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MMSE Whitening and Subspace Whitening

Yonina C. Eldar, Member, IEEE,and Alan V. Oppenheim, Fellow, IEEE

Abstract—This correspondence develops a linear whitening transforma-
tion that minimizes the mean-squared error (MSE) between the original
and whitened data, i.e.,one that results in a white output that is as close
as possible to the input, in an MSE sense. When the covariance matrix of
the data is not invertible, the whitening transformation is designed to opti-
mally whiten the data on a subspace in which it is contained. The optimal
whitening transformation is developed both for the case of finite-length
data vectors and infinite-length signals.

Index Terms—Mean-squared error (MSE) whitening, subspace whiten-
ing, whitening.

I. INTRODUCTION

Data whitening arises in a variety of contexts in which it is useful
to either decorrelate a data sequence prior to subsequent processing, or
to control the spectral shape after processing. Examples in which data
whitening has been used to advantage include enhancing direction of
arrival algorithms by prewhitening [1], [2], and improving probability
of correct detection in multisignature systems [3], [4] and multiuser
wireless communication systems [5] by prewhitening.

Whitening of a random sequence parallels closely the concept of or-
thogonalization of a set of vectors. Specifically, orthogonalizing a set
of vectors involves mapping the set of vectors to a new set of vectors
through a linear transformation so that the inner product between any
two vectors in the set is zero. Similarly, whitening a zero-mean random
sequence involves mapping the sequence to a new sequence through a
linear transformation so that the expectation of the product of any two
elements in the sequence is zero. Since the expectation of the product
of two random variables is an inner product, the mathematics associ-
ated with whitening of a random sequence parallels the mathematics
associated with orthogonalizing a set of vectors.

Any whitening transformation cascaded with a linear unitary trans-
formation will result in a different whitening transformation, so that
the linear transformation that whitens a data vector or infinite length
signal is not unique. While in some applications of whitening certain
conditions might be imposed on the whitening transformation such as
causality or symmetry, there have been no general assertions of opti-
mality for various choices of a linear whitening transformation.

Recently, the concept of least-squares (LS) orthogonalization has
been introduced [6]–[8] in which an orthogonal set of vectors is con-
structed from a given set of vectors in such a way that the orthogonal
vectors are as close as possible in a LS sense to the given set of vectors.
LS orthogonalization was originally motivated by a detection problem

Manuscript received July 9, 2002; revised January 20, 2003. This work
was supported in part through collaborative participation in the Advanced
Sensors Collaborative Technology Alliance (CTA) sponsored by the U.S. Army
Research Laboratory under Cooperative Agreement DAAD19-01-2-0008. The
work of Y. C. Eldar is supported by the Taub Foundation.

Y. C. Eldar was with the Research Laboratory of Electronics, Massachu-
setts Institute of Technology, Cambridge, MA 02139 USA. She is now with
the Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail: yonina
@ee.technion.ac.il).

A. V. Oppenheim is with the Research Laboratory of Electronics, Mass-
achusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
avo@mit.edu).

Communicated by V. V. Veeravalli, Associate Editor for Detection and Esti-
mation.

Digital Object Identifier 10.1109/TIT.2003.813507

in quantum mechanics [6], and later applied to the design of optimal
frames [9], [10].

Paralleling the concept of LS orthogonalization, in this paper we de-
velop an optimal linear whitening transformation. Our criterion for op-
timality is motivated by the fact that, in general, whitening a data vector
or signal introduces distortion to the values of the data relative to the
unwhitened data. In certain applications of whitening, it may be de-
sirable to whiten the data while minimizing this distortion. Therefore,
in this correspondence we propose choosing a linear whitening trans-
formation that minimizes the mean-squared error (MSE) between the
original and whitened data, i.e., that results in a white output that is
as close as possible to the input in an MSE sense. We refer to such
a whitening transformation as a minimum MSE (MMSE) whitening
transformation. Extensions of this concept to other forms of covariance
shaping are considered in [4], [11].

Applications of MMSE whitening and subspace whitening to
matched-filter detection, multiuser detection, and LS estimation are
considered in [3], [5], [12]–[14]. The essential idea in the detection
applications is to improve the detection performance by optimally
whitening the output of conventional receivers prior to detection using
an MMSE or subspace MMSE whitening transformation. As we
show by simulations in [3] and analytically in [5], in many cases this
approach can, in fact, lead to improved detection performance.

