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Abstract

Traditional sampling theories consider the problem of reconstructing an unknown signalx from a series of

samples. A prevalent assumption which often guarantees recovery from the given measurements is thatx lies in

a known subspace. Recently, there has been growing interestin nonlinear but structured signal models, in which

x lies in a union of subspaces. In this paper we develop a general framework for robust and efficient recovery

of such signals from a given set of samples. More specifically, we treat the case in whichx lies in a sum ofk

subspaces, chosen from a larger set ofm possibilities. The samples are modelled as inner products with an arbitrary

set of sampling functions. To derive an efficient and robust recovery algorithm, we show that our problem can be

formulated as that of recovering a block-sparse vector whose non-zero elements appear in fixed blocks. We then

propose a mixedℓ2/ℓ1 program for block sparse recovery. Our main result is an equivalence condition under which

the proposed convex algorithm is guaranteed to recover the original signal. This result relies on the notion of block

restricted isometry property (RIP), which is a generalization of the standard RIP used extensively in the context of

compressed sensing. Based on RIP we also prove stability of our approach in the presence of noise and modelling

errors. A special case of our framework is that of recoveringmultiple measurement vectors (MMV) that share a joint

sparsity pattern. Adapting our results to this context leads to new MMV recovery methods as well as equivalence

conditions under which the entire set can be determined efficiently.

I. INTRODUCTION

Sampling theory has a rich history dating back to Cauchy. Undoubtedly, the sampling theorem that had the most

impact on signal processing and communications is that associated with Whittaker, Kotelńikov, and Shannon [1],

[2]. Their famous result is that a bandlimited functionx(t) can be recovered from its uniform samples as long as

the sampling rate exceeds the Nyquist rate, corresponding to twice the highest frequency of the signal [3]. More

recently, this basic theorem has been extended to include more general classes of signal spaces. In particular, it
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can be shown that under mild technical conditions, a signalx lying in a given subspace can be recovered exactly

from its linear generalized samples using a series of filtering operations [4]–[7].

Recently, there has been growing interest in nonlinear signal models in which the unknownx does not necessarily

lie in a subspace. In order to ensure recovery from the samples, some underlying structure is needed. A general

model that captures many interesting cases is that in whichx lies in a union of subspaces. In this setting,x resides

in one of a set of given subspacesVi, however, a priori it is not known in which one. A special caseof this

framework is the problem underlying the field of compressed sensing (CS), in which the goal is to recover a length

N vectorx from n < N linear measurements, wherex has no more thank non-zero elements in some basis [8],

[9]. Many algorithms have been proposed in the literature inorder to recoverx in a stable and efficient manner

[9]–[12]. A variety of conditions have been developed to ensure that these methods recoverx exactly. One of the

main tools in this context is the restricted isometry property (RIP) [9], [13], [14]. In particular, it can be shown

that if the measurement matrix satisfies the RIP thenx can be recovered by solving anℓ1 minimization algorithm.

Another special case of a union of subspaces is the setting inwhich the unknown signalx = x(t) has a multiband

structure, so that its Fourier transform consists of a limited number of bands at unknown locations [15], [16]. By

formulating this problem within the framework of CS, explicit sub-Nyquist sampling and reconstruction schemes

were developed in [15], [16] that ensure perfect-recovery at the minimal possible rate. This setup was recently

generalized in [17], [18] to deal with sampling and reconstruction of signals that lie in a finite union of shift-

invariant subspaces. By combining ideas from standard sampling theory with CS results [19], explicit low-rate

sampling and recovery methods were developed for such signal sets. Another example of a union of subspaces

is the set of finite rate of innovation signals [20], [21], that are modelled as a weighted sum of shifts of a given

generating function, where the shifts are unknown.

In this paper, our goal is to develop a unified framework for efficient recovery of signals that lie in a structured

union of subspaces. Our emphasis is on computationally efficient methods that are stable in the presence of noise

and modelling errors. In contrast to our previous work [15]–[18], here we consider unions of finite-dimensional

subspaces. Specifically, we restrict our attention to the case in whichx resides in a sum ofk subspaces, chosen

from a given set ofm subspacesAj, 1 ≤ j ≤ m. However, which subspaces comprise the sum is unknown. This

setting is a special case of the more general union model considered in [22], [23]. Conditions under which unique

and stable sampling are possible were developed in [22], [23]. However, no concrete algorithm was provided to

recover such a signal from a given set of samples in a stable and efficient manner. Here we propose a convex

optimization algorithm that will often recover the true underlying x, and develop explicit conditions under which

perfect recovery is guaranteed. Furthermore, we prove thatour method is stable and robust in the sense that the

reconstruction error is bounded in the presence of noise andmismodelling, namely whenx does not lie exactly in
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the union. Our results rely on a generalization of the RIP which fits the union setting we treat here.

Our first contribution is showing that the problem of recovering x in a structured union of subspaces can be

cast as a sparse recovery problem, in which it is desired to recover a sparse vectorc that has a particular sparsity

pattern: the non-zero values appear in fixed blocks. We referto such a model as block sparsity. Clearly any block-

sparse vector is also sparse in the standard sense. However,by exploiting the block structure of the sparsity pattern,

recovery may be possible under more general conditions.

Next, we develop a concrete algorithm to recover a block-sparse vector from given measurements, which is based

on minimizing a mixedℓ2/ℓ1 norm. This problem can be cast as a convex second order cone program (SOCP), and

solved efficiently using standard software packages. A mixed norm approach for block-sparse recovery was also

considered in [24], [25]. By analyzing the measurement operator’s null space, it was shown that asymptotically, as

the signal length grows to infinity, and under ideal conditions (no noise or modeling errors), perfect recovery is

possible with high probability. However, no robust equivalence results were established between the output of the

algorithm and the true block-sparse vector for a given finite-length measurement vector, or in the presence of noise

and mismodelling.

Generalizing the concept of RIP to our setting, we introducethe block RIP, which is a less stringent requirement.

We then prove that if the measurement matrix satisfies the block RIP, then our proposed convex algorithm will

recover the underlying block sparse signal. Furthermore, under block RIP, our algorithm is stable in the presence

of noise and mismodelling errors. Using ideas similar to [12], [26] we then prove that random matrices satisfy

the block RIP with overwhelming probability. Moreover, theprobability to satisfy the block RIP is substantially

larger than that of satisfying the standard RIP. These results establish that a signalx that lies in a finite structured

union can be recovered efficiently and stably with overwhelming probability if a certain measurement matrix is

constructed from a random ensemble.

An interesting special case of the block-sparse model is themultiple measurement vector (MMV) problem, in

which we have a set of unknown vectors that share a joint sparsity pattern. MMV recovery algorithms were studied

in [19], [27]–[30]. Equivalence results based on mutual coherence for a mixedℓp/ℓ1 program were derived in [28].

These results turn out to be the same as that obtained from a single measurement problem. This is in contrast to

the fact that in practice, MMV methods tend to outperform algorithms that treat each of the vectors separately. In

order to develop meaningful equivalence results, we cast the MMV problem as one of block-sparse recovery. Our

mixed ℓ2/ℓ1 method translates into minimizing the sum of theℓ2 row-norms of the unknown matrix representing

the MMV set. Our general results lead to RIP-based equivalence conditions for this algorithm. Furthermore, our

framework suggests a different type of sampling method for MMV problems which tends to increase the recovery

rate. The equivalence condition we obtain in this case is stronger than the single measurement setting. As we show,
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this method leads to superior recovery rate when compared with other popular MMV algorithms.

The remainder of the paper is organized as follows. In Section II we describe the general problem of sampling

from a union of subspaces. The relationship between our problem and that of block-sparse recovery is developed

in Section III. In Section IV we explore stability and uniqueness issues which leads to the definition of block RIP.

We also present a non-convex optimization algorithm with combinatorial complexity whose solution is the true

unknownx. A convex relaxation of this algorithm is proposed in Section V. We then derive equivalence conditions

based on block RIP. The concept of block RIP is further used toestablish robustness and stability of our algorithm

in the presence of noise and modelling errors. This approachis specialized to MMV sampling in Section VI. Finally,

in Section VII we prove that random ensembles tend to satisfythe block RIP with high probability.

