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ABSTRACT

The problem of multiuser downlink beamforming is studied under
the assumption that the transmitter has erroneous covariance-based
channel state information (CSI). The goal is to minimize the trans-
mit power under the worst-case quality-of-service (QoS) constraints.
Previous convex optimization-based solutions to this problem in-
volve several coarse approximations of the original problem. In
our proposed solution, such coarse approximations are avoided and
an exact representation of the worst-case solution is obtained using
Lagrange duality. The so-obtained problem is then converted to a
convex form using semidefinite relaxation (SDR). Computer simula-
tions show that the SDR step does not involve any approximation as
the resulting solution is always rank-one. Simulation results demon-
strate substantial performance improvements over earlier worst-case
optimization-based downlink beamforming techniques.

Index Terms— Convex optimization, downlink beamforming,
user quality-of-service

1. INTRODUCTION

Employing multiple antennas at base stations in cellular networks
offers substantial improvements in performance and achievable
throughput as compared to cellular networks with single-antenna
base stations. In the downlink mode, multi-antenna transmitters can
efficiently exploit the available channel state information (CSI) to
mitigate multi-user interference and improve the user quality-of-
service (QoS) [1].

The problem of multiuser downlink beamforming has been
extensively studied during the last decade. In [1] and [2], down-
link beamforming techniques using perfect instantaneous and
covariance-based CSI have been considered. In practice, the CSI
available at the transmitter is subject to errors caused by limited
(quantized / erroneous / delayed) channel state feedback, estima-
tion errors, short channel coherence time, etc. Since the methods
developed for the perfect CSI case are quite sensitive to such chan-
nel uncertainties, several recent works have focused on designing
downlink beamforming techniques that are robust to CSI errors; see
[3]-[6] and references therein. Most of these papers assume imper-
fections in the instantaneous CSI. Only a few methods have been
developed for imperfect covariance-based CSI [3], [4]. However, the
use of covariance CSI is more practical due to significantly reduced
feedback requirements, and is unavoidable in fast fading channel
scenarios.
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The robust technique of [3] uses convex optimization to solve
the problem of worst-case optimization-based downlink beamformer
design. The method of [4] develops a simplified version of this ap-
proach where robustness is only incorporated in the power allocation
problem for different transmit weight vectors. However, there are
several coarse approximations used in [3] and [4]. In particular, the
minimum of the signal-to-interference-plus-noise ratio (SINR) with
respect to the norm-bounded channel uncertainty is approximated as
the ratio of the minimum of the numerator and the maximum of the
denominator. Clearly, such an approximation can be very coarse in
a number of practical scenarios when the uncertainty matrices in the
numerator and denominator are the same (as in the single-cell case)
or are dependent (as in the multiple-cell case). Moreover, the ap-
proaches of [3] and [4] ignore positive semidefinitness constraints
on the downlink channel covariance matrices.

In this paper, we propose a new robust worst-case optimization-
based downlink beamforming technique that avoids the approxima-
tions of [3] and [4]. In particular, our formulation explicitly takes
into account the positive-semidefinite property of the downlink co-
variance matrices. We consider minimizing the transmitted power
subject to the worst-case QoS constraints. We first show using La-
grange duality that this minimax problem can be formulated exactly
as a single minimization problem. The resulting problem has a lin-
ear objective, a set of convex constraints, and an additional rank-one
constraint. The latter is the only non-convex constraint. By drop-
ping it, we obtain a semidefinite relaxation (SDR) of the original
minimax beamforming problem. Similar to the robust beamformer
of [3], the proposed technique is solved using convex semidefinite
programming (SDP). Computer simulations show that the SDR step
does not actually involve any approximation as the resulting solu-
tion of the final SDP problem is always rank-one. Simulation results
demonstrate substantial performance improvements of the proposed
beamformer relative to that of [3].

