the norm is arbitrary. Le;, S, denote the rows of';, T, that are not
identically equal, and defineDg = [Is, Ag,]. Then the non-zero sequencesn|, by[n], ¢ € S are given in the

Fourier domain by

(DYDs)”'Dc(e”). (78)

ag(el?)
bs(e/*) Zs, ()
In Theorenl 4 the sparse decomposition is determined fronsdngplesc,[n| = (¢¢(t — nT), x(t)). However,

the theorem also holds whepg[n| is replaced by any sequence of samglegt — nT'), z(t)) with h(t) being an

orthonormal basis ford such that botiMl,;(e’~) and My, (e7*) are constant up to a diagonal matrix:
Mh(z,(ejw) = A1Z1(ej°’), th(ej“) = A2Z2(€jw). (79)

In this case the matri{l A] in (74) should be replaced by the matfik; As]. Once we find the sparsity sét
the sequences that are not zero can be found aslin (78) honawethe identity in the first matrix is replaced by

the appropriate rows le‘l(ej“’).

VI. EXTENSION TOARBITRARY DICTIONARIES

Until now we discussed the case of a dictionary comprised ofthonormal bases. The theory we developed
can easily be extended to treat the case of an arbitranyodanty comprised of sequencégt) that form a frame
(14) for A. These results follow from combining the approach of thevipres section with the corresponding
statements in the discrete setting developed in [13], [[2].

Specifically, suppose we would like to decompose a vextarRY in terms of a dictionaryD with columns

d, using as few vectors as possible. This corresponds to gplvin
Hl)iln I7vllo s.t. x=D~. (80)

Since [(8D) has combinatorial complexity, we would like tpleee it with a computationally efficient algorithm.
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If D has low coherence, where in this case the coherence is défined

d/'d,|
§(D) = max L (81)
B Tl

then we can determine the sparsest solutjolny solving the/; problem
nq)iln 7l s.t. x=D~. (82)

The coherence of a dictionary measures the similarity betwdctionary elements and is equal(af and only
if the dictionary consists of orthonormal vectors. A gehésaver bound on the coherence of a matfix of size
N x m is [14] (D) > [(m — N)/(N(m — 1))]'/2. The same results holds true for the corresponding MMV
model, and are incorporated in the following propositioB][112], [14], [26]:
Proposition 7: Let D be an arbitrary dictionary with coherengg€D) given by [81). Then the Kruskal rank
satisfiess(D) > 1/u(D) — 1. Furthermore, if there exists a choice of coefficiehitsuch thatX = DT and
sl < 5 (14 =55 ). 83
2 n(D)
then the unique sparse representation can be found by gdiv#).
We now apply Proposition] 7 to the analog design problem. 8s@pve have a signal(t) that lies in a space
A, and let{d,(t — nT),1 < ¢ < m} denote an arbitrary frame fod with m > N. As an example, consider the
spaceA of signals bandlimited t@—= N /T, 7N /T], which was introduced in SectignllV. As we have seen, this

space can be generated by tNefunctions

Go(t) = \/% sine((t — (£ — 1)T')/T'), 1<(<N, (84)
with 7" = T'/N. Suppose now that we consider the functions
Bult) = % sine((t — (¢~ VT)/T), 1<(<m, (85)

whereT = T/m andm > N. Using similar reasoning as that used to establish the lasigerties of the
generators[(84), it is easy to see tiaft) constitute an orthonormal basis for the space of signalgl/imaited to
(—mm/T,mm/T] which is larger thanA. Filtering each one of the basis signals with a LPF with dbtmaV/T
will result in a redundant set of functions

do(t) = \/% sinc((t — (0 — )T)/T'), 1<(<m, (86)
that form a frame ford [31], [32].

Our goal is to represent a signa(t) in A using as few sequencefs(t) as possible. More specifically, our
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problem is to choose the vector sequenge| such that

w(t) =Y > ylnlde(t — nT), (87)

(=1 n€eZ
and||y|l2,0 is minimized.
To derive an infinite-dimensional alternative [01(82) {é(¢)} generate an orthonormal basis fdr Thenxz(t)

is uniquely determined by th& sampling sequences
ce[n] = (he(t —nT), x(t)) = r(nT), (88)
wherer(t) is the convolution-(t) = h(—t) = 2(t). Thereforex(¢) satisfies[(87) only if
¢r[m] = Zm: > velnjarn], (89)

{=1nez

wherea,¢[n] = (h,(t — nT),dy(t)). In the Fourier domair_(89) becomes

m

Cr(e?) =D Tu(e?) Ape(e) =Y " Ty() Ry, q,(€7%). (90)
/=1 /=1

3

Denoting byc(e¥), v(e/“) the vectors with elemeniSy(e?“), Ty (e/“) respectively we can writé (90) as
c(e’) = Mpa(e/*)y(e*). (91)

Therefore, our problem is to find the sparsest sef@f*) that satisfies (31).

