
SPARSE SOURCE SEPARATION FROM ORTHOGONAL MIXTURES

Moshe Mishali and Yonina C. Eldar

Department of Electrical Engineering
Technion - Israel Institute of Technology, Haifa, Israel
moshiko@tx.technion.ac.il, yonina@ee.technion.ac.il

ABSTRACT
This paper addresses source separation from a linear mixture under
two assumptions: source sparsity and orthogonality of the mixing
matrix. We propose efficient sparse separation via a two-stage pro-
cess. In the first stage we attempt to recover the sparsity pattern
of the sources by exploiting the orthogonality prior. In the second
stage, the support is used to reformulate the recovery task as an op-
timization problem. We then suggest a solution based on alternat-
ing minimization. Random simulations are performed to analyze the
behavior of the resulting algorithm. The simulations demonstrate
convergence of our approach as well as superior recovery rate in
comparison with alternative source separation methods and K-SVD,
a leading algorithm in dictionary learning.

Index Terms— Blind source separation (BSS), complete repre-
sentations, orthogonal mixture, sparse component analysis (SCA).

1. INTRODUCTION

Blind source separation (BSS) is a fundamental problem in data anal-
ysis where the goal is to recover a set of source signals from their
linear mixture, typically in the presence of noise. The blind aspect
refers to the lack of prior information about the exact mixture co-
efficients or source values. A BSS problem is ill-posed unless addi-
tional source properties are assumed, e.g., statistical independence or
an underlying deterministic structure. In sparse component analysis
(SCA), only a few (active) sources contribute to each measurement.
Mathematically, a vector s(t) of n sources is constrained to have
only K non-zero entries per each time instant t. The linear mixture
model is described by

x(t) = Ψs(t) + n(t), t = 0, 1, . . . , T − 1, (1)

where Ψ is an m × n unknown mixing matrix, x(t) is the time-
varying measurement vector, and n(t) is additive noise.

In this paper, we study the complete separation problem (m =
n) with an orthogonal Ψ, which amounts to finding an orthonor-
mal basis in which the sources are sparsely represented. Previous
SCA methods, which focus on the underdetermined SCA problem
(m < n), propose finding Ψ either by combinatorial search [1, 2],
or by an approximate maximization program [3,4]. A related area in
which source separation arises is dictionary design, where the goal
is to recover a dictionary Ψ such that the representation coefficients
s(t) are sparse. A leading dictionary learning algorithm is the K-
SVD [5]. Although this method does not explicitly assume an or-
thogonal dictionary Ψ, it is possible in principle to modify the basic

This work was supported in part by the Israel Science Foundation under
Grant no. 1081/07 and by the European Commission in the framework of
the FP7 Network of Excellence in Wireless COMmunications NEWCOM++
(contract no. 216715).

algorithm by orthogonalizing the solution. Preliminary simulations,
which we show in Section 5, show that simple modifications to K-
SVD do not lead to significant improvement in source separation;
therefore, we have not further pursued this approach. Lesage et.
al. [6] describe a learning method for m < n and Ψ which is a
union of orthonormal bases [6]. Experimentally, they show that if
Ψ is a single orthonormal basis, and a union model of two bases is
used in the algorithms, then in about 50% of the simulations one of
the recovered bases is Ψ. Adjusting their method to learning a single
basis leads to similar performance in our simulations. In recent pa-
per [7], the same orthogonal case we consider here was studied. The
authors propose a non-convex program over the manifold of orthog-
onal matrices with an �1 sparsity-promoting objective. This program
is proved to have a strict local minimum at the correct mixing matrix
under some technical conditions. Unfortunately, in practice, state-
of-the-art descend solvers over the orthogonal manifold [8] did not
converge in our simulations for the program of [7].

