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Abstract

Traditional sampling theories consider the problem of nstaucting an unknown signal from a series of
samples. A prevalent assumption which often guaranteeweeg from the given measurements is thaties in
a known subspace. Recently, there has been growing intaresinlinear but structured signal models, in which
z lies in a union of subspaces. In this paper we develop a gefraraework for robust and efficient recovery
of such signals from a given set of samples. More specificaly treat the case in which lies in a sum ofk
subspaces, chosen from a larger setopossibilities. The samples are modelled as inner produittsam arbitrary
set of sampling functions. To derive an efficient and robaesbvery algorithm, we show that our problem can be
formulated as that of recovering a block-sparse vector ehum-zero elements appear in fixed blocks. We then
propose a mixeds /¢, program for block sparse recovery. Our main result is anvedgmce condition under which
the proposed convex algorithm is guaranteed to recoverrigaal signal. This result relies on the notion of block
restricted isometry property (RIP), which is a generalarabf the standard RIP used extensively in the context of
compressed sensing. Based on RIP we also prove stabilityrofigproach in the presence of noise and modelling
errors. A special case of our framework is that of recovenmuitiple measurement vectors (MMV) that share a joint
sparsity pattern. Adapting our results to this context $eexnew MMV recovery methods as well as equivalence

conditions under which the entire set can be determinedesftiy.

. INTRODUCTION

Sampling theory has a rich history dating back to Cauchy.dubtedly, the sampling theorem that had the most
impact on signal processing and communications is thatcéed with Whittaker, Kotelfikov, and Shannon [1],
[2]. Their famous result is that a bandlimited functio(¥) can be recovered from its uniform samples as long as
the sampling rate exceeds the Nyquist rate, correspondiigyite the highest frequency of the signal [3]. More

recently, this basic theorem has been extended to include general classes of signal spaces. In particular, it
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can be shown that under mild technical conditions, a signiging in a given subspace can be recovered exactly
from its linear generalized samples using a series of filtedperations [4]—[7].

Recently, there has been growing interest in nonlinearasignodels in which the unknown does not necessarily
lie in a subspace. In order to ensure recovery from the sanptane underlying structure is needed. A general
model that captures many interesting cases is that in whidds in a union of subspaces. In this settingesides
in one of a set of given subspac®s however, a priori it is not known in which one. A special casdethis
framework is the problem underlying the field of compressatsing (CS), in which the goal is to recover a length
N vectorx from n < N linear measurements, whexehas no more thak non-zero elements in some basis [8],
[9]. Many algorithms have been proposed in the literatur@riher to recoverk in a stable and efficient manner
[9]-[12]. A variety of conditions have been developed towraghat these methods recoweexactly. One of the
main tools in this context is the restricted isometry propéRIP) [9], [13], [14]. In particular, it can be shown
that if the measurement matrix satisfies the RIP theran be recovered by solving #&pn minimization algorithm.

Another special case of a union of subspaces is the settiwpich the unknown signat = x(¢) has a multiband
structure, so that its Fourier transform consists of a éohihumber of bands at unknown locations [15], [16]. By
formulating this problem within the framework of CS, exjlisub-Nyquist sampling and reconstruction schemes
were developed in [15], [16] that ensure perfect-recovdrtha minimal possible rate. This setup was recently
generalized in [17], [18] to deal with sampling and recomstion of signals that lie in a finite union of shift-
invariant subspaces. By combining ideas from standard kagntheory with CS results [19], explicit low-rate
sampling and recovery methods were developed for such Isggtg Another example of a union of subspaces
is the set of finite rate of innovation signals [20], [21], ttzeie modelled as a weighted sum of shifts of a given
generating function, where the shifts are unknown.

In this paper, our goal is to develop a unified framework fdic&nt recovery of signals that lie in a structured
union of subspaces. Our emphasis is on computationallyieffiecnethods that are stable in the presence of noise
and modelling errors. In contrast to our previous work [158}, here we consider unions of finite-dimensional
subspaces. Specifically, we restrict our attention to thee ¢a whichz resides in a sum of subspaces, chosen
from a given set ofn subspacesi;,1 < j < m. However, which subspaces comprise the sum is unknown. This
setting is a special case of the more general union modelidemasl in [22], [23]. Conditions under which unique
and stable sampling are possible were developed in [22], [28wever, no concrete algorithm was provided to
recover such a signal from a given set of samples in a staldeeffitient manner. Here we propose a convex
optimization algorithm that will often recover the true @mlying =, and develop explicit conditions under which
perfect recovery is guaranteed. Furthermore, we provedbaimethod is stable and robust in the sense that the

reconstruction error is bounded in the presence of noiseraschodelling, namely whem does not lie exactly in



the union. Our results rely on a generalization of the RIPcWHits the union setting we treat here.

Our first contribution is showing that the problem of recangrz in a structured union of subspaces can be
cast as a sparse recovery problem, in which it is desireddoves a sparse vecterthat has a particular sparsity
pattern: the non-zero values appear in fixed blocks. We tefeuch a model as block sparsity. Clearly any block-
sparse vector is also sparse in the standard sense. Holwgweploiting the block structure of the sparsity pattern,
recovery may be possible under more general conditions.

Next, we develop a concrete algorithm to recover a blocksspaector from given measurements, which is based
on minimizing a mixed’s/¢; norm. This problem can be cast as a convex second order cogepr (SOCP), and
solved efficiently using standard software packages. A chixerm approach for block-sparse recovery was also
considered in [24], [25]. By analyzing the measurement ajpe’s null space, it was shown that asymptotically, as
the signal length grows to infinity, and under ideal condisiqno noise or modeling errors), perfect recovery is
possible with high probability. However, no robust equérade results were established between the output of the
algorithm and the true block-sparse vector for a given fildteggth measurement vector, or in the presence of noise
and mismodelling.

Generalizing the concept of RIP to our setting, we introdieeblock RIP, which is a less stringent requirement.
We then prove that if the measurement matrix satisfies thekbRIP, then our proposed convex algorithm will
recover the underlying block sparse signal. Furthermoneeu block RIP, our algorithm is stable in the presence
of noise and mismodelling errors. Using ideas similar to],[126] we then prove that random matrices satisfy
the block RIP with overwhelming probability. Moreover, tpeobability to satisfy the block RIP is substantially
larger than that of satisfying the standard RIP. These tegstablish that a signal that lies in a finite structured
union can be recovered efficiently and stably with overwtiedrprobability if a certain measurement matrix is
constructed from a random ensemble.

An interesting special case of the block-sparse model igrtbkiple measurement vector (MMV) problem, in
which we have a set of unknown vectors that share a joint gpaattern. MMV recovery algorithms were studied
in [19], [27]-[30]. Equivalence results based on mutualerence for a mixed,/¢; program were derived in [28].
These results turn out to be the same as that obtained fromghe sheasurement problem. This is in contrast to
the fact that in practice, MMV methods tend to outperformoailhms that treat each of the vectors separately. In
order to develop meaningful equivalence results, we casMMYV problem as one of block-sparse recovery. Our
mixed ¢ /¢; method translates into minimizing the sum of therow-norms of the unknown matrix representing
the MMV set. Our general results lead to RIP-based equical@onditions for this algorithm. Furthermore, our
framework suggests a different type of sampling method féM\Mproblems which tends to increase the recovery

rate. The equivalence condition we obtain in this case anger than the single measurement setting. As we show,



this method leads to superior recovery rate when compartdatier popular MMV algorithms.