Throughout the paper, we denote vectors in an arbitrary Hilbert spaceH by lower case letterse.g.,x, and sets

of vectors inH by calligraphic letters,e.g.,S. Vectors inR
N are written as boldface lowercase letterse.g.,x, and

matrices as boldface uppercase letterse.g.,A. The identity matrix of appropriate dimension is written asI or Id

when the dimension is not clear from the context, andAT is the transpose of the matrixA. The ith element of a

vectorx is denoted byx(i). Linear transformations fromRn to H are written as upper case lettersA : R
n → H.

The adjoint ofA is written asA∗. The standard Euclidean norm is denoted‖x‖2 =
√

xTx and‖x‖1 =
∑

i |x(i)|

is theℓ1 norm ofx. The Kronecker product between matricesA andB is denotedA⊗B. The following variables

are used in the sequel:n is the number of samples,N is the length of the input signalx when it is a vector,k is

the sparsity or block sparsity (to be defined later on) of a vector c, andm is the number of subspaces. For ease of

notation we assume throughout that all scalars are defined over the field of real numbers; however, the results are

also valid over the complex domain with appropriate modifications.

II. U NION OF SUBSPACES

A. Subspace Sampling

Traditional sampling theory deals with the problem of recovering an unknown signalx ∈ H from a set ofn

samplesyi = fi(x) wherefi(x) is some function ofx. The signalx can be a function of timex = x(t), or can

represent a finite-length vectorx = x. The most common type of sampling is linear sampling in which

yi = 〈si, x〉, 1 ≤ i ≤ n, (1)

for a set of functionssi ∈ H [4], [31]–[37]. Here〈x, y〉 denotes the standard inner product onH. For example, if

H = L2 is the space of real finite-energy signals then

〈x, y〉 =

∫ ∞

−∞
x(t)y(t)dt. (2)
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WhenH = R
N for someN ,

〈x,y〉 =

N∑

i=1

x(i)y(i). (3)

Nonlinear sampling is treated in [38]. However, here our focus will be on the linear case.

WhenH = R
N the unknownx = x as well as the sampling functionssi = si are vectors inRN . Therefore, the

samples can be written conveniently in matrix form asy = STx, whereS is the matrix with columnssi. In the

more general case in whichH = L2 or any other abstract Hilbert space, we can use the set transformation notation

in order to conveniently represent the samples. A set transformationS : R
n → H corresponding to sampling vectors

{si ∈ H, 1 ≤ i ≤ n} is defined by

Sc =

n∑

i=1

c(i)si (4)

for all c ∈ R
n. From the definition of the adjoint, ifc = S∗x, thenc(i) = 〈si, x〉. Note that whenH = R

N , S = S

andS∗ = ST . Using this notation, we can always express the samples as

y = S∗x, (5)

whereS is a set transformation for arbitraryH, and an appropriate matrix whenH = R
N .

Our goal is to recoverx from the samplesy ∈ R
n. If the vectorssi do not span the entire spaceH, then there

are many possible signalsx consistent withy. More specifically, if we define byS the sampling space spanned

by the vectorssi, then clearlyS∗v = 0 for any v ∈ S⊥. Therefore, ifS⊥ is not the trivial space then adding such

a vectorv to any solutionx of (5) will result in the same samplesy. However, by exploiting prior knowledge on

x, in many cases uniqueness can be guaranteed. A prior very often assumed is thatx lies in a given subspaceA

of H [4]–[7]. If A andS have the same finite dimension, andS⊥ andA intersect only at the0 vector, thenx can

be perfectly recovered from the samplesy [6], [7], [39].

B. Union of Subspaces

When subspace information is available, perfect reconstruction can often be guaranteed. Furthermore, recovery

can be implemented by a simple linear transformation of the given samples (5). However, there are many practical

scenarios in which we are given prior information aboutx that is not necessarily in the from of a subspace. One

such case studied in detail in [39] is that in whichx is known to be smooth. Here we focus our attention on the

setting wherex lies in a union of subspaces

U =
⋃

i

Vi (6)

where eachVi is a subspace. Thus,x belongs to one of theVi, but we do not know a priori to which one [22], [23].

Note that the setU is no longer a subspace. Indeed, ifVi is, for example, a one-dimensional space spanned by the
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vectorvi, thenU contains vectors of the formαvi for somei but does not include their linear combinations. Our

goal is to recover a vectorx lying in a union of subspaces, from a given set of samples. In principle, if we knew

which subspacex belonged to, then reconstruction can be obtained using standard sampling results. However, here

the problem is more involved because conceptually we first need to identify the correct subspace and only then can

we recover the signal within the space.

Previous work on sampling over a union focused on invertibility and stability results [22], [23]. In contrast,

here, our main interest is in developing concrete recovery algorithms that are provably robust. To achieve this goal,

we limit our attention to a subclass of (6) for which stable recovery algorithms can be developed and analyzed.

Specifically, we treat the case in which eachVi has the additional structure

Vi =
⊕

|j|=k

Aj , (7)

where{Aj , 1 ≤ j ≤ m} are a given set of disjoint subspaces, and|j| = k denotes a sum overk indices. Thus, each

subspaceVi corresponds to a different choice ofk subspacesAj that comprise the sum. We assume throughout

the paper thatm and the dimensionsdi = dim(Ai) of the subspacesAi are finite. Givenn samples

y = S∗x (8)

and the knowledge thatx lies in exactly one of the subspacesVi, we would like to recover the unknown signalx.

In this setting, there are
(m

k

)
possible subspaces comprising the union.

An alternative interpretation of our model is as follows. Given an observation vectory, we seek a signalx for

which y = S∗x and in additionx can be written as

x =
k∑

i=1

xi, (9)

where eachxi lies in Aj for some indexj.

A special case is the standard CS problem in whichx = x is a vector of lengthN , that has a sparse representation

in a given basis defined by an invertible matrixW. Thus,x = Wc wherec is a sparse vector that has at mostk

nonzero elements. This fits our framework by choosingAi as the space spanned by theith column ofW. In this

settingm = N , and there are
(N

k

)
subspaces comprising the union.

Another example is the block sparsity model [24], [40] in which x is divided into equal-length blocks of sized,

and at mostk blocks can be non zero. Such a vector can be described in our setting with H = R
N by choosing

Ai to be the space spanned by the correspondingi columns of the identity matrix. Herem = N/d and there are
(N/d

k

)
subspaces in the union.

A final example is the MMV problem [19], [27]–[30] in which ourgoal is to recover a matrixX from
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measurementsY = MX, for a given sampling matrixM. The matrixX is assumed to have at mostk non-

zero rows. Thus, not only is each columnxi k-sparse, but in addition the non-zero elements ofxi share a joint

sparsity pattern. This problem can be transformed into thatof recovering ak-block sparse signal by stacking the

rows of X andY, leading to the relationship

vec(YT ) = (M ⊗ I) vec(XT ). (10)

The structure ofX leads to a vectorvec(XT ) that isk-block sparse.

C. Problem Formulation and Main Results

Given k and the subspacesAi, we would like to address the following questions:

1) What are the conditions on the sampling vectorssi, 1 ≤ i ≤ n in order to guarantee that the sampling is

invertible and stable?

2) How can we recover the uniquex (regardless of computational complexity)?

3) How can we recover the uniquex in an efficient and stable manner?

The first question was addressed in [22], [23] in the more general context of unions of spaces (without requiring

a particular structure such as (7)). However, no concrete methods were proposed in order to recoverx. Here we

provide efficient convex algorithms that recoverx in a stable way for arbitraryk under appropriate conditions on

the sampling functionssi and the spacesAi.

Our results are based on an equivalence between the union of subspaces problem assuming (7) and that of

recovering block-sparse vectors. This allows us to recoverx from the given samples by first treating the problem

of recovering a blockk-sparse vectorc from a given set of measurements. This relationship is established in

the next section. In the reminder of the paper we therefore focus on the blockk-sparse model and develop our

results in that context. In particular, we introduce a blockRIP condition that ensures uniqueness and stability of

our sampling problem. We then suggest an efficient convex optimization problem which approximates an unknown

block-sparse vectorc. Based on block RIP we prove thatc can be recovered exactly in a stable way using the

proposed optimization program. Furthermore, in the presence of noise and modeling errors, our algorithm can

approximate the best block-k sparse solution.

III. C ONNECTION WITH BLOCK SPARSITY

Consider the model of a signalx in the union ofk out of m subspacesAi, with di = dim(Ai) as in (6) and

(7). To write x explicitly, we choose a basis for eachAi. Denoting byAi : R
di → H the set transformation
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corresponding to a basis forAi, any suchx can be written as

x =
∑

|i|=k

Aici, (11)

whereci ∈ R
di are the representation coefficients inAi, and |i| = k denotes a sum over a set ofk indices. The

choice of indices depend on the signalx and are unknown in advance.