Our main contribution is a two-stage approach for efficient
source separation with orthogonal Ψ. Our idea is to separate the
support recovery from recovery of the source values. In the first
stage, we determine the support of the sources, namely which entries
in s(t) are active for each time instant t. This structure is inferred
from a set of rules, that exploit the orthogonality of Ψ. Next, this
information is incorporated into an optimization program allowing
to replace the difficult combinatorial constraints of SCA by a set
of linear equalities corresponding to the recovered support. Any
solution to the resulting program must minimize the Lagrangian,
which leads to a set of equations that we solve by alternating min-
imization. Empirically, the alternating procedure always converges
and the recovery rate of the sparse sources is superior with respect
to both K-SVD and [6], even when using a modified version of these
algorithms that incorporates the orthogonality constraint.

2. PROBLEM FORMULATION

2.1. Model

Starting with fixing notation, let Sik be the ikth entry of the matrix
S and ST be the transpose of S. We use I for the identity matrix
of appropriate dimensions. The ith column (row) of S is denoted
as S:i (Si:). A finite index set J indicates the appropriate column
subset S:J with |J | columns. Similarly, SJ: is a row subset. Vector
support is defined as supp(v) = {k |vk �= 0}. The Frobenius norm
is ‖X‖2

F = Tr(XT X).

We concentrate on the noise-free setting n(t) = 0, in which the
matrix form of (1) is written as

X = ΨS, (2)
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where the source vectors s(t), 1 ≤ t ≤ T are arranged as the
columns of the n × T matrix S, and the columns of X are the mea-
surement vectors x(t). The more general scenario N �= 0 is shortly
discussed in Section 6. In addition, (1) is considered over the real
numbers with orthogonal Ψ, namely ΨT Ψ = I. Extension to a
complex-valued model with unitary Ψ is immediate.

The matrix S is assumed to be K-sparse, namely for each col-
umn ‖S:i‖0 = K, where the �0 pseudo-norm counts the number
of non-zeros of its vector argument. The sparse separation problem
can be viewed as an optimization of the squared-error between the
given n × T measurement matrix X and an approximation by an
orthogonal Ψ and K-sparse S:

(Ψ̂, Ŝ) = arg min ‖X − ΨS‖F

s.t. ΨT Ψ = I,
‖S:i‖0 = K, 1 ≤ i ≤ T.

(3)

Evidently, the pair Ψ,S of (2) is an optimal solution of the pro-
gram (3). The next section provides a sufficient condition ensuring a
unique optimal solution to (3).

2.2. Uniqueness

An important question underlying any separation algorithm is
whether (3) admits a unique optimal solution pair (Ψ,S). The
BSS problem (2) has inherent intermediacy which does not allow to
determine Ψ,S exactly; row permutations of S and column scaling
of Ψ. When Ψ is orthogonal the intermediacy reduces to signed row
permutations of S, and correspondingly signed column permutations
of Ψ. To address uniqueness (up to these signed permutations) we
quote the following result of [5].

Theorem 1 The factorization B = AS, with normalized columns
A ∈ R

m×n and K-sparse S, is unique up to signed permutations
under the following conditions:

• Support: Every 2K columns of A are linearly independent.
• Richness: Upon clustering the columns of S according to

their support, every cluster consists of at least K+1 columns,
sharing the same support. In addition, for every 1 ≤ i ≤
n, there exist k, j such that the intersection supp(S:k) ∩
supp(S:j) = {i}.

• Non-degeneracy: Every column subset S:J of cardinality
|J | = d, with r rows that are non-identically zero, has
rank(S:J) = min{d, r}.

In our case, the factorization (2) assumes an orthogonal Ψ. Ex-
ploiting this prior leads to the following corollary, the proof of which
can be found in [9].

Corollary 1 Consider the setting of Theorem 1 with orthogonal A.
Then, uniqueness holds if n ≥ 2K, S is non-degenerate and rich,
possibly up to the following richness exceptions. The intersection
property may not hold for i = n, and for each cluster of columns
(sharing the same support), it may also not hold for one entry of the
support.

A rich matrix S can be constructed with T = 2n(K + 1)
columns [5], whereas in the orthogonal case, the exceptions of
Corollary 1 allow to reach a similar construction with T = 2(n −
n0)(K +1) columns, where n0 = 1+ �(n−1)/K	 and �x	 stands
for the integer part of x.