To illustrate the use of MMSE whitening and subspace whitening in
more detail, we consider here an application of these ideas to LS es-
timation. This application is developed and explored in more detail in
[12], [13]. Specifically, we consider the problem of estimating a set of
unknown deterministic parametersxxx observed through a known linear
transformationHHH and corrupted by additive noise. The traditional LS
estimator chooses as its estimate the parameters that minimize the LS
error between the observed data and the estimated noise free data that
would be obtained with the estimated parameters. Depending onHHH ,
large errors inxxxmight result in small errors in the output in which case
the resulting LS estimate can be a poor estimate of the parametersxxx.
In the infinite-dimensional case, this problem corresponds to linear LS
deconvolution of noisy data which is well known to be highly sensitive
to additive noise, when the signal-to-noise ratio (SNR) is low or mod-
erate or the dynamic range of the spectrum of the linear transformation
is high. Exploiting the results developed in this paper for linear MMSE
whitening, in Section V we apply MMSE whitening to the LS estimator
so that we control the spectral shape and the dynamic range of the es-
timation error. This leads to a new estimator which we refer to here as
the whitened LS (WTLS) estimator. This estimator is a special case of
the more general covariance shaping LS estimator, developed in [12].
As we show, regardless of the value ofxxx there is always a threshold
SNR, below which the WTLS estimator yields a lower MSE than the
LS estimator.

In Section II, we derive the linear MMSE whitening transformation
for a finite-length data vector with positive definite covariance matrix.
In Section III, we consider optimal whitening for the case in which
the covariance matrix is not positive definite, i.e., is not invertible. In
this case, whitening and optimal whitening are restricted to the sub-
space in which the random vector is contained with probability1. In
Section IV, we consider optimal whitening of infinite-length stationary
data, i.e., stationary random processes, both in the case of positive def-
inite and positive semidefinite covariance functions. Section V con-
siders the application of MMSE whitening and subspace whitening to
LS estimation.

Throughout the correspondence, we denote vectors inR
m (m arbi-

trary) by boldface lower case letters, and matrices inRm�m by bold-
face upper case letters.PPPV denotes the orthogonal projection operator
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onto the subspaceV andIIIm denotes them �m identity matrix. The
adjoint of a transformation is denoted by(�)�, theMoore–Penrose pseu-
doinverse[15] is denoted by(�)y, and(̂�) denotes an optimal vector or
transformation. The cross covariance of random variablesa andb is
denoted bycov(a; b), andE(�) denotes expectation.

II. OPTIMAL WHITENING TRANSFORMATION

Let aaa 2 Rm denote a zero-mean1 random vector with positive def-
inite covariance matrixCCCa. We wish to whiten2 the vectoraaa using a
whitening transformationWWW to obtain the random vectorbbb = WWWaaa,
where the covariance matrix ofbbb is given byCCCb = c2IIIm for some
c > 0. Thus, we seek a transformationWWW such that

CCCb =WWWCCCaWWW
� = c2IIIm (1)

for somec > 0. We refer to anyWWW satisfying (1) as a whitening trans-
formation.

Given a covariance matrixCCCa, there are many ways to choose a
whitening transformationWWW satisfying (1), for example, using the
eigen decomposition or Cholesky factorization ofCCCa [16]. Although
there are an unlimited number of whitening transformations satisfying
(1), no general assertion of optimality is known for the outputbbb =WWWaaa

of these different transformations. In particular, the white random
vectorbbb = WWWaaa may not be “close” to the input vectoraaa. If the vector
bbb undergoes some noninvertible processing, or is used as an estimator
of some unknown parameters represented by the dataaaa, then we may
wish to choose the whitening transformation such thatbbb is close toaaa
in some sense. This can be particularly important in applications in
which bbb is the input to a detector, so that we may wish to whitenaaa

prior to detection, but at the same time minimize the distortion toaaa

by choosingWWW so thatbbb is close toaaa. Applications of this type have
been recently investigated in various contexts including matched-filter
detection [3], [4] and multiuser detection [5]. We, therefore, propose a
whitening transformation that is optimal in the sense that it results in a
random vectorbbb that is as close as possible toaaa in MSE. Specifically,
among all possible whitening transformations we seek the one that
minimizes the total MSE given by

"MSE =

m

k=1

E (ak � bk)
2 = E ((aaa� bbb)�(aaa� bbb)) (2)

subject to (1), whereak andbk are thekth components ofaaa andbbb,
respectively. We may wish to constraint the constantc in (1), or may
choosec such that the total MSE is minimized.