To develop the equivalence with block sparsity, it is usefulto introduce some further notation. First, we define

A : R
N → H as the set transformation that is a result of concatenating the differentAi, with

N =

m∑

i=1

di. (12)

Next, we define theith sub-blockc[i] of a length-N vector c over I = {d1, . . . , dm}. The ith sub-block is of

lengthdi, and the blocks are formed sequentially so that

cT = [c1 . . . cd1
︸ ︷︷ ︸

c[1]

. . . cN−dm+1 . . . cN
︸ ︷︷ ︸

c[m]

]T . (13)

We can then defineA by

Ac =

m∑

i=1

Aic[i]. (14)

WhenH = R
N for someN , Ai = Ai is a matrix andA = A is the matrix obtained by column-wise concatenating

Ai. If for a givenx the jth subspaceAj does not appear in the sum (7), or equivalently in (11), thenc[j] = 0.

Any x in the union (6), (7) can be represented in terms ofk of the basesAi. Therefore, we can writex = Ac

where there are at mostk non-zero blocksc[i]. Consequently, our union model is equivalent to the model inwhich

x is represented by a sparse vectorc in an appropriate basis. However, the sparsity pattern herehas a unique form

which we will exploit in our conditions and algorithms: the non-zero elements appear in blocks.

Definition 1: A vector c ∈ R
N is called blockk-sparse overI = {d1, . . . , dm} if c[i] is nonzero for at mostk

indicesi whereN =
∑

i di.

An example of a block-sparse vector withk = 2 is depicted in Fig. 1. Whendi = 1 for eachi, block sparsity

c
T

=

d1 = 3 d4 = 6d2 = 4 d5 = 1d2 = 2

Fig. 1. A block-sparse vectorc over I = {d1, . . . , d5}. The gray areas represent 10 non-zero entries which occupy two blocks.

reduces to the conventional definition of a sparse vector. Denoting

‖c‖0,I =
m∑

i=1

I(‖c[i]‖2 > 0), (15)
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where I(‖c[i]‖2 > 0) is an indicator function that obtains the value1 if ‖c[i]‖2 > 0 and 0 otherwise, a block

k-sparse vectorc can be defined by‖c‖0,I ≤ k.

Evidently, there is a one-to-one correspondence between a vectorx in the union, and a block-sparse vectorc.

The measurements (5) can also be represented explicitly in terms ofc as

y = S∗x = S∗Ac = Dc, (16)

whereD is then × N matrix defined by

D = S∗A. (17)

We can therefore phrase our problem in terms ofD andc as that of recovering a block-k sparse vectorc over I

from the measurements (16).

Note that the choice of basisAi for each subspace does not affect our model. Indeed, choosing alternative bases

will lead to x = AWc whereW is a block diagonal matrix with blocks of sizedi. Defining c̃ = Wc, the block

sparsity pattern of̃c is equal to that ofc.

Since our problem is equivalent to that of recovering a blocksparse vector overI from linear measurements

y = Dc, in the reminder of the paper we focus our attention on this problem.

IV. U NIQUENESS ANDSTABILITY

In this section we study the uniqueness and stability of our sampling method. These properties are intimately

related to the RIP, which we generalize here to the block-sparse setting.

The first question we address is that of uniqueness, namely conditions under which a block-sparse vectorc is

uniquely determined by the measurement vectory = Dc.

Proposition 1: There is a unique block-k sparse vectorc consistent with the measurementsy = Dc if and only

if Dc 6= 0 for everyc 6= 0 that is block2k-sparse.

Proof: The proof follows from [22, Proposition 4].

We next address the issue of stability. A sampling operator is stable for a setT if and only if there exists

constantsα > 0, β < ∞ such that

α‖x1 − x2‖2
H ≤ ‖S∗x1 − S∗x2‖2

2 ≤ β‖x1 − x2‖2
H, (18)

for everyx1, x2 in T . The ratioκ = β/α provides a measure for stability of the sampling operator. The operator is

maximally stable whenκ = 1. In our setting,S∗ is replaced byD, and the setT contains block-k sparse vectors.

The following proposition follows immediately from (18) bynoting that given two block-k sparse vectorsc1, c2

their differencec1 − c2 is block-2k sparse.
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Proposition 2: The measurement matrixD is stable for every blockk-sparse vectorc if and only if there exists

C1 > 0 andC2 < ∞ such that

C1‖v‖2
2 ≤ ‖Dv‖2

2 ≤ C2‖v‖2
2, (19)

for everyv that is block2k-sparse.

It is easy to see that ifD satisfies (19) thenDc 6= 0 for all block 2k-sparse vectorsc. Therefore, this condition

implies both invertibility and stability.

A. Block RIP

Property (19) is related to the RIP used in several previous works in CS [9], [13], [14]. A matrixD of size

n × N is said to have the RIP if there exists a constantδk ∈ [0, 1) such that for everyk-sparsec ∈ R
N ,

(1 − δk)‖c‖2
2 ≤ ‖Dc‖2

2 ≤ (1 + δk)‖c‖2
2. (20)

Extending this property to block-sparse vectors leads to the following definition:

Definition 2: Let D : R
N → R

n be a given matrix. ThenD has the block RIP overI = {d1, . . . , dm} with

parameterδk|I if for every c ∈ R
N that is blockk-sparse overI we have that

(1 − δk|I)‖c‖2
2 ≤ ‖Dc‖2

2 ≤ (1 + δk|I)‖c‖2
2. (21)

By abuse of notation, we useδk for the block-RIP constantδk|I when it is clear from the context that we refer to

blocks. Block-RIP is a special case of theA-restricted isometry defined in [23]. From Proposition 1 it follows that

if D satisfies the RIP (21) withδ2k < 1, then there is a unique block-sparse vectorc consistent with (16).

Note that a blockk-sparse vector overI is M -sparse in the conventional sense whereM is the sum of thek

largest values inI, since it has at mostM nonzero elements. If we requireD to satisfy RIP for allM -sparse

vectors, then (21) must hold for all2M -sparse vectorsc. Since we only require the RIP for block sparse signals,

(21) only has to be satisfied for a certain subset of2M -sparse signals, namely those that have block sparsity. As

a result, the block-RIP constantδk|I is typically smaller thanδM (whereM depends onk; for blocks with equal

sized, M = kd).

To emphasize the advantage of block RIP over standard RIP, consider the following matrix, separated into three

blocks of two columns each:

D =












−1 1 0 0 0 1

0 2 −1 0 0 3

0 3 0 −1 0 1

0 1 0 0 −1 1












·B, (22)
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whereB is a diagonal matrix that results in unit-norm columns ofD, i.e., B = diag (1, 15, 1, 1, 1, 12)−1/2 . In this

examplem = 3 andI = {d1 = 2, d2 = 2, d3 = 2}. Suppose thatc is block-1 sparse, which corresponds to at most

two non-zero values. Brute-force calculations show that the smallest value ofδ2 satisfying the standard RIP (20) is

δ2 = 0.866. On the other hand, the block-RIP (21) corresponding to the case in which the two non-zero elements

are restricted to occur in one block is satisfied withδ1|I = 0.289. Increasing the number of non-zero elements to

k = 4, we can verify that the standard RIP (20) does not hold for anyδ4 ∈ [0, 1). Indeed, in this example there

exist two4-sparse vectors that result in the same measurements. In contrast,δ2|I = 0.966 satisfies the lower bound

in (21) when restricting the4 non-zero values to two blocks. Consequently, the measurements y = Dc uniquely

specify a single block-sparsec.

In the next section, we will see that the ability to recoverc in a computationally efficient way depends on

the constantδ2k|I in the block RIP (21). The smaller the value ofδ2k|I , the fewer samples are needed in order

to guarantee stable recovery. Both standard and block RIP constantsδk, δk|I are by definition increasing withk.

Therefore, it was suggested in [12] to normalize each of the columns ofD to 1, so as to start withδ1 = 0. In the

same spirit, we recommend choosing the bases forAi such thatD = S∗A has unit-norm columns, corresponding

to δ1|I = 0.