Theorem 1 and Corollary 1 are proved by explicitly constructing
Ψ,S. This procedure has combinatorial complexity. In the next
section, we describe a concrete non-combinatorial method to reveal
the supports of the columns of S.

3. SUPPORT RECOVERY

The support recovery stage relies on the following properties of C =
XT X and S:

(R1) Ckj = 0 implies that supp(S:k), supp(S:j) are disjoint;

(R2) Ckj �= 0 implies supp(S:k) ∩ supp(S:j) is not empty;

(R3) Every column S:k contains exactly K non-zeros;

(R4) Row permutations of S are allowed.

Property (R1) holds when the nonzeros of S are either positive or
generic (in the sense that (R1) holds w.p. 1 for Sij which are drawn
independently from some continuous distribution).

Input : C = XT X, sparsity level K
Output : Support pattern Z, rule list L
Initialization: Zik = φ, L with T special rules (see text)

for k = 1 to T do1
foreach Unsolved rule r ∈ L pointing column k do2

Let I be the entries pointed by r3
if Zik = 1 for some i ∈ I and r is regular then4

Remove r from L5
end6
if Symmetry holds with respect to I then7

Choose i ∈ I and set Zik = 18
end9

end10
foreach {i, j |Cjk = 0,Zik = 1} do Zij = 011
if Z:k indicates exactly K non-zero values then12

supp(S:k) = {i|Zik = 1}13
Zik = 0 for every i /∈ supp(S:k)14
Remove the kth special rule from L15
foreach {j |Ckj �= 0} do16

Add a (regular) rule on column j with17
I = supp(S:k)

end18

end19

end20
Repeat steps 1-20 till no further change in Z, L21

Algorithm 1: Support Recovery

Algorithm 1 iteratively deduces locations of zeros and non-zeros
of S by utilizing (R1)-(R4). An n × T matrix Z is used to indicate
the support of S and is initialized to Zik = φ for all entries, implying
no prior knowledge. An update Zik = 0 or 1 is performed once Sik

is identified as zero or non-zero, respectively. When a non-zero is
identified, Zik = 1, and (R1) leads to an update Zij = 0 for every
Ckj = 0 (step 11). Once Z:k identifies exactly K non-zeros, which
determines supp(S:k) = {i|Zik = 1}, (R2) implies that a column
j with Ckj �= 0 has Zij = 1 for at least one i ∈ supp(S:k). A
conclusion of this type, namely a specific column j which has at
least one non-zero entry within an index set I, is referred to as a
(regular) rule. Fig. 1 illustrates the implications of (R1),(R2).

Rules are dynamically updated as follows. Entries i ∈ I for
which Zij = 0 are automatically discarded from I. If Zij = 1
for some i ∈ I, then the rule does not contribute information and is
removed (step 5). If the rule is reduced to I = {i}, then Zij = 1
(step 8). This step is also executed when |I| > 1 and the rows ZI:

are equivalent, in the sense that zeros and non-zeros are identified in
the same locations and that the rule list L reflects a similar symmetry.
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Fig. 1: The non-zero entries of column k implies zeros in col-
umn j since Ckj = 0. A rule with I = {2, 3, 4} within column
l is based on Clk �= 0. The rule can be effectively resolved as
Z4l = 1 if Cvl = 0.

Then, (R4) implies that Zij = 1 for some i ∈ I. To use (R3),
T special rules are created on initialization. The kth special rule,
1 ≤ k ≤ T , has I = {1, . . . , n} for column k. Special rules are not
removed in step 5 until K non-zeros are identified.

The main loop of Algorithm 1 identifies new non-zero locations
by resolving rules, which in turn identifies the locations of zeros.
The feedback from the latter affects the rule list (step 17) and vice
versa. Note that the first special rule triggers the first update: Zi1 =
1 for 1 ≤ i ≤ K and Zi1 = 0 for i > K.