The remainder of the paper is organized as follows. In Sefifleve describe the general problem of sampling
from a union of subspaces. The relationship between ourlgmoland that of block-sparse recovery is developed
in SectiorIl. In Sectiom IV we explore stability and uniqwess issues which leads to the definition of block RIP.
We also present a non-convex optimization algorithm witmbinatorial complexity whose solution is the true
unknownz. A convex relaxation of this algorithm is proposed in Setfié@ We then derive equivalence conditions
based on block RIP. The concept of block RIP is further usesktablish robustness and stability of our algorithm
in the presence of noise and modelling errors. This apprzasecialized to MMV sampling in Sectign]VI. Finally,
in Section’ VIl we prove that random ensembles tend to satigfyblock RIP with high probability.

Throughout the paper, we denote vectors in an arbitraryerilbpace by lower case letters.g.,z, and sets
of vectors inH by calligraphic letterse.g.,S. Vectors inRY are written as boldface lowercase letterg.,x, and
matrices as boldface uppercase lettexs, A. The identity matrix of appropriate dimension is writtenIlaer I;
when the dimension is not clear from the context, @ is the transpose of the matrix. Theith element of a
vectorx is denoted byx(i). Linear transformations froriR™ to H are written as upper case lettets: R” — H.
The adjoint ofA is written asA*. The standard Euclidean norm is denoted|, = vx7x and ||x||; = 3, [x(i)|
is the ¢, norm ofx. The Kronecker product between matricksandB is denotedA ® B. The following variables
are used in the sequet: is the number of sampledy is the length of the input signal when it is a vectork is
the sparsity or block sparsity (to be defined later on) of &orag, andm is the number of subspaces. For ease of
notation we assume throughout that all scalars are definedtbe field of real numbers; however, the results are

also valid over the complex domain with appropriate modiioces.

[I. UNION OF SUBSPACES
A. Subspace Sampling

Traditional sampling theory deals with the problem of remrig an unknown signat € ‘H from a set ofn
samplesy; = f;(x) where f;(x) is some function ofc. The signalz can be a function of time: = z(t), or can

represent a finite-length vecter= x. The most common type of sampling is linear sampling in which
Yi = <3iyx>7 1<:i< n, (1)

for a set of functions;; € H [4], [31]-[37]. Here(z,y) denotes the standard inner product’gnFor example, if

'H = L, is the space of real finite-energy signals then

@) = [ oo @)

—00



WhenH = RY for someN,
mw=2mm@. (3)

i=1
Nonlinear sampling is treated in [38]. However, here ouuBwill be on the linear case.

WhenH = R¥ the unknownz = x as well as the sampling functioss = s; are vectors irR". Therefore, the
samples can be written conveniently in matrix formyas= S”x, where$S is the matrix with columns;. In the
more general case in whicd = L, or any other abstract Hilbert space, we can use the set dramastion notation
in order to conveniently represent the samples. A set toamsftion.S : R® — H corresponding to sampling vectors
{s; € H,1 < i <n} is defined by

n

Sc = Z c(i)s; (4)

i=1
for all c € R™. From the definition of the adjoint, if = S*z, thenc(i) = (s;, z). Note that whert{ = R, S = S

and S* = ST Using this notation, we can always express the samples as
y =Sz, ®)

where S is a set transformation for arbitrafi/, and an appropriate matrix whém = R,

Our goal is to recover: from the samples € R”. If the vectorss; do not span the entire spagg then there
are many possible signais consistent withy. More specifically, if we define by the sampling space spanned
by the vectorss;, then clearlyS*v = 0 for anyv € S*. Therefore, ifS* is not the trivial space then adding such
a vectorv to any solutionz of (8) will result in the same samplgs However, by exploiting prior knowledge on
x, I many cases unigueness can be guaranteed. A prior vy aftsumed is that lies in a given subspacd
of H [4]-[7]. If A andS have the same finite dimension, afd and.A intersect only at th@ vector, thenz can

be perfectly recovered from the sample$6], [7], [39].

B. Union of Subspaces

When subspace information is available, perfect recoastnu can often be guaranteed. Furthermore, recovery
can be implemented by a simple linear transformation of thergsamples (5). However, there are many practical
scenarios in which we are given prior information abouhat is not necessarily in the from of a subspace. One
such case studied in detail in [39] is that in whieHs known to be smooth. Here we focus our attention on the

setting wherer lies in a union of subspaces

u=_Jv (6)

where each; is a subspace. Thus,belongs to one of th#;, but we do not know a priori to which one [22], [23].

Note that the sel/ is no longer a subspace. Indeed}jfis, for example, a one-dimensional space spanned by the



vectorv;, thenl/ contains vectors of the formv; for somei but does not include their linear combinations. Our
goal is to recover a vectar lying in a union of subspaces, from a given set of samplesrilrciple, if we knew
which subspace belonged to, then reconstruction can be obtained usinglatdrsampling results. However, here
the problem is more involved because conceptually we firstiie identify the correct subspace and only then can
we recover the signal within the space.

Previous work on sampling over a union focused on inveitypénd stability results [22], [23]. In contrast,
here, our main interest is in developing concrete recovigrgrithms that are provably robust. To achieve this goal,
we limit our attention to a subclass &fl (6) for which stableoneery algorithms can be developed and analyzed.

Specifically, we treat the case in which ea¢hhas the additional structure

Vi=P A, (7

li|=F
where{A;,1 < j < m} are a given set of disjoint subspaces, #d= £ denotes a sum ovérindices. Thus, each
subspace; corresponds to a different choice bfsubspacesi; that comprise the sum. We assume throughout

the paper thatn and the dimensionsg; = dim(.4;) of the subspaces; are finite. Giverm samples
y =Sz (8)

and the knowledge that lies in exactly one of the subspacks we would like to recover the unknown signal
In this setting, there ar(aﬁ’j) possible subspaces comprising the union.
An alternative interpretation of our model is as followsv&i an observation vectgr, we seek a signat for

which y = S*z and in additionz can be written as

k
T = Z i, (9)
i=1

where eachr; lies in A; for some index;.

A special case is the standard CS problem in which x is a vector of lengthV, that has a sparse representation
in a given basis defined by an invertible mathi¥X. Thus,x = Wc wherec is a sparse vector that has at mést
nonzero elements. This fits our framework by choosifigas the space spanned by title column of W. In this
settingm = N, and there are{jg) subspaces comprising the union.

Another example is the block sparsity model [24], [40] in efhk is divided into equal-length blocks of sizk
and at most: blocks can be non zero. Such a vector can be described in tiingseith 7 = RY by choosing
A; to be the space spanned by the correspondioglumns of the identity matrix. Herer = N/d and there are
(M) subspaces in the union.

A final example is the MMV problem [19], [27]-[30] in which ougoal is to recover a matriXX from



measurementyY = MX, for a given sampling matridI. The matrix X is assumed to have at moktnon-
zero rows. Thus, not only is each columip k-sparse, but in addition the non-zero elementxpthare a joint
sparsity pattern. This problem can be transformed into dfaecovering ak-block sparse signal by stacking the

rows of X andY, leading to the relationship
vec(YT) = (M @ I) vee(XT). (10)

The structure ofX leads to a vectorvec(X7) that is k-block sparse.

C. Problem Formulation and Main Results
Given k and the subspace4;, we would like to address the following questions:

1) What are the conditions on the sampling vectgrd < ¢ < n in order to guarantee that the sampling is
invertible and stable?
2) How can we recover the unique(regardless of computational complexity)?

3) How can we recover the uniguein an efficient and stable manner?

The first question was addressed in [22], [23] in the more garmntext of unions of spaces (without requiring
a particular structure such dd (7)). However, no concreténads were proposed in order to recowerHere we
provide efficient convex algorithms that recovein a stable way for arbitrary: under appropriate conditions on
the sampling functions; and the spacesl;.