B. Recovery Method

We have seen that ifD satisfies the RIP (21) withδ2k < 1, then there is a unique block-sparse vectorc consistent

with (16). The question is how to findc in practice. Below we present an algorithm that will in principle find the

uniquec from the samplesy. Unfortunately, though, it has exponential complexity. Inthe next section we show

that under a stronger condition onδ2k we can recoverc in a stable and efficient manner.

Our first claim is thatc can be uniquely recovered by solving the optimization problem

min
c

‖c‖0,I

s. t. y = Dc. (23)

To show that (23) will indeed recover the true value ofc, suppose that there exists ac′ such thatDc′ = y and

‖c′‖0,I ≤ ‖c‖0,I ≤ k. Since bothc, c′ are consistent with the measurements,

0 = D(c − c′) = Dd, (24)

where‖d‖0,I ≤ 2k so thatd is a block2k-sparse vector. SinceD satisfies (21) withδ2k < 1, we must have that

d = 0 or c = c′.

In principle (23) can be solved by searching over all possible sets ofk blocks whether there exists ac that is
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consistent with the measurements. The invertibility condition (21) ensures that there is only one suchc. However,

clearly this approach is not efficient.

V. CONVEX RECOVERY ALGORITHM

A. Noise-Free Recovery

We now develop an efficient convex optimization problem instead of (23) to approximatec. As we show, ifD

satisfies (21) with a small enough value ofδ2k, then the method we propose will recoverc exactly.

Our approach is to minimize the sum of the energy of the blocksc[i]. To write down the problem explicitly, we

define the mixedℓ2/ℓ1 norm over the index setI = {d1, . . . , dm} as

‖c‖2,I =

m∑

i=1

‖c[i]‖2. (25)

The algorithm we suggest is then

min
c

‖c‖2,I

s. t. y = Dc. (26)

Problem (26) can be written as an SOCP by definingti = ‖c[i]‖2. Then (26) is equivalent to

min
c,ti

m∑

i=1

ti

s. t. y = Dc

ti ≥ ‖c[i]‖2, 1 ≤ i ≤ m

ti ≥ 0, 1 ≤ i ≤ m, (27)

which can be solved using standard software packages.

The next theorem establishes that the solution to (26) is thetrue c as long asδ2k is small enough.

Theorem 1:Let y = Dc0 be measurements of a blockk-sparse vectorc0. If D satisfies the block RIP (21) with

δ2k <
√

2 − 1 then

1) there is a unique block-k sparse vectorc consistent withy;

2) the SOCP (27) has a unique solution;

3) the solution to the SOCP is equal toc0.

Before proving the theorem we note that it provides a gain over standard CS results. Specifically, it is shown in

[14] that if c is k-sparse and the measurement matrixD satisfies the standard RIP withδ2k <
√

2− 1, thenc can
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be recovered exactly from the measurementsy = Dc via the linear program:

min
c

‖c‖1

s. t. y = Dc. (28)

Since any blockk-sparse vector is alsoM -sparse withM equal to the sum of thek largest values ofdi, we can

find c0 of Theorem 1 by solving (28) ifδ2M is small enough. However, this standard CS approach does notexploit

the fact that the non-zero values appear in blocks, and not inarbitrary locations within the vectorc0. On the other

hand, the SOCP (27) explicitly takes the block structure ofc0 into account. Therefore, the condition of Theorem 1

is not as stringent as that obtained by using equivalence results with respect to (28). Indeed, the block RIP (21)

bounds the norm of‖Dc‖ over block sparse vectorsc, while the standard RIP considers all possible choices ofc,

also those that are not2k-block sparse. Therefore, the value ofδ2k in (21) can be lower than that obtained from

(20) with k = 2M , as we illustrated by an example in Section III. This advantage will also be seen in the context

of a concrete example at the end of the section.

Our proof below is rooted in that of [14]. However, some essential modifications are necessary in order to adapt

the results to the block-sparse case. These differences area result of the fact that our algorithm relies on the mixed

ℓ2/ℓ1 norm rather than theℓ1 norm alone. This adds another layer of complication to the proof, and therefore we

expand the derivations in more detail than in [14].

Proof: We first note thatδ2k < 1 guarantees uniqueness ofc0 from Proposition 1. To prove parts 2) and 3)

we show that any solution to (26) has to be equal toc0. To this end letc′ = c0 +h be a solution of (26). The true

valuec0 is non-zero over at mostk blocks. We denote byI0 the block indices for whichc0 is nonzero, and by

hI0
the restriction ofh to these blocks. Next we decomposeh as

h =

ℓ−1∑

i=0

hIi
, (29)

wherehIi
is the restriction ofh to the setIi which consists ofk blocks, chosen such that the norm ofhIc

0
overI1

is largest, the norm overI2 is second largest and so on. Our goal is to show thath = 0. We prove this by noting

that

‖h‖2 = ‖hI0∪I1
+ h(I0∪I1)c‖2 ≤ ‖hI0∪I1

‖2 + ‖h(I0∪I1)c‖2. (30)

In the first part of the proof we show that‖h(I0∪I1)c‖2 ≤ ‖hI0∪I1
‖2. In the second part we establish that

‖hI0∪I1
‖2 = 0, which completes the proof.

Part I:‖h(I0∪I1)c‖2 ≤ ‖hI0∪I1
‖2
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We begin by noting that

‖h(I0∪I1)c‖2 =

∥
∥
∥
∥
∥

ℓ−1∑

i=2

hIi

∥
∥
∥
∥
∥

2

≤
ℓ−1∑

i=2

‖hIi
‖2. (31)

Therefore, it is sufficient to bound‖hIi
‖2 for i ≥ 2. Now,

‖hIi
‖2 ≤ k1/2‖hIi

‖∞,I ≤ k−1/2‖hIi−1
‖2,I , (32)

where we defined‖a‖∞,I = maxi ‖a[i]‖2. The first inequality follows from the fact that for any blockk-sparsec,

‖c‖2
2 =

∑

|i|=k

‖c[i]‖2
2 ≤ k‖c‖2

∞,I . (33)

The second inequality in (32) is a result of the fact that the norm of each block inhIi
is by definition smaller

or equal to the norm of each block inhIi−1
. Since there are at mostk nonzero blocks,k‖hIi

‖∞,I ≤ ‖hIi−1
‖2,I .

Substituting (32) into (31),

‖h(I0∪I1)c‖2 ≤ k−1/2
ℓ−2∑

i=1

‖hIi
‖2,I ≤ k−1/2

ℓ−1∑

i=1

‖hIi
‖2,I = k−1/2‖hIc

0
‖2,I , (34)

where the equality is a result of the fact that‖c1 +c2‖2,I = ‖c1‖2,I +‖c2‖2,I if c1 andc2 are non-zero on disjoint

blocks.

To develop a bound on‖hIc

0
‖2,I note that sincec′ is a solution to (26),‖c0‖2,I ≥ ‖c′‖2,I . Using the fact that

c′ = c0 + hI0
+ hIc

0
andc0 is supported onI0 we have

‖c0‖2,I ≥ ‖c0 + hI0
‖2,I + ‖hIc

0
‖2,I ≥ ‖c0‖2,I − ‖hI0

‖2,I + ‖hIc

0
‖2,I , (35)

from which we conclude that

‖hIc

0
‖2,I ≤ ‖hI0

‖2,I ≤ k1/2‖hI0
‖2. (36)

The last inequality follows from applying Cauchy-Schwarz to any blockk-sparse vectorc:

‖c‖2,I =
∑

|i|=k

‖c[i]‖2 · 1 ≤ k1/2‖c‖2. (37)

Substituting (36) into (34):

‖h(I0∪I1)c‖2 ≤ ‖hI0
‖2 ≤ ‖hI0∪I1

‖2, (38)

which completes the first part of the proof.