2. PROBLEM FORMULATION

Let us consider a single-cell flat-fading scenario with K decentral-
ized single-antenna receivers (users) and a single N-antenna base
station. Note that the extension of our approach to multiple cells /
base stations is straightforward; the single-cell case is only assumed
for the sake of notational simplicity. At time ¢, the base station trans-
mits the NV x 1 vector

K

x(t) = sk(t)w )

k=1

where s (t) is the signal intended for the kth user and wy, is the
N x 1 complex weight vector for the kth user. The signal received
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by the ith user is given by
yi(t) = hi’x(t) + ni(t) @

where h; is the N x 1 channel vector between the base station and
the ith user, n;(t) is the noise of ith user, and (-)" is the Hermitian
transpose. The noise waveforms are assumed to be zero-mean circu-
larly symmetric white Gaussian with the variance o?. The received
SINR of the ith user can be expressed as [3]

SINR; =
le;,l;éi w/ Riw; + 07

3)

where R; = E{h;h{} is the downlink channel covariance matrix
for the sth user and E{-} denotes the statistical expectation.

2.1. The Non-Robust Downlink Beamforming Problem

In [2], the channel covariance matrices are assumed to be perfectly
known. The downlink beamforming problem is then stated as that
of minimizing the total transmitted power subject to the user QoS
constraints:

- wiRw;
min [well> s.t. e R )
{wk}kzzl Z{il,z;ﬁi wiRiw; + 07
i=1,.. K

where +; is the minimal acceptable SINR for the ith user and || - ||
denotes the Euclidean norm of a vector or the Frobenius norm of
a matrix. The authors of [2] then have shown that this non-convex
problem can be transformed into a convex SDP using an SDR ap-
proach. The have also proved that the SDR step involves no approx-
imation of the original problem, as the resulting solution of the final
SDP problem is always rank-one.

2.2. The Robust Downlink Beamforming Problem

If the available CSI at the transmitter is erroneous (that is, if the co-
variance matrices R;, ¢« = 1,..., K are not known perfectly), then
the approach based on (4) can be very sensitive to CSI imperfec-
tions. To improve the robustness of the design in (4), the authors of
[3] proposed a robust modification. Specifically, they model the true
channel covariance matrices as R; + A; (¢ = 1,..., K) where R;
is the available estimate of the channel covariance matrix of the ith
user and A; is the error in this estimate. The Frobenius norm of the
latter error matrix is assumed in [3] to be upper-bounded by a known
constant €; as || A;|| < ;. The robust downlink beamforming prob-
lem is then formulated as

K

. 2
min w
in > I

. wi (R + A))w;

min 7 o 5
lAill<e El:l,l#i wl(Ri + Ay)w; + o
i=1,..., K.

s.t.

R &)

The difference between (4) and (5) is in that (5) uses the worst-case
QoS constraints rather than the conventional QoS constraints.
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In [3], the following approximation of (5) is used:

K
. 2
min W
min 3w
W{J(Rl — 6iI)wi

Zl}il,l;ti WlH(Rl +eaD)w, + 0'7;2
i=1,..., K.

s.t.

2> i (6)

The latter problem is mathematically similar to (4) and, therefore,
can be solved in the same way as (4), i.e., using the SDR technique.

Unfortunately, the transition between (5) and (6) involves sev-
eral conservative approximations that may affect the performance of
the beamformer in (6). In particular, the worst-case QoS constraints
in (5) are replaced by

. H
minja;j<e; Wi (Ri + Ag)w;
K H . . 2
max|a,|<e; 2i—1,£Wi (Ri + Ai)wi + 03

. (7

Clearly, as the same uncertainty matrix A; is used in the numera-
tor and denominator of the ¢th worst-case QoS constraint in (5), the
transition from the latter constraint to (7) can be very loose (i.e., the
constraint in (7) can be much more conservative than that used in
(5)). The same remark applies to the multiple-cell case where the
dependence between the numerator and denominator of the worst-
case QoS constraint is caused by the fact that multiple co-channel
users can be assigned to one base station.