In order to solve the sparse decomposition problem we assuanéh,(¢)} are chosen such that
Mpa(e’?) = W(e!)AZ(e™), (92)

where A is a fixed matrix independent af, andZ(e’*) is an invertible diagonal matrix with diagonal elements
Zy(e¥) satisfyingess sup Z;(e/*) = 1, andW (e’“) is an arbitrary invertible matrix. Going back to the bandied

frame [86) it can be easily seen that with(t) = ¢,(t), (92) is satisfied. Indeed,

T _jwl—1)T/N —jw(r—1)T/m _ .
— e e , we€ (—nN/T,7N/T);
Hy(w)Dy(w) =4 V _ (93)
0, otherwise
Therefore,
Rpa, (/) = U DINmaelr=Dim g (0, r), (94)

where f(£,r) is a function only of the indice& r and not the frequenay. ChoosingZ, (/) = e~«(r=1)/m and

W(e/*) as a diagonal matrix with diagonal elemefitg(e/*) = e/«(“~1/N leads to the representatidn [92).
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WhenM;,,(e/*) has the form[{92), the system of equations (91) becomes

d(e?¥) = AZ(7)y (/%) = Aa(elv), (95)

where we denotedl(e’v) = W1(e/¥)c(e!v), a(e??) = Z(e?“)v(e’*) and used[(32). Clearlyja(e’*)|20 =
lv(e7%) 2,0 becauseZ(e’*) is invertible and diagonal. Therefore, the sparse decoitipoproblem is equivalent
to finding a(e’*) satisfying [95) and such thdt(e?)||2,0 is minimized.

As in the previous section, the sparsat’) can be determined by first convertifg(95) to a finite MMV
problem, in which we seek the sparsest matiixhat satisfieXC = AU where the columns of form a basis for

the span of W—1(e/¥)c(e/*), - < w < 7}. The matrixU can be determined by solving the convex problem
min [s(U)|[; s.t. C=AU. (96)

From Propositiori]7 it follows that the unique sparse matfixcan be recovered as long pagA) satisfies[(83).
Once we determine the non-zero rowsin U, we can find the non-zero sequenegdn| by noting that from

Propositior ¥ the columnA s of A corresponding te are linearly independent. Therefore,
72 () = Zg' () (AT As) TTATWTH (M )e(e). (97)

We have outlined a concrete method to find the sparsest espeg®n of a signal(¢) in A in terms of
an arbitrary dictionary. In our proposed approach, the mstraction is performed with respect to the samples
ce[n] = (he(t —nT),z(t)). We may alternatively view our algorithm as a method to retwmtz(t) from these
samples assuming the knowledge thét) has a sparse decomposition in the given dictionary. Thusresults
can also be interpreted as a reconstruction method fromem et of samples, and in that sense compliment the
results of [24].

Although we assumed that(¢) generate an orthonormal basis, similar results hold whpr] is replaced by a

sequence of sampléa,(t — nT), z(t)) with h,(t) being any frame ford such thatVi;, (e/“) = W (e/)AZ (7).

VIlI. CONCLUSION

In this paper, we extended the recent line of work on geredluncertainty principles to the analog domain,
by considering sparse representations in Sl bases. We dhthae there is a fundamental limit on the ability
to sparsely represent an analog signal in an infinite-dimeat S| space in two orthonormal bases. The sparsity
bound is similar to that obtained in the finite-dimensioniattkete setting: In both cases the joint sparsity is limited
by the inverse coherence of the bases. However, while in ite etting, the coherence is defined as the maximal
absolute inner product between elements from each bastheimnalog problem the coherence is the maximal

absolute value of the sampled cross-spectrum betweenghalsi
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As in the finite domain, we can show that the uncertainty ieaive develop is tight by providing a concrete

example in which it is achieved. Our example mimics the fisigtting by considering the class of bandlimited
signals as the signal space. This leads to a Fourier repgeagienthat is defined over a finite, albeit continuous,
interval. Within this space we can achieve the uncertaimtyt by considering a bandlimited train of LPFs. This
choice of signal resembles the Dirac comb which is known toieae the uncertainty principle in the discrete
setting.