The MMSE whitening transformation is given by the following
theorem.

Theorem 1 (MMSE Whitening Transformation):Let aaa 2 Rm be a
random vector with positive definite covariance matrixCCCa = VVVDDDVVV �,
whereDDD is a diagonal matrix with diagonal elementsdk > 0 andVVV is
a unitary matrix. LetŴWW be the optimal whitening transformation that
minimizes the MSE defined by (2), between the inputaaa and the output
bbb = WWWaaa with covarianceCCCb = c2IIIm wherec > 0. Then

ŴWW = �VVVDDD�1=2VVV � = �CCC�1=2
a

where

1) if c is specified then� = c;

1If the meanE(aaa) is not zero, then we can always defineaaa = aaa�E(aaa) so
that the results hold foraaa .

2In this correspondence, we define a random vectoraaa to be white if the co-
variance ofaaa, denotedCCC , is given byCCC = c III for somec > 0.

2) if c is chosen to minimize the MSE then

� =
1

m

m

k=1

dk:

Proof: Let CCCa have an eigen decompositionCCCa = VVVDDDVVV �,
whereVVV is a unitary matrix andDDD is a diagonal matrix with diagonal
elementsdk > 0. Defineaaa = VVV �aaa andbbb = VVV �bbb. Then we have
immediately that the covariance ofaaa is VVV �CCCaVVV = DDD so that the
elements ofaaa are uncorrelated:cov(ak; al) = dk�kl, whereak
denotes thekth component ofaaa. Furthermore, sinceVVV � is unitary and
CCCb = c2IIIm, the covariance ofbbb is c2IIIm, and the MSE defined by

(2) betweenaaa andbbb is equal to the MSE betweenaaa andbbb. With ^
WWW

and ŴWW denoting the optimal whitening transformations in the new
and original coordinate systems, respectively, it is straightforward to
show that

ŴWW = VVV
^
WWWVVV �: (3)

To determine^WWW , we express"MSE of (2) as

"MSE=

m

k=1

E (ak � bk)
2 =

m

k=1

dk +mc2 � 2

m

k=1

E(akbk) (4)

wheredk = E(a 2k) are the eigenvalues ofCCCa, andbk denotes thekth
component ofbbb. From the Cauchy–Schwarz inequality

E(akbk) � jE(akbk)j � E a 2k E b
2

k

1=2

= c2E a 2k (5)

with equality if and only ifbk = (c=
p
dk)ak with probability one

(w.p. 1). Note, thatbk can always be chosen proportional toak since
the variablesak are uncorrelated.

We, therefore, conclude that if the constantc in (4) is specified, then
^
WWW = cDDD�1=2, and from (3)

ŴWW = cVVV DDD�1=2VVV � = cCCC�1=2
a : (6)

Alternatively, we may choose to further minimize (4) with respect
to c. Substitutingbk = (c=

p
dk)ak back into (4), we choosec to

minimize

mc2 � 2c

m

k=1

dk: (7)

The optimal value ofc, denoted bŷc, is therefore given by

ĉ =
1

m

m

k=1

dk (8)

and the optimal whitening transformation is

ŴWW = ĉVVVDDD�1=2VVV � = ĉCCC�1=2a : (9)

It is interesting to note that the MMSE whitening transformation has
the additional property that it is the uniquesymmetricwhitening trans-
formation [17] (up to a possible minus sign). It is also proportional to
the Mahalanobis transformation, that is frequently used in signal pro-
cessing applications incorporating whitening (see, e.g., [18], [1], [2]).

III. OPTIMAL SUBSPACEWHITENING

A. Subspace Whitening

Suppose now thataaa is a zero-mean random vector inRm with non-
invertible covariance matrixCCCa, whererank(CCCa) = n < m, and let
V � Rm denote the range space ofCCCa. It then follows that for any
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vvv 2 V?, CCCavvv = 0, so thatvvv�aaa = 0 w.p. 1 for any realization of
aaa, and, consequently, any realization of the random vectoraaa lies inV
w.p.1.3 In this case, there is no whitening transformationWWW such that
WWWCCCaWWW

� = c2IIIm. Instead, we propose whiteningaaa on the spaceV
in which it is contained, which we refer to assubspace whitening.