Part II:‖hI0∪I1
‖2 = 0

We next show thathI0∪I1
must be equal to0. In this part we invoke the RIP.
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SinceDc0 = Dc′ = y, we haveDh = 0. Using the fact thath = hI0∪I1
+
∑

i≥2 hIi
,

‖DhI0∪I1
‖2
2 = −

ℓ−1∑

i=2

〈D(hI0
+ hI1

),DhIi
〉. (39)

From the parallelogram identity and the block-RIP it can be shown that

|〈Dc1,Dc2〉| ≤ δ2k‖c1‖2‖c2‖2, (40)

for any two blockk-sparse vectors with disjoint support. The proof is similarto [14, Lemma 2.1] for the standard

RIP. Therefore,

|〈DhI0
,DhIi

〉| ≤ δ2k‖hI0
‖2‖hIi

‖2, (41)

and similarly for〈DhI1
,DhIi

〉. Substituting into (39),

‖DhI0∪I1
‖2
2 =

∣
∣
∣
∣
∣

ℓ−1∑

i=2

〈D(hI0
+ hI1

),DhIi
〉
∣
∣
∣
∣
∣

≤
ℓ−1∑

i=2

(|〈DhI0
,DhIi

〉| + |〈DhI1
,DhIi

〉|)

≤ δ2k(‖hI0
‖2 + ‖hI1

‖2)
ℓ−1∑

i=2

‖hIi
‖2. (42)

From the Cauchy-Schwarz inequality, any length-2 vectora satisfiesa(1) + a(2) ≤
√

2‖a‖2. Therefore,

‖hI0
‖2 + ‖hI1

‖2 ≤
√

2
√

‖hI0
‖2
2 + ‖hI1

‖2
2 =

√
2‖hI0∪I1

‖2, (43)

where the last equality is a result of the fact thathI0
and hI1

have disjoint support. Substituting into (42) and

using (32), (34) and (36),

‖DhI0∪I1
‖2
2

(32),(34)

≤
√

2k−1/2δ2k‖hI0∪I1
‖2‖hIc

0
‖2,I

(36)

≤
√

2δ2k‖hI0∪I1
‖2‖hI0

‖2

≤
√

2δ2k‖hI0∪I1
‖2
2, (44)

where the last inequality follows from‖hI0
‖2 ≤ ‖hI0∪I1

‖2. Combining (44) with the RIP (21) we have

(1 − δ2k)‖hI0∪I1
‖2
2 ≤ ‖DhI0∪I1

‖2
2 ≤

√
2δ2k‖hI0∪I1

‖2
2. (45)

Sinceδ2k <
√

2 − 1, (45) can hold only if‖hI0∪I1
‖2 = 0, which completes the proof.

We conclude this subsection by pointing out more explicitlythe differences between the proof of Theorem 1 and

that of [14]. The main difference begins in (32); in our formulation each of the subvectorshIi
may have a different
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number of non-zero elements, while the equivalent equationin [14] (Eq. (10)) relies on the fact that the maximal

number of non-zero elements in each of the subvectors is the same. This requires the use of several mixed-norms

in our setting. The rest of the proof follows the spirit of [14] where in some of the inequalities conventional norms

are used, while in others the adaptation to our setting necessitates mixed norms.

B. Robust Recovery

We now treat the situation in which the observations are noisy, and the vectorc0 is not exactly block-k sparse.

Specifically, suppose that the measurements (16) are corrupted by bounded noise so that

y = Dc + z, (46)

where‖z‖2 ≤ ǫ. In order to recoverc we use the modified SOCP:

min
c

‖c‖2,I

s. t. ‖y −Dc‖2 ≤ ǫ. (47)

In addition, given ac ∈ R
N , we denote byck the best approximation ofc by a vector withk non-zero blocks, so

that ck minimizes‖c − d‖2,I over all blockk-sparse vectorsd. Theorem 2 shows that even whenc is not block

k-sparse and the measurements are noisy, the best block-k approximation can be well approximated using (47).

Theorem 2:Let y = Dc0 + z be noisy measurements of a vectorc0. Let ck denote the best blockk-sparse

approximation ofc0, such thatck is block k-sparse and minimizes‖c0 − d‖2,I over all blockk-sparse vectorsd,

and letc′ be a solution to (47). IfD satisfies the block RIP (21) withδ2k <
√

2 − 1 then

‖c0 − c′‖2 ≤ 2(1 − δ2k)

1 − (1 +
√

2)δ2k

k−1/2‖c0 − ck‖2,I +
4
√

1 + δ2k

1 − (1 +
√

2)δ2k

ǫ. (48)

Before proving the theorem, note that the first term in (48) isa result of the fact thatc0 is not exactlyk-block

sparse. The second expression quantifies the recovery errordue to the noise.

Proof: The proof is very similar to that of Theorem 1 with a few differences which we indicate. These changes

follow the proof of [14, Theorem 1.3], with appropriate modifications to address the mixed norm.

Denote byc′ = c0 + h the solution to (47). Due to the noise and the fact thatc0 is not blockk-sparse, we

will no longer obtainh = 0. However, we will show that‖h‖2 is bounded. To this end, we begin as in the proof

of Theorem 1 by using (30). In the first part of the proof we showthat ‖h(I0∪I1)c‖2 ≤ ‖hI0∪I1
‖2 + 2e0 where

e0 = k−1/2‖c0 − cI0
‖2,I andcI0

is the restriction ofc0 onto thek blocks corresponding to the largestℓ2 norm.

Note thatcI0
= ck. In the second part, we develop a bound on‖hI0∪I1

‖2.

Part I: Bound on‖h(I0∪I1)c‖2
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We begin by decomposingh as in the proof of Theorem 1. The inequalities until (35) holdhere as well. Instead

of (35) we have

‖c0‖2,I ≥ ‖cI0
+ hI0

‖2,I + ‖cIc

0
+ hIc

0
‖2,I ≥ ‖cI0

‖2,I − ‖hI0
‖2,I + ‖hIc

0
‖2,I − ‖cIc

0
‖2,I . (49)

Therefore,

‖hIc

0
‖2,I ≤ 2‖cIc

0
‖2,I + ‖hI0

‖2,I , (50)

where we used the fact that‖c0‖2,I − ‖cI0
‖2,I = ‖cIc

0
‖2,I . Combining (34), (37) and (50) we have

‖h(I0∪I1)c‖2 ≤ ‖hI0
‖2 + 2e0 ≤ ‖hI0∪I1

‖2 + 2e0, (51)

wheree0 = k−1/2‖c0 − cI0
‖2,I .

Part II: Bound on‖hI0∪I1
‖2

Using the fact thath = hI0∪I1
+
∑

i≥2 hIi
we have

‖DhI0∪I1
‖2
2 = 〈DhI0∪I1

,Dh〉 −
ℓ−1∑

i=2

〈D(hI0
+ hI1

),DhIi
〉. (52)

From (21),

|〈DhI0∪I1
,Dh〉| ≤ ‖DhI0∪I1

‖2‖Dh‖2 ≤
√

1 + δ2k‖hI0∪I1
‖2‖Dh‖2. (53)

Since bothc′ andc0 are feasible

‖Dh‖2 = ‖D(c0 − c′)‖2 ≤ ‖Dc0 − y‖2 + ‖Dc′ − y‖2 ≤ 2ǫ, (54)

and (53) becomes

|〈DhI0∪I1
,Dh〉| ≤ 2ǫ

√

1 + δ2k‖hI0∪I1
‖2. (55)

Substituting into (52),

‖DhI0∪I1
‖2
2 ≤ |〈DhI0∪I1

,Dh〉| +
ℓ−1∑

i=2

|〈D(hI0
+ hI1

),DhIi
〉|

≤ 2ǫ
√

1 + δ2k‖hI0∪I1
‖2 +

ℓ−1∑

i=2

|〈D(hI0
+ hI1

),DhIi
〉| . (56)

Combining with (42) and (44),

‖DhI0∪I1
‖2
2 ≤

(

2ǫ
√

1 + δ2k +
√

2δ2kk
−1/2‖hIc

0
‖2,I

)

‖hI0∪I1
‖2. (57)
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Using (37) and (50) we have the upper bound

‖DhI0∪I1
‖2
2 ≤

(

2ǫ
√

1 + δ2k +
√

2δ2k(‖hI0
‖ + 2e0)

)

‖hI0∪I1
‖2. (58)

On the other hand, the RIP results in the lower bound

‖DhI0∪I1
‖2
2 ≥ (1 − δ2k)‖hI0∪I1

‖2
2. (59)

From (58) and (59),

(1 − δ2k)‖hI0∪I1
‖2 ≤ 2ǫ

√

1 + δ2k +
√

2δ2k(‖hI0∪I1
‖ + 2e0), (60)

or

‖hI0∪I1
‖2 ≤ 2

√
1 + δ2k

1 − (1 +
√

2)δ2k

ǫ +
2
√

2δ2k

1 − (1 +
√

2)δ2k

e0. (61)

The conditionδ2k <
√

2 − 1 ensures that the denominator in (61) is positive. Substituting (61) results in

‖h‖2 ≤ ‖hI0∪I1
‖2 + ‖h(I0∪I1)c‖2 ≤ 2‖hI0∪I1

‖2 + 2e0, (62)

which completes the proof of the theorem.