A rigorous complexity analysis of Algorithm 1 is beyond the
current scope. Nonetheless, a few guarantees can easily be verified:

• The algorithm always reaches the termination point, step 21.
This property holds due to the termination condition and since
every Zik can be updated only once to 0 or 1.

• The main loop, steps 2-19, identifies at least one new non-
zero entry of S, in every sweep of k from 1 to T . Thus,
Algorithm 1 may execute these steps nKT times at the most
before terminating.

• For T = 1, the support is fully recovered. More generally, the
support is determined whenever S consists of column subsets
whose supports are pairwise disjoint and each column subset
share the same support.

We point out that partial support recovery may happen (e.g., a
rich S with the minimal number of columns T = 2(n−n0)(K+1)).
Fortunately, as further described in the next section, in many cases
partial support recovery still allows exact source separation. Since
the next recovery stage relies on the zero locations of S, we may
slightly modify Algorithm 1 in order to maximize the number of
zeros that are identified: The sequential sweep of k in step 1 can
be replaced by choosing the column k, which identifies the maximal
number of new zeros locations in S. A naı̈ve implementation of this
strategy requires to execute steps 2-19 virtually for every 1 ≤ k ≤ T
and then commit the changes only for the selected column. However,
as none of these steps is recursive, the complexity is approximately
multiplied by T .

4. SOURCE SEPARATION

Using the additional information of Z, the combinatorial sparsity
constraints ‖S:i‖0 = K of (3) are now translated to a set of linear

equalities, indexed by the locations of the zeros:

(Ψ,S) = arg min ‖X − ΨS‖F

s.t. ΨT Ψ = I,
Sik = 0, ∀i, k with Zik = 0.

(4)

Any solution to (4) will minimize the Lagrangian:

L(Ψ,S) = ‖X−ΨS‖2
F + Tr

[
Γ(ΨT Ψ − I)

]
+ Tr(ΠT S), (5)

where Γ,Π are matrices of Lagrange multipliers with appropriate
dimensions and Πik = 0 for Zik �= 0. Calculating the gradients
with respect to each variable yields

∇ΠL = 0 → Sik = 0, ∀i, k with Zik = 0 (6a)

∇ΓL = 0 → ΨT Ψ = I (6b)

∇ΨL = 0 → (X − ΨS)ST = ΨΓ (6c)

∇SL = 0 → − 2ΨT X + 2ΨT ΨS + Π = 0. (6d)

To find Ψ,S satisfying (6a)-(6d), we propose an alternating mini-
mization between Ψ,S. Fixing the current estimate of S, the op-
timal Ψ satisfying (6b)-(6c) is given by Ψ = UVT where U,V
are orthogonal matrices taken from the singular value decomposi-
tion (SVD) XST = UΣVT [6]. Next, it can be verified from (6a)
and (6d) that the optimal S, when keeping an orthogonal Ψ fixed, is
computed as Sik = [ΨT X]ik where Zik �= 0 and Sik = 0 other-
wise.

Algorithm 2 summarizes the recovery of Ψ,S given the support
matrix Z. Note that (4) is not convex, and thus the system (6) only
guarantees a stationary point. Moreover, the alternating approach
does not guarantee convergence (even to a stationary point) as (6a)-
(6d) are not solved simultaneously. Nonetheless, empirically, Algo-
rithm 2 always converged to an optimal point of (4). Interestingly, in
many cases a K-sparse S is found even when the support is partially
recovered. The relation between identification of zeros and source
recovery is evident from (4) and is further studied in [9].