Our results are based on an equivalence between the unionbspaces problem assumirid (7) and that of
recovering block-sparse vectors. This allows us to recavEom the given samples by first treating the problem
of recovering a blockk-sparse vectoe from a given set of measurements. This relationship is tskadol in
the next section. In the reminder of the paper we therefocedmn the blocki-sparse model and develop our
results in that context. In particular, we introduce a blédlP condition that ensures uniqueness and stability of
our sampling problem. We then suggest an efficient conveinggation problem which approximates an unknown
block-sparse vectoe. Based on block RIP we prove thatcan be recovered exactly in a stable way using the
proposed optimization program. Furthermore, in the presesf noise and modeling errors, our algorithm can

approximate the best blodk-sparse solution.

[1l. CONNECTION WITH BLOCK SPARSITY

Consider the model of a signalin the union ofk out of m subspacest;, with d; = dim(.4;) as in [6) and

(@). To write = explicitly, we choose a basis for each;. Denoting by 4; : R* — 7 the set transformation



corresponding to a basis fot;, any suchz can be written as

li|=k
wherec; € R% are the representation coefficients.i, and |i| = k denotes a sum over a set bfindices. The
choice of indices depend on the signahnd are unknown in advance.

To develop the equivalence with block sparsity, it is uséduintroduce some further notation. First, we define

A : RN — H as the set transformation that is a result of concatenatiaglifferentA;, with
N=> d. (12)

Next, we define theth sub-blockc[i] of a lengthV vectorc overZ = {di,...,dy,}. Theith sub-block is of

lengthd;, and the blocks are formed sequentially so that

c'=ey ...cq oo g 41 - o)L (13)
N——
c[1] c[m]
We can then definel by

WhenH = R” for someN, A; = A, is a matrix and4 = A is the matrix obtained by column-wise concatenating
A;. If for a givenz the jth subspaced; does not appear in the sufi (7), or equivalently[in (11), #igh= 0.

Any z in the union [(6),[(V) can be represented in terms: aff the basesd;. Therefore, we can write = Ac
where there are at mostnon-zero blocks:[i|. Consequently, our union model is equivalent to the modelhich
x is represented by a sparse veatdn an appropriate basis. However, the sparsity pattern In@sea unique form
which we will exploit in our conditions and algorithms: themzero elements appear in blocks.

Definition 1: A vectorc € R" is called blockk-sparse ovef = {di,...,d,,} if c[i] is nonzero for at most
indicesi whereN = %" d;.

An example of a block-sparse vector with= 2 is depicted in Fig[1l. Wher,; = 1 for eachi, block sparsity

di =3 ds =4 do =2 ds =6 ds =1

Fig. 1. A block-sparse vectar overZ = {ds,...,ds}. The gray areas represent 10 non-zero entries which oceupylocks.
reduces to the conventional definition of a sparse vectonobeg

Ielloz =Y I(clil]l2 > 0), (15)

i=1



where I(||c[¢]||2 > 0) is an indicator function that obtains the valuef ||c[i]|| > 0 and 0 otherwise, a block
k-sparse vectoe can be defined byc|oz < k.
Evidently, there is a one-to-one correspondence betweest®nz in the union, and a block-sparse vector

The measurements](5) can also be represented explicitgrinstofc as
y = 8"z = §*Ac = D, (16)

whereD is then x N matrix defined by

D = S*A. (17)

We can therefore phrase our problem in termdXoandc as that of recovering a block-sparse vectoe overZ
from the measurements (16).

Note that the choice of basi$; for each subspace does not affect our model. Indeed, clypakarnative bases
will lead to x = AWc where W is a block diagonal matrix with blocks of sizg. Definingc = Wc, the block
sparsity pattern o€ is equal to that ot.

Since our problem is equivalent to that of recovering a blsplrse vector ovef from linear measurements

y = Dc, in the reminder of the paper we focus our attention on thidiem.

V. UNIQUENESS ANDSTABILITY

In this section we study the uniqueness and stability of @amping method. These properties are intimately
related to the RIP, which we generalize here to the blocksgpsetting.

The first question we address is that of uniqgueness, nameilgittans under which a block-sparse vectois
uniquely determined by the measurement vegtet Dc.

Proposition 1: There is a unique block-sparse vectoe consistent with the measuremegts= Dc if and only
if Dc # 0 for everyc # 0 that is block2k-sparse.

Proof: The proof follows from [22, Proposition 4]. |
We next address the issue of stability. A sampling operatostable for a se if and only if there exists

constantsy > 0, 8 < oo such that
allzy =zl < 1% w1 — S*za13 < Bllar — walf3, (18)

for everyxy,x9 in 7. The ratiox = 3/« provides a measure for stability of the sampling operatbe ®perator is
maximally stable whem: = 1. In our setting,S* is replaced byD, and the se? contains blockk sparse vectors.
The following proposition follows immediately froni (IL8) byoting that given two blocks sparse vectors;, co

their differencec; — ¢, is block2k sparse.
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Proposition 2: The measurement matri® is stable for every block-sparse vectoe if and only if there exists
Cy > 0 and(C; < oo such that

CilIvlI3 < IDvII3 < Callvli3, (19)

for everyv that is block2k-sparse.
It is easy to see that D satisfies[(I9) the®c # 0 for all block 2k-sparse vectors. Therefore, this condition

implies both invertibility and stability.

A. Block RIP

Property [(19) is related to the RIP used in several previoasksvin CS [9], [13], [14]. A matrixD of size

n x N is said to have the RIP if there exists a constant [0, 1) such that for every-sparsec € RY,
(1= dw)llell3 < [Defl3 < (1 + o) el3. (20)

Extending this property to block-sparse vectors leads ¢ofdhlowing definition:
Definition 2: Let D : RY — R” be a given matrix. The has the block RIP ovef = {di,...,d,,} with

parametew,, 7 if for every c € RY that is blockk-sparse ovef we have that

(1= dy2)llel3 < [IDef3 < (1 + dyy)el3. (21)
By abuse of notation, we usk for the block-RIP constan,; when it is clear from the context that we refer to
blocks. Block-RIP is a special case of terestricted isometry defined in [23]. From Propositidn loiidws that
if D satisfies the RIP(21) withy;, < 1, then there is a unique block-sparse veetaonsistent with[(16).

Note that a blocki-sparse vector over is M-sparse in the conventional sense whéfeis the sum of thek
largest values iriZ, since it has at mosdl/ nonzero elements. If we requid® to satisfy RIP for allAM/-sparse
vectors, then[{21) must hold for allM/-sparse vectors. Since we only require the RIP for block sparse signals,
(Z21) only has to be satisfied for a certain subse2bf-sparse signals, namely those that have block sparsity. As
a result, the block-RIP constadif;; is typically smaller thary,, (where M depends ork; for blocks with equal
sized, M = kd).

To emphasize the advantage of block RIP over standard RiRjd®r the following matrix, separated into three

blocks of two columns each:

o
)
|
—_
o
o
o

D= ‘B, (22)

o
w
o
|
—_
o
—
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whereB is a diagonal matrix that results in unit-norm columnddfi.e., B = diag (1,15,1,1,1,12)~/2. In this
examplem = 3 andZ = {d; = 2,dy = 2,d3 = 2}. Suppose that is block-1 sparse, which corresponds to at most
two non-zero values. Brute-force calculations show thatdimallest value of; satisfying the standard RIP_(20) is
do = 0.866. On the other hand, the block-RIP{21) corresponding to #se dn which the two non-zero elements
are restricted to occur in one block is satisfied withy = 0.289. Increasing the number of non-zero elements to
k = 4, we can verify that the standard RIP{20) does not hold for @ng [0, 1). Indeed, in this example there
exist two4-sparse vectors that result in the same measurements. trasbby ; = 0.966 satisfies the lower bound
in (2I) when restricting theé non-zero values to two blocks. Consequently, the measursnye= Dc uniquely
specify a single block-sparse

In the next section, we will see that the ability to recoeem a computationally efficient way depends on
the constanbyyz in the block RIP [(2L). The smaller the value &, 7, the fewer samples are needed in order
to guarantee stable recovery. Both standard and block RtBtaotsdy, d,z are by definition increasing with.
Therefore, it was suggested in [12] to normalize each of tilenens of D to 1, so as to start withh; = 0. In the
same spirit, we recommend choosing the bases4fosuch thatD = S* A has unit-norm columns, corresponding

to (51|[ =0.