To summarize this section we have seen that as long asD satisfies the block-RIP (21) with a suitable constant,

any block-k sparse vector can be perfectly recovered from its samplesy = Dc using the convex SOCP (26). This

algorithm is stable in the sense that by slightly modifying it as in (47) it can tolerate noise in a way that ensures

that the norm of the recovery error is bounded by the noise level. Furthermore, ifc is not blockk-sparse, then its

best block-sparse approximation can be approached by solving the SOCP. These results are summarized in Table I.

In the table,δ2k refers to the block RIP constant.

TABLE I

COMPARISON OF ALGORITHMS FOR SIGNAL RECOVERY FROMy = Dc0 + z

Algorithm (26) Algorithm (47)
c0 block k-sparse arbitrary

Noisez none (z = 0) bounded‖z‖2 ≤ ǫ

Condition onD δ2k ≤
√

2 − 1 δ2k ≤
√

2 − 1

Recoveryc′ c′ = c0 ‖c0 − c′‖2 small; see (48)

C. Advantage of Block Sparsity

The standard sparsity model considered in CS assumes thatx has at mostk non-zero elements, however it does

not impose any further structure. In particular, the non-zero components can appear anywhere in the vector. There

are many practical scenarios in which the non-zero values are aligned to blocks, meaning they appear in regions,
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and are not arbitrarily spread throughout the vector. One example in the structured union of subspaces model we

treat in this paper. Other examples are considered in [25].

Prior work on recovery of block-sparse vectors [24] assumedconsecutive blocks of the same size. It was sown that

in this case, whenn,N go to infinity, the algorithm (26) will recover the true block-sparse vector with overwhelming

probability. Their analysis is based on characterization of the null space ofD. In contrast, our approach relies on

RIP which allows the derivation of uniqueness and equivalence conditions for finite dimensions and not only in

the asymptotic regime. In addition, Theorem 2 considers thecase of mismodelling and noisy observations while in

[24] only the ideal noise-free setting is treated.

To demonstrate the advantage of our algorithm over standardbasis pursuit (28), consider the matrixD of (22). In

Section V, the standard and block RIP constants ofD were calculated and it was shown that block RIP constants are

smaller. This suggests that there are input vectorsx for which the mixedℓ2/ℓ1 method of (26) will be able to recover

them exactly from measurementsy = Dc while standardℓ1 minimization will fail. To illustrate this behavior, let

x = [0, 0, 1,−1,−1, 0.1]T be a4-sparse vector, in which the non-zero elements are known to appear in blocks of

length2. The prior knowledge thatx is 4-sparse is not sufficient to determinex from y. In contrast, there is a unique

block-sparse vector consistent withy. Furthermore, our algorithm which is a relaxed version of (23), finds the correct

x while standardℓ1 minimization fails in this case; its output iŝx = [−0.0289, 0, 0.9134,−1.0289,−1.0289, 0].

We further compare the recovery performance ofℓ1 minimization (28) and our algorithm (26) for an extensive

set of random signals. In the experiment, we draw a matrixD of size25 × 50 from the Gaussian ensemble. The

input vectorx is also randomly generated as a block-sparse vector with blocks of length5. We draw1 ≤ k ≤ 25

non-zero entries from a zero-mean unit variance normal distribution and divide them into blocks which are chosen

uniformly at random withinx. Each of the algorithms is executed based on the measurementsy = Dx. In Fig. 2 we

plot the fraction of successful reconstructions for eachk over500 experiments. The results illustrate the advantage

of incorporating the block-sparsity structure into the optimization program. An interesting feature of the graph is

that when using the block-sparse recovery approach, the performance is roughly constant over the block-length (5

in this example). This explains the performance advantage over standard sparse recovery.

VI. A PPLICATION TO MMV M ODELS

We now specialize our algorithm and equivalence results to the MMV problem. This leads to two contributions

which we discuss in this section: The first is an equivalence result based on RIP for a mixed-norm MMV algorithm.

The second is a new measurement strategy in MMV problems thatleads to improved performance over conventional

MMV methods, both in simulations and as measured by the RIP-based equivalence condition. In contrast to previous

equivalence results, for this strategy we show that even if we choose the worst possibleX, improved performance

over the single measurement setting can be guaranteed.
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Fig. 2. Recovery rate of block-sparse signals using standard ℓ1 minimization (basis pursuit) and the mixedℓ2/ℓ1 algorithm.

A. Equivalence Results

As we have seen in Section II, a special case of block sparsityis the MMV model, in which we are given

a matrix of measurementsY = MX whereX is an unknownL × d matrix that has at mostk non-zero rows.

Denoting byc = vec(XT ),y = vec(YT ), D = MT ⊗ Id we can express the vector of measurementsy asy = Dc

wherec is a block sparse vector with consecutive blocks of lengthd. Therefore, the results of Theorems 1 and 2

can be specified to this problem.

Recovery algorithms for MMV using convex optimization programs were studied in [28], [30] and several greedy

algorithms were proposed in [27], [29]. Specifically, in [27]–[30] the authors study a class of optimization programs,

which we refer to as M-BP:

M-BP(ℓq): min
L∑

i=1

‖Xi‖p
q s. t. Y = MX, (63)

whereXi is the ith row of X. The choicep = 1, q = ∞ was considered in [30], while [28] treated the case of

p = 1 and arbitraryq. Using p ≤ 1 and q = 2 was suggested in [27], [41], leading to the iterative algorithm

M-FOCUSS. Forp = 1, q = 2, the program (63) has a global minimum which M-FOCUSS is proven to find. A

nice comparison between these methods can be found in [30]. Equivalence for MMV algorithms based on RIP

analysis does not appear in previous papers. The most detailed theoretical analysis can be found in [28] which

establishes equivalence results based on mutual coherence. The results imply equivalence for (63) withp = 1 under

conditions equal to those obtained for the single measurement case. Note that RIP analysis typically leads to tighter

equivalence bounds than mutual coherence analysis.

In our recent work [19], we suggested an alternative approach to solving MMV problems by merging thed

measurement columns with random coefficients and in such a way transforming the multiple measurement problem
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into a single measurement counterpart. As proved in [19], this technique preserves the non-zero location set with

probability one thus reducing computational complexity. Moreover, we showed that this method can be used to

boost the empirical recovery rate by repeating the random merging several times.

Using the block-sparsity approach we can alternatively cast any MMV model as a single measurement vector

problem by deterministically transforming the multiple measurement vectors into the single vector modelvec(YT ) =

(M⊗ Id) vec(XT ), wherec = vec(XT ) is block-k sparse with consecutive blocks of lengthd. In contrast to [19]

this does not reduce the number of unknowns so that the computational complexity of the resulting algorithm is

on the same order as previous approaches, and also does not offer the opportunity for boosting. However, as we

see in the next subsection, with an appropriate choice of measurement matrix this approach results in improved

recovery capabilities.

Since we can cast the MMV problem as one of block-sparse recovery, we may apply our equivalence results

of Theorem 1 to this setting leading to RIP-based equivalence. To this end we first note that applying the SOCP

(26) to the effective measurement vectory is the same as solving (63) withp = 1, q = 2. Thus the equivalence

conditions we develop below relate to this program. Next, ifz = Dc wherec is a block2k-sparse vector and

D = M ⊗ Id, then taking the structure ofD into account,Z = MX whereX is a sizeL × d matrix whoseith

row is equal toc[i], and similarly forZ. The block sparsity ofc implies thatX has at most2k non-zero rows.

The squaredℓ2 norm ‖z‖2
2 is equal to the squaredℓ2 norm of the rows ofZ which can be written as

‖z‖2
2 = ‖Z‖2

F = Tr(ZTZ), (64)

where‖Z‖F denotes the Frobenius norm. Since‖c‖2
2 = ‖X‖2

F the RIP condition becomes

(1 − δ2k)Tr(XTX) ≤ Tr(XTMTMX) ≤ (1 + δ2k)Tr(XTX), (65)

for any L × d matrix X with at most2k non-zero rows.