Another coarse approximation that is used in (5) (and, respec-
tively, that affects the constraint in (6)) is that the positive semidef-
initeness of the covariance matrices R; + A;, ¢ = 1,..., K is ig-
nored in (5). This approximation is also quite conservative, as it
further strengthens the QoS constraints.

As a result of these two approximations, the technique of [3]
can be overly conservative, which may lead to infeasibility of the
robust design and to an unnecessary increase of the total transmit-
ted power. Below, we develop an alternative approach to solve the
robust worst-case beamforming problem that avoids these conserva-
tive approximations and, hence, offers a more flexible robust beam-
former design. As we will see, we solve the inner minimization in
(5) exactly, and also take the positive semidefitness of the downlink
covariance matrices into account.

3. THE PROPOSED ROBUST DOWNLINK BEAMFORMER

The aim of this section is to solve the robust downlink beamforming
problem (5), also taking into account the positive semidefiniteness
constraints for the matrices R; + A, i =1,..., K.

First, let us introduce the matrices

K
A2y Z wiwi — wiw, . (®)
I=1 1%

Then, using the property Tr{wZH Riw;} = Tr{RZ-wiWiH } where
Tr{-} is the trace of a matrix, the ith constraint in (5) can be written
as

— Tr{R;A;} — 0}v; >  dnax Tr{A;A;} )

or, equivalently,

min  — (Tr{A;A;} + Tr{R:A;} + 07v) > 0. (10)

lA;ll<e;



Adding the positive semidefinite constraint on R; + A;, the QoS
constraints correspond to the following optimization problem:

rgln — (Tr{AiAi} + Tr{R;A;} + UiQ’Yi)
N
-R; - A; X0. (1)

For given A;, the problem (11) is convex. Therefore, it can
be replaced by its dual value. The Lagrange dual function can be
written as

9(Ai, Zi) = inf f (A, A, Zi) (12)
where
SOy A Z) = (= T{AGA} = Tr{RA} - o,
FAIA = ) = Tr{(Ri + A)Z}). (13)

Differentiating with respect to A; and setting the derivative to zero,
the optimal value of A; is

1
Ai = TA’L(A'L + Zz) (14)
Therefore, the Lagrange dual function (12) becomes
9(Ni,Zi) = —7”A7’4_;_ZZH — N6 = Tr{Ri(Z;i + Ai)} — o}

s)

and the corresponding dual problem can be written as

A +Z]* 2 (7 A 2
g\I’Llai)f — . —Niei" — Tr{Ri(Z; + Ay)} — o5 v
st A >0, Zi = 0. (16)

Maximizing the objective function in (16) with respect to A; leads to
the following problem:

s.t. Z; = 0. (17)

Recalling that (17) is equivalent to the minimization in (10), our
problem becomes

K
min Z lwell®
Wil i
s.t. Izl’lg_Xo(—EZ”Al + ZiH—TI"{Ri(Zi + AZ)} — 0'2-2’)/1') >0 (18)
Vi=1,...,K.

Clearly, the constraint in (18) will be satisfied if there exists some Z;
for which it is satisfied. Our problem therefore reduces to

K
min 37wl
Wi, 2} —
Z; =0, Yi=1,..., K.

Introducing a new variable W £ w,-wiH , the variable A; can
be rewritten as

K
A= Z W, -W;
=116
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The problem (19) can be rewritten in terms of the new variables as

K
min Tr{W
{Wk,Zi}kzzl (Wi}
st —e||As + Zi|| — Tr{Ri(Zi + Ay)} — 077 >0 (20)
tho, Wlto, rank(Wl)zl, V’Lzl,,K

Now, the objective function in (20) is linear and all the constraints
except the rank-one constraint are convex. Therefore, following the
SDR approach, we will drop this non-convex constraint. The result-
ing problem becomes

K

min Tr{W

{Wk;Zi}kZ:l (Wi}

st —el|As + Zi|| — Tr{Ri(Z; + Ay)} — 07y >0 (21)
Z; =0, W; =0, Vi=1,..., K.