B. Recovery Method

We have seen that D satisfies the RIF(21) withy, < 1, then there is a unique block-sparse veet@onsistent
with (@8). The question is how to find in practice. Below we present an algorithm that will in pipie find the
uniquec from the samplesy. Unfortunately, though, it has exponential complexity.the next section we show
that under a stronger condition @p, we can recovet in a stable and efficient manner.

Our first claim is thatc can be uniquely recovered by solving the optimization probl

min [|cfloz
[

s. t. y = Dec. (23)

To show that[(213) will indeed recover the true valuecpfsuppose that there existscasuch thatDc¢’ = y and

Ic'llo,z < llello,z < k. Since bothe, ¢’ are consistent with the measurements,
0=D(c—c')=Dd, (24)

where||d||o,z < 2k so thatd is a block2k-sparse vector. SincB satisfies[(2l1) withiy, < 1, we must have that
d=0orc=c.

In principle [23) can be solved by searching over all possg#ts oft blocks whether there existsathat is
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consistent with the measurements. The invertibility ctadi(21) ensures that there is only one suclHowever,

clearly this approach is not efficient.

V. CONVEX RECOVERY ALGORITHM
A. Noise-Free Recovery

We now develop an efficient convex optimization problemeast of [28) to approximate. As we show, ifD
satisfies[(21) with a small enough value %f,, then the method we propose will recoweexactly.
Our approach is to minimize the sum of the energy of the ble¢Kks To write down the problem explicitly, we

define the mixedy/¢; norm over the index sef = {dy,...,d,,} as

lellz.z = llefd]]l2- (25)
i=1
The algorithm we suggest is then

min - [|cfla,z
C

s. t. y = Dec. (26)

Problem [[26) can be written as an SOCP by defining ||c[é]||2. Then [26) is equivalent to

m
w2
i=1
s. t. y = Dc
ti = [lcfill2, 1<i<m

ti=>0, 1<i<m, (27)

which can be solved using standard software packages.

The next theorem establishes that the solutiori 1d (26) idrteec as long asis, is small enough.

Theorem 1:Lety = D¢y be measurements of a blogksparse vectoe,. If D satisfies the block RIF(21) with
dor < V2 —1 then

1) there is a unique block-sparse vectoe consistent withy;

2) the SOCP[(Z7) has a unique solution;

3) the solution to the SOCP is equal ¢g.
Before proving the theorem we note that it provides a gairr st@ndard CS results. Specifically, it is shown in

[14] that if ¢ is k-sparse and the measurement mabbsatisfies the standard RIP wil, < /2 — 1, thenc can
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be recovered exactly from the measuremeants Dc via the linear program:

min Ilcll1
C

s. t. y = Dec. (28)

Since any blockk-sparse vector is als®/-sparse with)/ equal to the sum of thé largest values ofl;, we can
find ¢ of Theoreni L by solvind(28) i), is small enough. However, this standard CS approach doe=xpiit
the fact that the non-zero values appear in blocks, and nathitrary locations within the vectafy. On the other
hand, the SOCR_(27) explicitly takes the block structureginto account. Therefore, the condition of Theorlem 1
is not as stringent as that obtained by using equivalenagtsewith respect to[(28). Indeed, the block R[P](21)
bounds the norm offDc|| over block sparse vectors while the standard RIP considers all possible choices, of
also those that are n@t-block sparse. Therefore, the value ®@f, in (21) can be lower than that obtained from
(20) with £ = 2M, as we illustrated by an example in Section Ill. This advgetwill also be seen in the context
of a concrete example at the end of the section.

Our proof below is rooted in that of [14]. However, some efisémodifications are necessary in order to adapt
the results to the block-sparse case. These differences rasult of the fact that our algorithm relies on the mixed
¢5/¢1 norm rather than thé;, norm alone. This adds another layer of complication to tlwofyrand therefore we
expand the derivations in more detail than in [14].

Proof: We first note thatly;, < 1 guarantees uniqueness @f from Propositiori 1l. To prove parts 2) and 3)
we show that any solution td (P6) has to be equatdoTo this end leic’ = ¢y + h be a solution of[(26). The true
value cy is non-zero over at most blocks. We denote b¥{, the block indices for whicke, is nonzero, and by
hz, the restriction ofh to these blocks. Next we decompdseas

/-1

h=> hz, (29)

i=0
wherehz, is the restriction oh to the setZ; which consists ok blocks, chosen such that the normlef: overZ,
is largest, the norm ovef, is second largest and so on. Our goal is to show kthat 0. We prove this by noting

that

[hl2 = [[hz,uz, +hz,uz)ellz < Ihzuz 2 + hzuz)ell2- (30)

In the first part of the proof we show thdthz,z,)

2 < |lhz,uz, |l2- In the second part we establish that

|lhz,uz, ||2 = 0, which completes the proof.

Part |:||h(IOU11)C||2 < HhIOUII||2
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We begin by noting that

-1 -1
bzl = D bz | <D lhg o (31)
i=2 9 =2
Therefore, it is sufficient to boun(thz, || for ¢ > 2. Now,
Iz, |2 < K|z ]z < k2 bz, oz, (32)

where we definedlal|.. 7 = max; ||a[i]||2. The first inequality follows from the fact that for any blogksparsec,
lell3 = lleldl3 < kllell2 - (33)
li|=k
The second inequality in_(82) is a result of the fact that tbemof each block inhz, is by definition smaller

or equal to the norm of each block Iz, ,. Since there are at mostnonzero blocksk| hz,

Substituting [(3R) into[(31),

00,7 < th—i—l HZI'

(-2 /-1

2 kT2 bz llaz < KTV hg oz = k2 ||hyg
=1 =1

Ihz,uz,)- 2,75 (34)

where the equality is a result of the fact thia + ca||2,z = ||c1]l2,z + ||c2||2,z if ¢1 andcy are non-zero on disjoint
blocks.
To develop a bound ofihz:||2 7 note that since’ is a solution t0[(26)||col|2,z > ||c'||2,z. Using the fact that

¢’ = ¢y + hz, + hze andc is supported orf, we have

lcoll2z > lleo + hz,ll2.z + hzgll2z > llcoll2z — bz, ll2.z + [hzgll2.z, (35)

from which we conclude that

Ihzell2z < [bz,llaz < k'/?||hg, |- (36)
The last inequality follows from applying Cauchy-Schwaszainy blockk-sparse vectoe:

lelzz = lelilllz - 1 < kY2 le]l2- (37)
li|=k

Substituting [(36) into[(34):

Ihz,uz)ll2 < lhg ll2 < |Ihz,uz, 2, (38)

which completes the first part of the proof.
Part Il: ||hIoUL H2 =0

We next show thahz,z, must be equal t®. In this part we invoke the RIP.
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SinceDcg = Dc’ =y, we haveDh = 0. Using the fact thah = hz,uz7, + )5, hz,,

-1

”DhI()UIl H% = - Z (D(hlo + hIl)7 DhI¢> (39)
=2

From the parallelogram identity and the block-RIP it can beve that

|(De1, Deg)| < daglley 2]l ez llz, (40)

for any two blockk-sparse vectors with disjoint support. The proof is simitaf14, Lemma 2.1] for the standard