We now show that (65) is equivalent to the standard RIP condition

(1 − δ2k)‖x‖2
2 ≤ ‖Mx‖2

2 ≤ (1 + δ2k)‖x‖2
2, (66)

for any lengthL vectorx that is2k-sparse. To see this, suppose first that (65) is satisfied for every matrixX with at

most2k non-zero rows and letx be an arbitrary2k-sparse vector. If we defineX to be the matrix whose columns

are all equal tox, thenX will have at most2k non-zero rows and therefore satisfies (65). Since the columns of

X are all equal,Tr(XT X) = d‖x‖2
2 and Tr(XTMT MX) = d‖Mx‖2

2 so that (66) holds. Conversely, suppose

that (66) is satisfied for all2k-sparse vectorsx and letX be an arbitrary matrix with at most2k non-zero rows.

Denoting byxj the columns ofX, eachxj is 2k-sparse and therefore satisfies (66). Summing over all values j
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results in (65).

To summarize, ifM satisfies the conventional RIP condition (66), then the algorithm (63) with p = 1, q = 2

will recover the true unknownX. This requirement reduces to that we would obtain if we triedto recover each

column of X separately, using the standardℓ1 approach (28). As we already noted, previous equivalence results

for MMV algorithms also share this feature. Although this condition guarantees that processing the vectors jointly

does not harm the recovery ability, in practice exploiting the joint sparsity pattern ofX via (63) leads to improved

results. Unfortunately, this behavior is not captured by any of the known equivalence conditions. This is due to the

special structure ofD = M ⊗ I. Since each measurement vectoryi is affected only by the corresponding vector

xi, it is clear that in the worst-case we can choosexi = x for some vectorx. In this case, all theyis are equal

so that adding measurement vectors will not improve our recovery ability. Consequently, worst-case analysis based

on the standard measurement model for MMV problems cannot lead to improved performance over the single

measurement case.

B. Improved MMV Recovery

We have seen that the pessimistic equivalence results for MMV algorithms is a consequence of the fact that in

the worst-case scenario in whichxi = x, using a separable measurement strategy will render all observation vectors

equal. In this subsection we introduce an alternative measurement technique for MMV problems that can lead to

improved worst-case behavior, as measured by RIP, over the single channel case.

One way to improve the analytical results is to consider an average case analysis instead of a worst-case approach.

In [42] we show that if the unknown vectorsxi are generated randomly, then the performance improves with

increasing number of measurement vectors. The advantage stems from the fact that the situation of equal vectors

has zero probability and therefore does not affect the average performance. Here we take a different route which

does not involve randomness in the unknown vectors, and leads to improved results even in the worst-case (namely

without requiring an average analysis).

To enhance the performance of MMV recovery, we note that whenwe allow for an arbitrary (unstructured)D,

the RIP condition of Theorem 1 is weaker than the standard RIPrequirement for recoveringk-sparse vectors. This

suggests that we can improve the performance of MMV methods by converting the problem into a general block

sparsity problem, and then sampling with an arbitrary unstructured matrixD rather than the choiceD = MT ⊗ Id.

The tradeoff introduced is increased computational complexity since each measurement is based on all input vectors.

The theoretical conditions will now be looser, since block-RIP is weaker than standard RIP. Furthermore, in practice,

this approach often improves the performance over separable MMV measurement techniques as we illustrate in the

following example.

In the example, we compare the performance of several MMV algorithms for recoveringX in the modelY =
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Fig. 3. Recovery rate for different numberk of non-zero rows inX. Each point on the graph represents an average recovery rateover 500
simulations.

MX, with our method based on block sparsity in which the measurementsy are obtained viay = Dc where

c = vec(XT ) andD is a dense matrix. ChoosingD as a block diagonal matrix with blocks equal toM results in

the standard MMV measurement model. The effective matricesD have the same size in the case in which it is block

diagonal and when it is dense. To compare the performance of (26) with a denseD to that of (63) with a block

diagonalD, we compute the empirical recovery rate of the methods in thesame way performed in [19]. The matrices

M andD are drawn randomly from a Gaussian ensemble. In our example,we chooseℓ = 20, L = 30, d = 5 where

ℓ is the number of rows inY. The matrixX is generated randomly by first selecting thek non-zero rows uniformly

at random, and then drawing the elements in these rows from a normal distribution. The empirical recovery rates

using the methods of (63) for different choices ofq andp, ReMBO [19] and our algorithm (26) with denseD are

depicted in Fig. 3. When the indexp is omitted it is equal to1. Evidently, our algorithm performs better than most

popular optimization techniques for MMV systems. We stressthat the performance advantage is due to the joint

measurement process rather than a new recovery algorithm.

VII. R ANDOM MATRICES

Theorems 1 and 2 establish that a sufficiently small block RIPconstantδ2k|I ensures exact recovery of the

coefficient vectorc. We now prove that random matrices are likely to satisfy thisrequirement. Specifically, we

show that the probability thatδk|I exceeds a certain threshold decays exponentially in the length of c. Our approach

relies on results of [12], [26] developed for standard RIP, however, exploiting the block structure ofc leads to a

much faster decay rate.

Proposition 3: SupposeD is ann × N matrix from the Gaussian ensemble, namely[D]ik ∼ N (0, 1
n). Let δk|I

be the smallest value satisfying the block RIP (21) overI = {d1 = d, . . . , dm = d}, assumingN = md for some
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integerm. Then, for everyǫ > 0 the block RIP constantδk|I obeys (forn,N large enough, and fixedd)

Prob
(√

1 + δk|I > 1 + (1 + ǫ)f(r)
)

≤ 2e−NH(r)ǫ · e−m(d−1)H(r). (67)

Here, the ratior = kd/N is fixed,f(r) =
√

N
n

(√
r +

√

2H(r)
)

, andH(q) = −q log q− (1− q) log(1− q) is the

entropy function defined for0 < q < 1.

The assumption thatdi = d simplifies the calculations in the proof. Following the proof, we shortly address the

more difficult case in which the blocks have varying lengths.We note that Proposition 3 reduces to the result of

[12] whend = 1. However, sincef(r) is independent ofd, it follows that ford > 1 and fixed problem dimensions

n,N, r, block-RIP constants are smaller than the standard RIP constant. The second exponent in the right-hand

side of (67) is responsible for this behavior.

Proof: Let λ = (1 + ǫ)f(r) and define

σ̄ = max
|T |=k,d

σmax(DT ), σ = min
|T |=k,d

σmin(DT ), (68)

whereσmax(DT ), σmin(DT ), are the largest and the smallest singular values ofDT , respectively. We use|T | = k, d

to denote a column subset ofD consisting ofk blocks of lengthd. For brevity we omit subscripts and denote

δ = δk|I . The inequalities in the definition of block-RIP (21) imply that

1 + δ ≥ σ̄2 (69)

1 − δ ≤ σ2. (70)

Sinceδ is the smallest number satisfying these inequalities we have that1 + δ = max(σ̄2, 2 − σ2). Therefore,

Prob
(√

1 + δ > 1 + λ
)

= Prob
(√

max(σ̄2, 2 − σ2) > 1 + λ
)

(71)

≤ Prob(σ̄ > 1 + λ) + Prob(
√

2 − σ2 > 1 + λ). (72)

Noting thatσ ≥ 1 − λ implies
√

2 − σ2 ≤ 1 + λ we conclude that

Prob
(√

1 + δ > 1 + λ
)

≤ Prob(σ̄ > 1 + λ) + Prob(σ < 1 − λ). (73)

We now bound each term in the right-hand-side of (73) using a result of Davidson and Szarek [43] regarding

the concentration of the extreme singular values of a Gaussian matrix. It was proved in [43] that anm× n matrix

X with n ≥ m satisfies

Prob(σmax(X) > 1 +
√

m/n + t) ≤ e−nt2/2 (74)

Prob(σmin(X) < 1 −
√

m/n − t) ≤ e−nt2/2. (75)
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Applying a union bound leads to

Prob

(

σ̄ > 1 +

√

kd

n
+ t

)

≤
∑

|T |=k,d

Prob

(

σmax(DT ) > 1 +

√

kd

n
+ t

)

(76)

≤
∑

|T |=k,d

e−nt2/2 (77)

=

(
m

k

)

e−nt2/2. (78)

Using the well-known bound on the binomial coefficient (for sufficiently largem)

(
m

k

)

≤ emH(k/m), (79)

we conclude that

Prob

(

σ̄ > 1 +

√

kd

n
+ t

)

≤ emH(k/m)e−nt2/2. (80)

To utilize this result in (73) we rearrange

1 + λ = 1 + (1 + ǫ)f(r) (81)

= 1 + (1 + ǫ)

(√

kd

n
+

√

2N

n
H(r)

)

(82)

≥ 1 +

√

kd

n
+

√

(1 + ǫ)
2N

n
H(r) (83)

and obtain that

Prob (σ̄ > 1 + λ) ≤ Prob

(

σ̄ > 1 +

√

kd

n
+

√

(1 + ǫ)
2N

n
H(r)

)

. (84)

Using (80) leads to

Prob (σ̄ > 1 + λ) ≤ emH(k/m)e−
n(1+ǫ)2NH(r)

2n (85)

= eNH(r)−m(d−1)H(r)−(1+ǫ)NH(r) (86)

≤ e−NH(r)ǫe−m(d−1)H(r). (87)

Similar arguments are used to bound the second term in (73), completing the proof.