Finally, we treated the problem of sparsely representingretog signal in an overcomplete dictionary. Building
upon the uncertainty principle and some of the recent warkbke area of compressed sensing for analog signals,
we showed that under certain conditions on the Fourier domgpresentation of the dictionary, the sparsest
representation can be found by solving a finite-dimensi@aalvex optimization problem. The fact that sparse
decompositions can be found by solving a convex optimipatimblem has been established in many previous
works in compressed sensing in the finite setting. The adtdititwist here is that even though the problem has
infinite dimensions, it can be solved exactly by a finite disienal program. This is possible by first sampling the
analog signal in a lossless manner. Exploiting the Foura@nain representation of the dictionary together with
recent results on infinite measurement models, the proldecoriverted to finite dimensions.

In this paper we focused on the case in which the sampled-cmsslation between the signals is constant in
frequency (up to a normalization factor). A very interegtirection to pursue in future work is extending the
results developed herein to the more general setup of anpitlictionaries. The difficulty that arises is that in this

case it is not clear how to covert the problem to an IMV model.

APPENDIX |

PrROOF OFPROPOSITIONT

To prove the proposition, note that

[ wora= g [" ixera

o 2 J_
1 | ’
= o D AT By(w)| dw, (98)
T =1

where the last equality follows froni](7). To simplify_(98) wewrite the integral over the entire real line, as the

sum of integrals over intervals of leng#r /7"

/OO X(w)dw:/o%ﬂ f: X<w—2%k:>, (99)
o k=—0c0
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for all X (w). Substituting into[(98) and using the fact that(e/“T) is 27 /T-periodic, we obtain

_ 1 T Y JjwT 2
= —/0 E |Ag(e )| dw, (100)
where we used (17).

APPENDIX II

PROOF OFPROPOSITIONG

To prove thatA is unitary, note that sincép,(t — nT")} is an orthonormal basis fad, any z(¢) in A can be

written as N
2(t) =Y Y {de(t —nT),z(t))de(t — nT). (101)
(=1 n€ezZ
In particular, N
U (t) =D > (be(t = nT), o (1)) o (t — nT). (102)
(=1 n€ezZ

Taking the Fourier transform of (1D2), we have

N
Uy (@) = de(w) R, (7). (103)
/=1
Now,
Smr = Ry, (%)= Rpup, (") Ry,y, ()
(=1
= [Myy(e/)]m Mgy (¢)]1, (104)

where [C],. denotes theth column of C. It follows from (104) that the matridM,,(e’“) is unitary for allw.
SinceA = My, (e/“)Z(e/%), AHA = ZH (eI)Z(e/*). Finally, using the fact thahax Z,(e/*) = 1, we conclude
that AYA =1.



(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

29
REFERENCES

D. Slepian and H. O. Pollak, “Prolate spheroidal wavections, Fourier analysis and uncertainty-Bell Syst. Tech.,Jvol. 40, pp.
43-64, 1961.

H. J. Landau and H. O. Pollack, “Prolate spheroidal wawecfions, Fourier analysis and uncertainty-IBell Syst. Tech.,Jvol. 40,
pp. 65-84, 1961.

H. J. Landau and H. O. Pollack, “Prolate spheroidal wawuecfions, Fourier analysis and uncertainty-1IBell Syst. Tech.,Jvol. 41,
pp. 1295-1336, 1962.

D. L. Donoho and P. B. Stark, “Uncertainty principles asidnal recovery,”SIAM Journal on Applied Mathematicsol. 49, no. 3,
pp. 906-931, 1989.

D. Gabor, “Theory of communicationsJ. IEE, vol. 93, pp. 429-457, 1946.

D. L. Donoho and X. Huo, “Uncertainty principles and idl@@omic decomposition,IEEE Transactions Info. Theoryol. 47, no. 7,
pp. 2845-2862, 2001.

M. Elad and A. M. Bruckstein, “A generalized uncertairgginciple and sparse representation in pairs of bad&EE Transactions
Info. Theory vol. 48, no. 9, pp. 2558-2567, 2002.

E. J. Candes and J. Romberg, “Quantitative robust uaicgyt principles and optimally sparse decomposition§gundations of
Computational Mathematicwvol. 6, no. 2, pp. 227-254, 2006.

D. L. Donoho, “Compressed sensindEEE Trans. on Inf. Theorywol. 52, no. 4, pp. 1289-1306, Apr 2006

E.J. Candes, J. Romberg, and T. Tao, “Robust uncéytaiinciples: Exact signal reconstruction from highly ameplete frequency
information,” IEEE Trans. Inform. Theoryol. 52, no. 2, pp. 489-509, Feb. 2006.

A. Feuer and A. Nemirovski, “On sparse representatiopairs of bases,IEEE Transactions on Inform. Thegryol. 49, no. 6, pp.
1579-1581, 2003.