RIP. Therefore,

|(Dhz,, Dhz, )| < dop|hz, [|2[ bz, |2, (41)
and similarly for(Dhz,, Dhz,). Substituting into[(39),
/—1
||DhIOUII H% = <D(hzo + hI1)7 DhIz>
=2
-1
< ((Dhg,, Dhz,)| + [(Dhz,, Dhz,)|)
=2
{—1
< Sau(llbg, [l2 + Iz, ll2) Y lIbz |l2- (42)
=2

From the Cauchy-Schwarz inequality, any length-2 veatsatisfiesa(1) + a(2) < v/2||al|o. Therefore,

Iz, 12 + Iz, |2 < v2y/IIbz, 3 + bz, 13 = VEIhz, .z 2. (43)

where the last equality is a result of the fact thgf and hz, have disjoint support. Substituting into_{42) and
using (32), [(34) and_(36),

32.34
|Dhz,uz, |13 < V2k~ Y250 bz, [|2 | e oz
39
< V26oy|hz,uz, ||2] bz |2
< \/552k|’h10u11 ”%a (44)

where the last inequality follows frorhz, || < ||hz,uz, ||2- Combining [44) with the RIPL(21) we have
(1 = 624)|bz,uz, 3 < |[Dhg,uz, |3 < V262 hz,ur, |3 (45)

Sincedsy, < V2 — 1, (@8) can hold only ifhz,uz, |2 = 0, which completes the proof. [ |
We conclude this subsection by pointing out more expliditly differences between the proof of Theofém 1 and

that of [14]. The main difference begins in {32); in our fodation each of the subvectols, may have a different
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number of non-zero elements, while the equivalent equatigd4] (Eqg. (10)) relies on the fact that the maximal
number of non-zero elements in each of the subvectors isaime sThis requires the use of several mixed-norms
in our setting. The rest of the proof follows the spirit of [Mhere in some of the inequalities conventional norms

are used, while in others the adaptation to our setting s@agss mixed norms.

B. Robust Recovery

We now treat the situation in which the observations areynaisd the vector, is not exactly blockk sparse.

Specifically, suppose that the measuremdnts (16) are tedgy bounded noise so that
y = Dc + z, (46)
where||z||2 < e. In order to recover we use the modified SOCP:

min - [lc[la,z
[

s. t. ly —Dcll2 <e. 47)

In addition, given ac € RY, we denote by* the best approximation af by a vector withk non-zero blocks, so
that ¢k minimizes ||c — d||2.z over all blockk-sparse vectord. Theoren{ 2 shows that even wheris not block
k-sparse and the measurements are noisy, the best blapkroximation can be well approximated usihgl (47).

Theorem 2:Let y = Dcy + z be noisy measurements of a vectgr Let c* denote the best block-sparse
approximation ofcy, such thatc® is block k-sparse and minimizejscy — d||o.z over all blockk-sparse vectord,
and letc’ be a solution to[{47). ID satisfies the block RIF_(21) withy;, < v/2 — 1 then

2(1 — bap) Ay/1+ bop

€.
1—(1+V2)d9 1— (14 V2)0o
Before proving the theorem, note that the first term[in (483 ieesult of the fact that, is not exactlyk-block

leo = €'fl2 < K20 — tllzz +

(48)

sparse. The second expression quantifies the recoverydereoto the noise.
Proof: The proof is very similar to that of Theorer 1 with a few difaces which we indicate. These changes
follow the proof of [14, Theorem 1.3], with appropriate mficttions to address the mixed norm.

Denote byc’ = ¢j + h the solution to[(4l7). Due to the noise and the fact thais not block k-sparse, we
will no longer obtainh = 0. However, we will show thath||» is bounded. To this end, we begin as in the proof
of Theorenm 1L by using (30). In the first part of the proof we shbat ||hz,uz,)|l2 < [[hz,uz, (|2 + 2e0 where
eo = k7'/?||cy — ¢z, ||l2.z andcz, is the restriction ofcy onto thek blocks corresponding to the largefst norm.
Note thatcz, = c*. In the second part, we develop a bound|dm, 7, ||

Part I: Bound on||hz, 7,2
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We begin by decomposinky as in the proof of Theorefd 1. The inequalities urtill (35) hoéde as well. Instead
of (38) we have

lcollz,z > [lez, + hz,ll27 + [leze + hzgllaz > [lez,ll2.z — |z, |2,z + [hzellez — [lezgl2.z- (49)

Therefore,

|Ihze

2.7 < 2|lezell2,z + |z, [2.7, (50)

where we used the fact theol|2,7 — [lcz, |2,z = [leze

2,7. Combining [(34),[(37) and (50) we have

Hh(IOUII)C 2 S ”hIOH2 + 260 S HhIOUI1H2 + 2607 (51)

whereeg = k~1/2||co — ¢z, ||2.7-
Part IIl: Bound on||/hz, 7, ||2

Using the fact thah = hz,uz, + 3,5, hz, we have

-1
”Dh-ZOUIl ”% = <DhI0U11 ) Dh> - (D(hlo + hIl )7 DhI¢> (52)
=2
From (21),
|(Dhz,uz,, Dh)| < [|[Dhz,uz, [|l2[|Dhll2 < v/1 4 02 |lhz,uz, [|2|Dh2. (53)
Since bothc’ andc are feasible
IDhljz = [D(co — )2 < [Deo — yll2 + [De" — y|l2 < 2e, (54)
and [53) becomes
|(Dhz,uz,, Dh)| < 2ev/1 + 024 ||z, uz, [|2- (55)
Substituting into [(5R),
-1
|IDhz,z, |3 < |[(Dhguz,, Dh)|[+ ) [(D(hg, + hz,), Dhy,)|
=2
/—1
< 2ey/1+ 0ollbzyuz |2 + > [(D(hz, + hz, ), Dhz,)|. (56)
=2

Combining with [42) and{44),

|Dhz,uz, |13 < (26\/ 14 0o + \/552k/€_1/2|!h15 2,1) lhz,uz, [|2- (57)
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Using [37) and[(50) we have the upper bound

IDhz, 3 < (26v/T+ 02k + V20ak (g, | + 20) ) bz, - (58)

On the other hand, the RIP results in the lower bound

|IDhz,uz, (3 > (1 = dar)|Ibz,uz, 13- (59)
From (58) and[(59),
(1 = bax)|hz,uz, 2 < 263/1 4 61, + V2051 (||hz,u, || + 2e0), (60)
or
2¢/1+6 2v/26.
Ihzouz, 2 < . e, (61)
1—(1+v2)dor  1—(1+V2)dy
The conditiondy, < v/2 — 1 ensures that the denominator [n](61) is positive. Substguigl) results in
[hll2 < [[hz,uz [l2 + [hz,uz,)ell2 < 2lhz,uz, [|l2 + 20, (62)
which completes the proof of the theorem. [ |

To summarize this section we have seen that as loriQ aatisfies the block-RIR_(21) with a suitable constant,
any block# sparse vector can be perfectly recovered from its samplesDc using the convex SOCP_(26). This
algorithm is stable in the sense that by slightly modifyibgs in [47) it can tolerate noise in a way that ensures
that the norm of the recovery error is bounded by the noisel.l&urthermore, ifc is not blockk-sparse, then its
best block-sparse approximation can be approached byngale SOCP. These results are summarized in Table 1.

In the table,d,; refers to the block RIP constant.

TABLE |
COMPARISON OF ALGORITHMS FOR SIGNAL RECOVERY FRON = Dco + z
Algorithm (286) Algorithm (41)
Co block k-sparse arbitrary
Noise z none ¢ = 0) bounded||z||; < e
Condition onD | o < V2 —1 Sop < V2 —1
Recoveryc’ d =cp [co — c’[l2 small; seel[(48

C. Advantage of Block Sparsity

The standard sparsity model considered in CS assumes thas$ at moskt non-zero elements, however it does
not impose any further structure. In particular, the norez'omponents can appear anywhere in the vector. There

are many practical scenarios in which the non-zero valuesbgned to blocks, meaning they appear in regions,
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and are not arbitrarily spread throughout the vector. Oreangte in the structured union of subspaces model we
treat in this paper. Other examples are considered in [25].