The proof of Proposition 3 can be adapted to the case in whichdi are not equal. In this case, the notation

|T | = k, d is replaced by|T | = k|I and has the following meaning:T indicates a column subset ofD consisting of

k blocks fromI. SinceI contains variable-length blocks,|T | is not constant and depends on the particular column

subset. Consequently, in order to apply the union bounds in (76) we need to consider the worst-case scenario

corresponding to the maximal block length inI. Proposition 3 thus holds ford = max(di). However, it is clear
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that the resulting probability bound will not be as stringent as in the case of equaldi = d, especially when the

ratio max(di)/min(di) is large.

Proposition 3 holds as is for matricesD from the Bernoulli ensemble, namely[D]ik = ± 1√
n

with equal

probability. In fact, the proposition is true for any ensemble for which the concentration of extreme singular

values holds.

The following corollary emphasizes the asymptotic behavior of block-RIP constants per given number of samples.

Corollary 3: Consider the setting of Proposition 3, and defineg(r) =
√

N
n

(√
r +

√

2H(r)d−1
)

. Then,

Prob
(√

1 + δk|I > 1 + (1 + ǫ)g(r)
)

≤ 2e−mH(r)ǫ. (88)

Proof: Let λ = (1 + ǫ)g(r). The result then follows by replacing (81)-(83) with

1 + λ ≥ 1 +

√

kd

n
+

√

(1 + ǫ)
2N

nd
H(r), (89)

which leads toProb(σ̄ > 1 + λ) ≤ e−mH(r)ǫ.

To evaluate the asymptotic behavior of block-RIP we note that for everyǫ > 0 the right-hand side of (88) goes

to zero whenN = md → ∞. Consequently, for fixedd

δk|I < ρ(r)
△
= − 1 + [1 + g(r)]2, (90)

with overwhelming probability. In Fig. 4 we computeρ(r) for several problem dimensions and compare it with

standard RIP which is obtained whend = 1. Evidently, as the non-zero entries are forced to block structure, a

wider range of sparsity ratiosr satisfy the condition of Theorem 1.
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Fig. 5. The standard and block-RIP constantsδk|I for three different dimensionsn, N . Each graph represent an average over 10 instances
of random matrixD. Each instance ofD is scaled by a factor such that (18) is satisfied withα + β = 2.

Although Fig. 4 shows advantage for block-RIP, the absolutesparsity ratios predicted by the theory are pessimistic

as also noted in [12], [26] in the case ofd = 1. To offer a more optimistic viewpoint, the RIP and block-RIP

constants were computed brute-force for several instancesof D from the Gaussian ensemble. Fig. 5 plots the

results and qualitatively affirms that block-RIP constantsare more “likely” to be smaller than their standard RIP

counterparts, even when the dimensionsn,N are relatively small.

An important question is how many samples are needed roughlyin order to guarantee stable recovery. This

question is addressed in the following proposition, which quotes a result from [44] based on the proofs of [45];

we rephrase the result to match our notation.

Proposition 4 ( [44, Theorem 3.3]):Consider the setting of Proposition 3, namely a random Gaussian matrixD

of sizen × N and block sparse signals overI = {d1 = d, . . . , dm = d}, whereN = md for some integerm. Let

t > 0 and0 < δ < 1 be constant numbers. If

n ≥ 36

7δ

(

ln(2L) + kd ln

(
12

δ

)

+ t

)

, (91)

whereL =
(
m
k

)
, thenD satisfies the block-RIP (21) with restricted isometry constant δk|I = δ, with probability at

least1 − e−t.

As observed in [44], the first term in (91) has the dominant impact on the required number of measurements in

an asymptotic sense. Specifically, for block sparse signals

(m/k)k ≤ L =

(
m

k

)

≤ (em/k)k. (92)

Thus, for a given fraction of nonzerosr = kd/N , roughlyn ≈ k log(m/k) = −k log(r) measurements are needed.

For comparison, to satisfy the standard RIP a larger numbern ≈ −kd log(r) is required. Note that Corollary 4 puts

the emphasis on the required problem dimensions to satisfy agiven RIP level. In contrast, Proposition 3 provides

a tail bound on the expected isometry constant for given problem dimensions.
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VIII. C ONCLUSION

In this paper, we studied the problem of recovering an unknown signalx in an arbitrary Hilbert spaceH, from

a given set ofn samples which are modelled as inner products ofx with sampling functionssi, 1 ≤ i ≤ n. The

signal x is known to lie in a union of subspaces, so thatx ∈ Vi where each of the subspacesVi is a sum ofk

subspacesAi chosen from an ensemble ofm possibilities. Thus, there are
(
m
k

)
possible subspaces in whichx can

lie, and a-priori we do not know which subspace is the true one. While previous treatments of this model considered

invertibility conditions, here we provide concrete recovery algorithms for a signal over a structured union.

We began by showing that recoveringx can be reduced to a sparsity problem in which the goal is to recover

a block-sparse vectorc from measurementsy = Dc where the non-zero values inc are grouped into blocks.

The measurement matrixD is equal toS∗A whereS∗ is the sampling operator andA is a set transformation

corresponding to a basis for the sum of allAi. To determinec we suggested a mixedℓ2/ℓ1 convex optimization

program that takes on the form of an SOCP. Relying on the notion of block-RIP, we developed sufficient conditions

under whichc can be perfectly recovered using the proposed algorithm. Wealso proved that under the same

conditions, the unknownc can be stably approximated in the presence of noise. Furthermore, if c is not exactly

block-sparse, then its best block-sparse approximation can be approached using the proposed method. We then

showed that whenD is chosen at random, the recovery conditions are satisfied with high probability.

Specializing the results to MMV systems, we proposed a new method for sampling in MMV problems. In this

approach each measurement vector depends on all the unknownvectors. As we showed, this can lead to better

recovery rate. Furthermore, we established equivalence results for a class of MMV algorithms based on RIP.

Throughout the paper, we assumed a finite union of subspaces as well as finite dimension of the underlying spaces.

An interesting future direction to explore is the extensionof the ideas developed herein to the more challenging

problem of recoveringx in a possibly infinite union of subspaces, which are not necessarily finite-dimensional.

Although at first sight this seems like a difficult problem as our algorithms are inherently finite-dimensional, recovery

methods for sparse signals in infinite dimensions have been addressed in some of our previous work [15]–[19]. In

particular, we have shown that a signal lying in a union of shift-invariant subspaces can be recovered efficiently

from certain sets of sampling functions. In our future work,we intend to combine these results with those in the

current paper in order to develop a more general theory for recovery from a union of subspaces.

A recent preprint [46] that was posted online after the submission of this paper proposes a new framework called

model-based compressive sensing (MCS). The MCS approach assumes a vector signal model in which only certain

predefined sparsity patterns may appear. In general, obtaining efficient recovery algorithms in such scenarios is

difficult, unless further structure is imposed on the sparsity patterns. Therefore, the authors consider two types of

sparse vectors: block sparsity as treated here, and a wavelet tree model. For these settings, they generalize two
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known greedy algorithms: CoSaMP [47] and iterative hard thresholding (IHT) [44]. These results emphasize our

claim that theoretical questions of uniqueness and stable representation can be studied for arbitrary unions as in

[23]. However tractable recovery algorithms inherently require some structure, as the one considered here.

The union model developed in this paper is broader than the block-sparse setting treated in [46] in the sense

that it allows to model linear dependencies between the nonzero values rather than only between their locations, by

appropriate choice of subspaces in (6), (7). In addition, weaim at optimization-based recovery algorithms (26),(47)

which require selecting the objective in order to promote the model properties. Finally, we emphasize that our

results are non asymptotic and also ensure stable recovery in the presence of noise and signal mismodeling.
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