The problem (21) is a convex SDP problem and can be solved in
polynomial time using interior-point algorithms [7], [8].

The solutions to SDR-based problems are not rank-one in gen-
eral. In such cases, dropping the rank-one constraint is an approx-
imation, and the so-called randomization techniques [9] have to be
used to obtain an approximate solution of the original problem from
the solution of the relaxed problem. However, in the case of (21), our
simulation results show that we always obtain rank-one solutions for
W.,. Therefore, the SDR step does not cause any approximation,
and the weight vector w; can be retrieved from W; exactly, from
the principal eigenvector of W.

4. SIMULATION RESULTS

In our simulations, the same scenario as in [2] is considered. The
base station is equipped with a uniform linear array of N = 8 sen-
sors spaced half a wavelength apart from each other and K = 3
singe-antenna users are assumed. One of the users is located at
01 = 10° relative to the array broadside, while the other two are
located at 02,3 = 10° + ¢, where ¢ is varied from 5° to 10°. The
users are assumed to be surrounded by a large number of local scat-
terers corresponding to a spread angle of oy = 2°, as seen from the
base station. The channel covariance matrices R;,7 = 1,..., K are
calculated in the same way as used in [2].

The user noises are assumed to be additive white Gaussian with
variances 07 = 1,4 = 1,..., K. For each channel covariance ma-
trix R, the corresponding Hermitian error matrix A; is uniformly
randomly generated in a sphere centered at zero with radius ¢;. It
is assumed that ¢, = e foralli = 1,..., K and y; = ~ for all
i = 1,..., K. Throughout our simulations, the proposed robust
technique is compared to the non-robust and robust techniques of
[2] and [3], respectively.

Fig. 1 shows the total transmitted power versus the angular sep-
aration ¢ for v = 5 dB and different values of e. It can be seen
from the figure that the larger the error bound ¢, the more transmitted
power is required for the robust beamformers. Also, the reduction
of ¢ leads to an increase in the transmitted power, until the prob-
lem becomes infeasible. As expected, the proposed robust technique
outperforms the robust approach of [3] in terms of the transmitted
power. This performance gain becomes more pronounced when ei-
ther ¢ is small, or € is increased. As a reference, we have also plotted
the transmitted power for the non-robust approach of [2].
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Fig. 1. Total transmitted power versus angular separation ¢.
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Fig. 2. Histogram of ¢ for e = 0.15 and ¢ = 7°.

Let us define the normalized constraint value ¢; as

G = .
’Yi(ZLI;,z;ei wi (Ri + Ai)w; + 07)

If {; > 1, then the corresponding constraint is satisfied. Otherwise,
it is violated.

Fig. 2 shows the histograms of (; in the case e = 0.15 and
¢ = T7°. It can be seen that the non-robust technique of [2] vio-
lates about 50% of the constraints. The robust technique of [3] sig-
nificantly oversatisfies the constraints as compared to the proposed
robust approach.

Fig. 3 plots the total transmitted power versus v for ¢ = 7°
and different values of €. Again, the proposed robust technique sub-
stantially outperforms the robust technique of [3] in terms of the
transmitted power.

As can be seen from Figs. 1 and 3, different curves end at dif-
ferent values of ¢ and SINR, respectively. Missing points in these
curves correspond to the values of ¢ and SINR at which the corre-
sponding problem becomes infeasible, that is, when the QoS con-
straints of this problem cannot be satisfied.

It clearly follows from Figs. 1 and 3 that the proposed method
maintains feasibility for larger values of v and e (and smaller values
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Fig. 3. Total transmitted power versus required SINR ~.

of ¢) than the robust technique of [3]. Therefore, apart from substan-
tial improvements in the transmitted power, our method also offers
better feasibility than the approach of [3].
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