Prior work on recovery of block-sparse vectors [24] assuomtsecutive blocks of the same size. It was sown that
in this case, when, N go to infinity, the algorithm[(26) will recover the true bleskarse vector with overwhelming
probability. Their analysis is based on characterizatibthe null space ofD. In contrast, our approach relies on
RIP which allows the derivation of uniqueness and equivaetonditions for finite dimensions and not only in
the asymptotic regime. In addition, Theoréim 2 considercts® of mismodelling and noisy observations while in
[24] only the ideal noise-free setting is treated.

To demonstrate the advantage of our algorithm over startsksi@ pursuiti(28), consider the matfixof (22). In
SectiorlV, the standard and block RIP constant®afere calculated and it was shown that block RIP constants are
smaller. This suggests that there are input vectdr which the mixed/» /¢; method of[(26) will be able to recover
them exactly from measurements= Dc while standard; minimization will fail. To illustrate this behavior, let
x = [0,0,1,—1,—1,0.1]7 be a4-sparse vector, in which the non-zero elements are knowmppear in blocks of
length2. The prior knowledge that is 4-sparse is not sufficient to determiwidrom y. In contrast, there is a unique
block-sparse vector consistent withFurthermore, our algorithm which is a relaxed versior 8)(#nds the correct
x while standard/; minimization fails in this case; its output #&= [—0.0289,0,0.9134, —1.0289, —1.0289, 0].

We further compare the recovery performance/pfminimization [28) and our algorithni (26) for an extensive
set of random signals. In the experiment, we draw a mddief size 25 x 50 from the Gaussian ensemble. The
input vectorx is also randomly generated as a block-sparse vector wiitkblof length5. We drawl < k£ < 25
non-zero entries from a zero-mean unit variance normafildigion and divide them into blocks which are chosen
uniformly at random withink. Each of the algorithms is executed based on the measuregnenDx. In Fig.[2 we
plot the fraction of successful reconstructions for eaatver 500 experiments. The results illustrate the advantage
of incorporating the block-sparsity structure into theimzation program. An interesting feature of the graph is
that when using the block-sparse recovery approach, tiferpgnce is roughly constant over the block-length (

in this example). This explains the performance advantage standard sparse recovery.

VI. APPLICATION TOMMYV M ODELS

We now specialize our algorithm and equivalence resultheoMMV problem. This leads to two contributions
which we discuss in this section: The first is an equivaleeselt based on RIP for a mixed-norm MMV algorithm.
The second is a new measurement strategy in MMV problemdehds to improved performance over conventional
MMV methods, both in simulations and as measured by the RE&th equivalence condition. In contrast to previous
equivalence results, for this strategy we show that evereifthoose the worst possib}, improved performance

over the single measurement setting can be guaranteed.
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Fig. 2. Recovery rate of block-sparse signals using stahéiaminimization (basis pursuit) and the mixég/¢; algorithm.

A. Equivalence Results

As we have seen in Section Il, a special case of block spaissitie MMV model, in which we are given
a matrix of measurement¥ = MX where X is an unknownL x d matrix that has at most non-zero rows.
Denoting byc = vec(X”),y = vec(YT), D = M” ®I,; we can express the vector of measuremgnésy = Dc
wherec is a block sparse vector with consecutive blocks of lenftitherefore, the results of Theorefds 1 amnd 2
can be specified to this problem.

Recovery algorithms for MMV using convex optimization prams were studied in [28], [30] and several greedy
algorithms were proposed in [27], [29]. Specifically, in F2[B0] the authors study a class of optimization programs,

which we refer to as M-BP:

L
M-BP((,):  min) [[X'[F s.t. Y =MX, (63)
i=1

where X" is the ith row of X. The choicep = 1,q = oo was considered in [30], while [28] treated the case of
p = 1 and arbitraryq. Usingp < 1 and ¢ = 2 was suggested in [27], [41], leading to the iterative aliponi
M-FOCUSS. Forp = 1,q = 2, the program[(63) has a global minimum which M-FOCUSS is eroto find. A
nice comparison between these methods can be found in [8Qfv&ence for MMV algorithms based on RIP
analysis does not appear in previous papers. The mostatbthiboretical analysis can be found in [28] which
establishes equivalence results based on mutual cohefBmeeesults imply equivalence fdr (63) with= 1 under
conditions equal to those obtained for the single measureoase. Note that RIP analysis typically leads to tighter
equivalence bounds than mutual coherence analysis.

In our recent work [19], we suggested an alternative apgrdacsolving MMV problems by merging thé

measurement columns with random coefficients and in suchyaramasforming the multiple measurement problem
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into a single measurement counterpart. As proved in [19, tlchnique preserves the non-zero location set with
probability one thus reducing computational complexityorkbver, we showed that this method can be used to
boost the empirical recovery rate by repeating the randomginmg several times.

Using the block-sparsity approach we can alternatively aag MMV model as a single measurement vector
problem by deterministically transforming the multiple aserement vectors into the single vector moae(Y”) =
(M ® 1) vec(XT), wherec = vec(XT) is block+ sparse with consecutive blocks of lengthin contrast to [19]
this does not reduce the number of unknowns so that the catigmeal complexity of the resulting algorithm is
on the same order as previous approaches, and also doedearothef opportunity for boosting. However, as we
see in the next subsection, with an appropriate choice ofsareenent matrix this approach results in improved
recovery capabilities.

Since we can cast the MMV problem as one of block-sparse ezgowe may apply our equivalence results
of Theoren( 1 to this setting leading to RIP-based equivaefio this end we first note that applying the SOCP
(28) to the effective measurement vecjoiis the same as solving_(63) with= 1,¢ = 2. Thus the equivalence
conditions we develop below relate to this program. Next i Dc wherec is a block 2k-sparse vector and
D = M ® 1,4, then taking the structure dDd into account,Z = MX whereX is a sizeL x d matrix whoseith
row is equal toc[i], and similarly forZ. The block sparsity ot implies thatX has at mosk non-zero rows.

The squareds norm ||z||3 is equal to the squaret norm of the rows ofZ which can be written as
2|3 = 1ZI% = Te(2"2), (64)
where||Z|| denotes the Frobenius norm. Singg|3 = ||X||% the RIP condition becomes
(1 = 6p) Tr(XTX) < Tr(XTMTMX) < (1 + 69z) Tr(XTX), (65)

for any L x d matrix X with at most2k non-zero rows.

We now show that (85) is equivalent to the standard RIP cimmdit
(1= an)Ix[13 < IMx|3 < (1 + ba1)[1x][3, (66)

for any lengthL vectorx that is2k-sparse. To see this, suppose first that (65) is satisfied/éoy enatrix X with at
most2k non-zero rows and let be an arbitran2k-sparse vector. If we defink to be the matrix whose columns
are all equal tax, thenX will have at most2k non-zero rows and therefore satisfies| (65). Since the caumin
X are all equalTr(XTX) = d||x||3 and Tr(XT”MTMX) = d|Mx||3 so that [(66) holds. Conversely, suppose
that [66) is satisfied for alkk-sparse vectors and letX be an arbitrary matrix with at mog% non-zero rows.