Input : X, support pattern Z
Output : Ψ,S
Initialization: Ψ is a random n × n orthogonal matrix

repeat1
Sik = [ΨT X]ik where Zik �= 0 and Sik = 0 otherwise2

Decompose XST = UΣVT using SVD3

Ψ = UVT4

until convergence5

Algorithm 2: Source and Mixing Matrix Recovery

5. NUMERICAL EXPERIMENTS

In order to examine recovery based on our algorithm, the following
setup is used. For fixed problem dimensions (n, T, K), a K-sparse
matrix S of size n×T is constructed by selecting the non-zero loca-
tions uniformly at random for each column, then drawing non-zero
values from a normal distribution. As explained, (R1) holds with
probability one for this choice. Next, an orthogonal Ψ is constructed
by taking the left orthogonal matrix in the SVD of a square-n matrix
whose entries are drawn independently from the normal distribution.
The measurement matrix is computed as X = ΨS.
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Fig. 2: Image intensity represents the average recovery of Ψ,S
over 100 trials per each value of n, T and for two values of K.

Algorithm 1 is executed in order to recover the support of S.
The (possibly partial) support information is passed to Algorithm 2

which recovers a candidate pair Ψ̂, Ŝ. A success recovery is an-

nounced once Ŝ is K-sparse and equals S up to signed row permu-

tations, and Ψ̂ = Ψ up to the corresponding signed column permu-
tations. The average recovery success over 100 trials is reported in
Fig. 2 for several combinations of (n, K, T ).

As evident from the figure, increasing the number of measure-
ments improves the recovery rate. In addition, as n grows, a higher
number of columns T is required to achieve the same recovery rate.
This behavior conforms with the dependency of T = 2(n−n0)(K+
1) on n, which implies a possible construction of S satisfying the
richness assumption. Interestingly, none of the examples S in the
simulations satisfies richness. Yet, as Fig. 2 reveals, our approach
which is much faster than a combinatorial recovery, shows similar
dependency of the recovery rate on n, T .

We compare our method to K-SVD [5], an iterative algorithm
which finds a candidate pair of normalized columns (though not nec-

essarily orthogonal) Ψ̂ and K-sparse Ŝ. The performance of the
original K-SVD algorithm is far from the results depicted in Fig. 2.
We slightly modified the algorithm by adding an orthogonalization
step between every d = 5 consecutive iterations, in the same way
performed in Algorithm 2. The choice d = 5 was found to provide
fast convergence to an orthogonal solution. In addition, our method
is compared to [6], which in case of an orthogonal Ψ reduces to K-
SVD with an orthogonalization step after every iteration. A simple
modification (along the lines proposed in [6]) is used to improve re-
covery rate; the threshold parameter λ of the sparse coding stage is
gradually decreased (in 100 iterations) towards zero, see [6, Eq. (5)].
Fig. 3 depicts the results and reveals a superior recovery rate for our
method. We note that our method and the modified version of [6]
have comparable run times, whereas the modified K-SVD is faster.

We also tried to compare our method with [7], which proposed
minimizing J(Ψ) = ‖ΨT X‖1 =

∑
ik |[ΨT X]ik| over the mani-

fold of orthogonal Ψ, which is a non-convex program and requires
a special solver. We used both descend algorithms of [8] for that
purpose. However, neither converged in our simulations.

6. CONCLUSIONS AND EXTENSIONS

We developed a method for sparse source separation in an orthogo-
nal mixture model. Algorithm 1 exploits invariance of inner products
under orthogonal transforms to gather information about the support
of the sources. Using this knowledge, we can substitute the origi-
nal combinatorial sparsity constraints by linear equalities. A saddle
point of the resulting optimization program can then be found by
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Fig. 3: Comparison between our method (solid lines), the mod-
ified K-SVD algorithm (dashed lines), and the modified version
of [6] (dotted lines) as T varies from 10 to 100, n = 10 and two
choices of K.

minimizing the Lagrangian. Algorithm 2 introduces an alternating
minimization procedure for this purpose. Numerical experiments
demonstrate the potential of our strategy, although further study and
comparisons are required.

The current version of Algorithm 1 is highly sensitive to noise.
Straightforward adjustments involve thresholding the correlation
matrix C prior to running the algorithm. In contrast, the develop-
ment of Algorithm 2 does not assume a noise-free setting and thus it
may also be used in the presence of noise.

Finally, we point out that although a strict theoretical richness
assumption is used to prove uniqueness, high empirical recovery per-
formance is noticed even when richness does not hold.
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