R. Gribonval and M. Nielsen, “Sparse representationsinions of bases,”IEEE Transactions Info. Theorwol. 49, no. 12, pp.
3320-3325, 2003.

D. L. Donoho and M. Elad, “Optimally sparse represenotatn general (nonorthogonal) dictionaries via 11 miniatinn,” Proceedings
of the National Academy of Sciencesl. 100, no. 5, pp. 2197-2202, 2003

J. A. Tropp, “Greed is good: Algorithmic results for spa approximation,”IEEE Transactions Info. Theoryol. 50, no. 10, pp.
2231-2242, 2004.

S. G. Mallat and Z. Zhang, “Matching pursuits with tirfrequency dictionaries,IEEE Transactions on Signal Processingl. 41,
no. 12, pp. 3397-3415, 1993.

C. de Boor, R. DeVore, and A. Ron, “The structure of filyitgenerated shift-invariant spaces in(R%),” J. Funct. Ana vol. 119,
no. 1, pp. 37-78, 1994.

J. S. Geronimo, D. P. Hardin, and P. R. Massopust, “Btdcinctions and wavelet expansions based on several gdaiictions,”
Journal of Approximation Theorwol. 78, no. 3, pp. 373—-401, 1994.

O. Christensen and Y. C. Eldar, “Generalized shiftaimant systems and frames for subspacdsFourier Analys. Appl.vol. 11, pp.
299-313, 2005.

J. A. Tropp, “Algorithms for simultaneous sparse apgmation. Part |: Greedy pursuit,Signal Process. (Special Issue on Sparse
Approximations in Signal and Image Processing)l. 86, pp. 572-588, Apr. 2006.

J. A. Tropp, “Algorithms for simultaneous sparse apjmmation. Part 1l: Convex relaxation3ignal Process. (Special Issue on Sparse
Approximations in Signal and Image Processing)l. 86, pp. 589-602, Apr. 2006.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Deposition by Basis Pursuit,5IAM J. Scientific Computingol. 20,
pp. 33-61, 1999.



[22]

(23]

[24]
[25]

[26]

[27]

(28]
[29]

[30]

[31]
[32]

30
M. Mishali and Y. C. Eldar, “Blind multi-band signal renstruction: Compressed sensing for analog sign&€1T Report no. 639,

EE Dept., Technion - Israel Institute of Technologybmitted to IEEE Trans. Signal ProcessSep. 2007.

M. Mishali and Y. C. Eldar, “Reduce and boost: Recovgrarbitrary sets of jointly sparse vector&CIT Report no. 686, EE Dept.,
Technion - Israel Institute of Technologig appear iNEEE Trans. Signal Process.

Y. C. Eldar, “Compressed sensing of analog signalsiinsitted tolEEE Trans. Signal Processing

Y. C. Eldar and T. Michaeli, “Beyond bandlimited sanmg/i Nonlinearities, smoothness and sparsity,” submittetEEE Signal
Proc. Magazine June 2008.

J. Chen and X. Huo, “Theoretical results on sparse sgpr@tions of multiple-measurement vectotEEE Trans. Signal Processing
vol. 54, no. 12, pp. 4634-4643, Dec. 2006.

S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgatiparse solutions to linear inverse problems with multipleasurement
vectors,” IEEE Trans. Signal Processingol. 53, no. 7, pp. 2477-2488, July 2005.

I. J. SchoenbergCardinal Spline Interpolation Philadelphia, PA: SIAM, 1973.

J. B. Kruskal, “Three-way arrays: Rank and uniquenestilinear decompositions, with application to arithneetomplexity and
statistics,” Linear Alg. Its Applic, vol. 18, no. 2, pp. 95-138, 1977.

Y. C. Eldar and M. Mishali, “Robust recovery of signater a union of subspaces,” submitted IBEE Trans. Inform. Theonduly
2008.

O. ChristensenAn Introduction to Frames and Riesz Bas@&oston, MA: Birkhauser, 2002.

E. Margolis and Y. C. Eldar, “Nonuniform sampling of patic bandlimited signals,” to appear IEEE Trans. Signal Processing



	Introduction
	Problem Formulation
	Discrete Uncertainty Principles
	Shift-Invariant Signal Expansions
	Analog Problem Formulation

	Uncertainty Relations in SI Spaces
	Achieving the Uncertainty Principle
	Minimal Coherence
	Tightness of the Uncertainty Relation

	Recovery of Sparse Representations
	Discrete Representations
	Analog Representations
	MMV and IMV Models
	Analog Dictionaries

	Extension to Arbitrary Dictionaries
	Conclusion
	Appendix I: Proof of Proposition ??
	Appendix II: Proof of Proposition ??
	References