Denoting byx; the columns ofX, eachx; is 2k-sparse and therefore satisfiés](66). Summing over all sglue
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results in [(6b).
To summarize, ifM satisfies the conventional RIP conditidn(66), then the rilgm (63) withp = 1,9 = 2

will recover the true unknowiX. This requirement reduces to that we would obtain if we ttiedecover each
column of X separately, using the standatd approach[(28). As we already noted, previous equivalensgtse
for MMV algorithms also share this feature. Although thisadidion guarantees that processing the vectors jointly
does not harm the recovery ability, in practice exploitihg joint sparsity pattern aX via (63) leads to improved
results. Unfortunately, this behavior is not captured by ahthe known equivalence conditions. This is due to the
special structure oD = M ® I. Since each measurement vecygris affected only by the corresponding vector
x;, it is clear that in the worst-case we can choase= x for some vector. In this case, all they;s are equal

so that adding measurement vectors will not improve ourvegoability. Consequently, worst-case analysis based
on the standard measurement model for MMV problems canraat te improved performance over the single

measurement case.

B. Improved MMV Recovery

We have seen that the pessimistic equivalence results foMMorithms is a consequence of the fact that in
the worst-case scenario in whigh = x, using a separable measurement strategy will render adirestion vectors
equal. In this subsection we introduce an alternative nreasent technique for MMV problems that can lead to
improved worst-case behavior, as measured by RIP, overitlge <hannel case.

One way to improve the analytical results is to consider @maye case analysis instead of a worst-case approach.
In [42] we show that if the unknown vectoss; are generated randomly, then the performance improves with
increasing number of measurement vectors. The advantages §tom the fact that the situation of equal vectors
has zero probability and therefore does not affect the geepeerformance. Here we take a different route which
does not involve randomness in the unknown vectors, and leaiinproved results even in the worst-case (hamely
without requiring an average analysis).

To enhance the performance of MMV recovery, we note that wherallow for an arbitrary (unstructured),

the RIP condition of Theorefd 1 is weaker than the standardr&jBirement for recovering-sparse vectors. This
suggests that we can improve the performance of MMV methgdsohverting the problem into a general block
sparsity problem, and then sampling with an arbitrary westred matrixD rather than the choic® = M” ® 1.
The tradeoff introduced is increased computational conriylsince each measurement is based on all input vectors.
The theoretical conditions will now be looser, since bldtR is weaker than standard RIP. Furthermore, in practice,
this approach often improves the performance over seaMblV measurement techniques as we illustrate in the
following example.

In the example, we compare the performance of several MMdrilgns for recoveringX in the modelY =
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Fig. 3. Recovery rate for different numbkrof non-zero rows inX. Each point on the graph represents an average recoverpveité&s00
simulations.

MX, with our method based on block sparsity in which the measemtsy are obtained viay = Dc where

c = vec(X”) andD is a dense matrix. Choosirlg as a block diagonal matrix with blocks equalld results in
the standard MMV measurement model. The effective matiizésmve the same size in the case in which it is block
diagonal and when it is dense. To compare the performandg&)fwith a denséD to that of [63) with a block
diagonalD, we compute the empirical recovery rate of the methods isémee way performed in [19]. The matrices
M andD are drawn randomly from a Gaussian ensemble. In our examplehoose = 20, L = 30,d = 5 where

¢ is the number of rows ifY’. The matrixX is generated randomly by first selecting theon-zero rows uniformly

at random, and then drawing the elements in these rows froormaat distribution. The empirical recovery rates
using the methods of (63) for different choicesqoéndp, ReMBO [19] and our algorithni (26) with den2 are
depicted in Fig[ 3. When the indexis omitted it is equal ta. Evidently, our algorithm performs better than most
popular optimization techniques for MMV systems. We strifgg the performance advantage is due to the joint

measurement process rather than a new recovery algorithm.

VIl. RANDOM MATRICES

Theoremd 11 and]2 establish that a sufficiently small block BdRstantd,; ensures exact recovery of the
coefficient vectorc. We now prove that random matrices are likely to satisfy teiguirement. Specifically, we
show that the probability thalf, ; exceeds a certain threshold decays exponentially in thgthesf c. Our approach
relies on results of [12], [26] developed for standard Ri®véver, exploiting the block structure ofleads to a
much faster decay rate.

Proposition 3: SupposeD is ann x N matrix from the Gaussian ensemble, nami@;, ~ N (0, %). Let oz

be the smallest value satisfying the block RIPI(21) avet {d; = d,...,d,, = d}, assumingN = md for some
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integerm. Then, for every > 0 the block RIP constan,; obeys (forn, N large enough, and fixed)

Prob <1 [T+ 0z > 1+ (1+ e)f(r)) < 9e NH)e . o=m(d=DH(r) (67)

Here, the ratio- = kd/N is fixed, f(r) = \/g (\f+ \/—) andH(q) = —qlogq— (1 —q)log(1l —gq) is the
entropy function defined fob < ¢ < 1.

The assumption that; = d simplifies the calculations in the proof. Following the prome shortly address the
more difficult case in which the blocks have varying lengW& note that Proposition 3 reduces to the result of
[12] whend = 1. However, sincef(r) is independent ofl, it follows that ford > 1 and fixed problem dimensions
n, N, r, block-RIP constants are smaller than the standard RIPtaonsThe second exponent in the right-hand
side of [67) is responsible for this behavior.

Proof: Let A = (1 +¢€)f(r) and define

0= max omax(D7), o= min opn(Dr), (68)

|T|=k,d ’ T|=k,d

whereomax(Dr), omin(D7), are the largest and the smallest singular valueB pf respectively. We usgl’| = k, d
to denote a column subset & consisting ofk blocks of lengthd. For brevity we omit subscripts and denote

§ = 0gz. The inequalities in the definition of block-RIP_{21) implyatt

146> a2 (69)

1-6<co2 (70)

Sinced is the smallest number satisfying these inequalities wee flagt1 + § = max (52,2 — o2). Therefore,

Prob (\/1 To>1+ )\) — Prob (\/max(62, 202 >1+ A) (72)
< Prob(g > 14 \) +Prob(v/2—02 > 1+ ). (72)

Noting thate > 1 — X implies /2 — o2 < 1 + A we conclude that
Prob (\/1 To>1+ A) < Prob(s > 1+ \) + Prob(g < 1 — \). (73)

We now bound each term in the right-hand-side[of (73) usingsalt of Davidson and Szarek [43] regarding
the concentration of the extreme singular values of a Ganssatrix. It was proved in [43] that an x n matrix

X with n > m satisfies

Prob(omax(X) > 1+ /m/n +t) < e /2 (74)

Prob(omin(X) < 1 —/m/n —t) < e /2, (75)
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Applying a union bound leads to

Prob <a>1+\/@+t> < Z Prob (Jmax(DT)>1+\/@+t> (76)
n n

|T|=k,d

< Z e—nt2/2 (77)
T|=k,d

_ @)/z (78)

Using the well-known bound on the binomial coefficient (faifficiently largem)

() = enmsim. (79)

Prob (5 > 144/ kd + t) < gmHk/m) g —nt?/2, (80)
n

To utilize this result in[(713) we rearrange

we conclude that

T+ A=1+(1+¢)f( (81)

(1+0) <\/7 o X Hr ) (82)
21+\/g+\/(1+e)¥fl(r) (83)

and obtain that

PI‘Ob(O’>1—|—)\)SPI‘Ob<0>1+\/@+\/(1+6)gH(T)>. (84)
n n
Using [80) leads to
Prob (5 > 1+ \) < emH(k/m) o= =T (85)
_ eNH(T)—m(d—1)H(7‘)—(1+E)NH(T) (86)
< e—NH(r)ee—m(d—l)H(r). (87)
Similar arguments are used to bound the second terin_in (@8&)pleting the proof. |

The proof of Propositiof]3 can be adapted to the case in wijcare not equal. In this case, the notation
|T| =k, d is replaced byT'| = k|Z and has the following meanin@: indicates a column subset Bf consisting of
k blocks fromZ. SinceZ contains variable-length block&| is not constant and depends on the particular column
subset. Consequently, in order to apply the union bound&®) (ve need to consider the worst-case scenario

corresponding to the maximal block lengthZn Propositior B thus holds faf = max(d;). However, it is clear
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Fig. 4. The upper bound of),; as a function of the sparsity ratiq for three sampling rates/N, and three block structures= 1, 5, 20.
The horizontal threshold is fixed gt = /2 — 1 representing the threshold for equivalence derived in Tevafl.

that the resulting probability bound will not be as stringas in the case of equal = d, especially when the
ratio max(d;)/ min(d;) is large.

Proposition[B holds as is for matricdd from the Bernoulli ensemble, namelP];, = iﬁ with equal
probability. In fact, the proposition is true for any enséenfor which the concentration of extreme singular
values holds.

The following corollary emphasizes the asymptotic behaefdlock-RIP constants per given number of samples.

Corollary 3: Consider the setting of Propositioh 3, and defirie) = \/g <\/F+ \/2H(r)d—1>. Then,

Prob (1 [T+ 0z > 1+ (1+ e)g(r)) < 2e”mHM)e, (88)

Proof: Let A = (1 + €)g(r). The result then follows by replacing (81)-{83) with

1+A21+\/§+\/(1+e)%H(r), (89)

which leads toProb(s > 14 \) < e ™H (e, |

To evaluate the asymptotic behavior of block-RIP we note fhiaeverye > 0 the right-hand side of (88) goes

to zero whenN = md — oo. Consequently, for fixed

4

iz < p(r)=—1+[1+g(r)], (90)

with overwhelming probability. In Fig.14 we compujgr) for several problem dimensions and compare it with
standard RIP which is obtained wheh= 1. Evidently, as the non-zero entries are forced to blockcsire, a

wider range of sparsity ratios satisfy the condition of Theore 1.



27

D12X24 Dl[iX24 DlziX‘Zél
! ——— 1 e e 1 2= et
|- — 5
08 08 /3// 08 /3//
Block size / Block size / Block size
NO-G —_— 1 NO-G —_— 1 L 06 / —_—— 1
5 2 & 2 & 2
04 —_—3 0.4 —_3 04 — 3
4 4 4
0.2 —&— 6 0.2 —&— 6 0.2 —&— 6
8 8 8
—v— 12 —v— 12 —v— 12
0 0 0

0 2 4 6 8 10 12 0 5 10 15 0 5 10 15
Total number of non-zeros Total number of non-zeros Total number of non-zeros

(@) (b) ()

Fig. 5. The standard and block-RIP constahtg for three different dimensions, N. Each graph represent an average over 10 instances
of random matrixD. Each instance oD is scaled by a factor such that {18) is satisfied with- 3 = 2.

Although Fig[4 shows advantage for block-RIP, the absaptesity ratios predicted by the theory are pessimistic
as also noted in [12], [26] in the case @f= 1. To offer a more optimistic viewpoint, the RIP and block-RIP
constants were computed brute-force for several instantdd from the Gaussian ensemble. Fig. 5 plots the
results and qualitatively affirms that block-RIP constaarts more “likely” to be smaller than their standard RIP
counterparts, even when the dimensiongv are relatively small.

An important question is how many samples are needed roughtyder to guarantee stable recovery. This
question is addressed in the following proposition, whiciotg@s a result from [44] based on the proofs of [45];
we rephrase the result to match our notation.

Proposition 4 ( [44, Theorem 3.3])Consider the setting of Propositibh 3, namely a random Gagsatrix D
of sizen x N and block sparse signals ovér= {d, = d,...,d,, = d}, whereN = md for some integern. Let

t>0and0 < § < 1 be constant numbers. If

36 12
n > =5 <ln(2L) + kdlIn <7> + t> , (91)

whereL = ('), thenD satisfies the block-RIR_{21) with restricted isometry cansdy z = ¢, with probability at

leastl — e t.

As observed in [44], the first term iD_(91) has the dominantaotin the required number of measurements in

an asymptotic sense. Specifically, for block sparse signals
k m k
(/) < L= ( k) < (em/k)F. (92)

Thus, for a given fraction of nonzeres= kd/N, roughlyn =~ klog(m/k) = —klog(r) measurements are needed.
For comparison, to satisfy the standard RIP a larger number—kdlog(r) is required. Note that Corollafy 4 puts
the emphasis on the required problem dimensions to satigfyem RIP level. In contrast, Propositibh 3 provides

a tail bound on the expected isometry constant for givenlproldimensions.
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VIIl. CONCLUSION

In this paper, we studied the problem of recovering an unknsignalz in an arbitrary Hilbert space(, from
a given set ofn samples which are modelled as inner products: afith sampling functionss;, 1 < i < n. The
signal z is known to lie in a union of subspaces, so that V; where each of the subspacgEsis a sum ofk
subspaces!; chosen from an ensemble of possibilities. Thus, there ar(éj) possible subspaces in whieghcan
lie, and a-priori we do not know which subspace is the true @igile previous treatments of this model considered
invertibility conditions, here we provide concrete recgvalgorithms for a signal over a structured union.

We began by showing that recoveringcan be reduced to a sparsity problem in which the goal is tovesc
a block-sparse vectat from measurementg = Dc where the non-zero values it are grouped into blocks.
The measurement matri® is equal toS*A where S* is the sampling operator and is a set transformation
corresponding to a basis for the sum of 4ll. To determinec we suggested a mixet/¢; convex optimization
program that takes on the form of an SOCP. Relying on the natidlock-RIP, we developed sufficient conditions
under whichc can be perfectly recovered using the proposed algorithm.als%e proved that under the same
conditions, the unknowie can be stably approximated in the presence of noise. Funtret if ¢ is not exactly
block-sparse, then its best block-sparse approximationbeaapproached using the proposed method. We then
showed that whe is chosen at random, the recovery conditions are satisfidd high probability.

Specializing the results to MMV systems, we proposed a nethogefor sampling in MMV problems. In this
approach each measurement vector depends on all the unkrentors. As we showed, this can lead to better
recovery rate. Furthermore, we established equivalersdtsefor a class of MMV algorithms based on RIP.

Throughout the paper, we assumed a finite union of subspaasesikas finite dimension of the underlying spaces.
An interesting future direction to explore is the extensafrthe ideas developed herein to the more challenging
problem of recovering: in a possibly infinite union of subspaces, which are not resdy finite-dimensional.
Although at first sight this seems like a difficult problem as algorithms are inherently finite-dimensional, recovery
methods for sparse signals in infinite dimensions have bddreased in some of our previous work [15]-[19]. In
particular, we have shown that a signal lying in a union oftshvariant subspaces can be recovered efficiently
from certain sets of sampling functions. In our future wosle intend to combine these results with those in the
current paper in order to develop a more general theory fovvery from a union of subspaces.

A recent preprint [46] that was posted online after the sgisinn of this paper proposes a new framework called
model-based compressive sensing (MCS). The MCS approadmas a vector signal model in which only certain
predefined sparsity patterns may appear. In general, aigaéafficient recovery algorithms in such scenarios is
difficult, unless further structure is imposed on the spansatterns. Therefore, the authors consider two types of

sparse vectors: block sparsity as treated here, and a waxetemodel. For these settings, they generalize two
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known greedy algorithms: CoSaMP [47] and iterative har@gholding (IHT) [44]. These results emphasize our
claim that theoretical questions of uniqueness and stapeesentation can be studied for arbitrary unions as in
[23]. However tractable recovery algorithms inherentlguiee some structure, as the one considered here.

The union model developed in this paper is broader than thekkdparse setting treated in [46] in the sense
that it allows to model linear dependencies between theearonzalues rather than only between their locations, by
appropriate choice of subspaces[ih (), (7). In additionaime at optimization-based recovery algorithins| (26),(47)
which require selecting the objective in order to promote thodel properties. Finally, we emphasize that our

results are non asymptotic and also ensure stable recaveahgipresence of noise and signal mismodeling.
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