Letbbb denote the output of a subspace whitening transformation ofaaa.
Sinceaaa 2 V , we require thatbbb 2 V . In addition, we require that the
representation ofbbb in terms of some orthonormal basis forV is white,
which implies that the representation in terms of any orthonormal basis
for V is white. We now translate these conditions to conditions on the
covarianceCCCb of bbb.

Denote byCCCa = VVVDDDVVV
� the eigen decomposiiton ofCCCa, where

VVV is a unitary matrix with orthonormal columnsvvvk where the firstn
columnsfvvvk; 1 � k � ng span the range space ofCCCa, andDDD is a
diagonal matrix with diagonal elementsdk wheredk > 0; 1 � k � n

anddk = 0; n + 1 � k � m. It then follows thatbbb lies inV if and
only if the null space ofCCCb containsV?, i.e., if and only if

CCCbvvvk = 000; n+ 1 � k � m: (10)

Next, letVVV 1 denote the matrix of columnsfvvvk; 1 � k � ng that
form a basis forV . Then the representation ofbbb in this basis forV is
bbbv = VVV

�
1bbb, bbbv 2 Rn, and the covariance ofbbbv isVVV �

1CCCbVVV 1. Therefore,
bbbv is white onV if and only ifCCCb satisfies

VVV
�
1CCCbVVV 1 = c

2
IIIn (11)

for somec > 0. Combining (10) and (11) we conclude thatbbb is white
onV if and only if

CCCb = c
2
PPPV = c

2
VVV ~IIIVVV � (12)

wherePPPV is the orthogonal projection operator ontoV and

~III =
IIIn 0

0 0
: (13)

B. MMSE Subspace Whitening Transformation

We now seek a subspace whitening transformationWWW s such that the
vectorbbb = WWW saaa is white on the range spaceV of CCCa, and is as close
as possible toaaa in the MSE sense. Thus, we seek the transformation
that minimizes (2) subject to

CCCb =WWW sCCCaWWW
�
s = c

2
VVV ~IIIVVV � (14)

where~III is given by (13).
The MMSE subspace whitening transformation, denoted byŴWW s, is

derived in the Appendix in an analogous manner to the derivation of
the MMSE whitening transformation of Section II, and is summarized
in the following theorem.

Theorem 2 (MMSE Subspace Whitening):Letaaa 2 Rm be a random
vector with covariance matrixCCCa = VVVDDDVVV

� with rank(CCCa) = n <

m, whereDDD is a diagonal matrix with diagonal elementsdk > 0,
1 � k � n anddk = 0, n + 1 � k � m, andVVV is a unitary matrix.
Let V denote the range space ofCCCa spanned by the firstn columns of
VVV . Let ŴWW s be any subspace whitening transformation that minimizes
the MSE defined by (2), between the inputaaa and the outputbbb with
covarianceCCCb = c2PPPV = c2VVV ~IIIVVV �, where~III is given by (13) and
c > 0. Then

1) ŴWW s is not unique;

3Throughout this section, when we say a random vector lies in a subspace we
mean w.p.1.

2) ŴWW s = �sVVV (DDD1=2)yVVV � = �s(CCC
1=2
a )y is an optimal subspace

whitening transformation where

a) if c is specified then�s = c,
b) if c is chosen to minimize the MSE then

�s =
1

n

n

k=1

dk;

3) defineWWWV
s = ŴWW sPPPV wherePPPV is an orthogonal projection

ontoV andŴWW s is any optimal subspace whitening transforma-
tion; then

a) WWWV
s is unique, and is given by

WWW
V
s = �sVVV (DDD1=2)yVVV � = �s(CCC

1=2
a )y;

b) ŴWW saaa = WWW
V
s aaa w.p. 1,

c) bbb = ŴWW saaa is unique w.p.1.

Part 3 of Theorem 2 states the intuitively reasonable fact, which also
follows from the proof in the Appendix, that̂WWW s is uniquely specified
on V but can be arbitrary onV?. However, since the inputaaa to the
whitening transformation lies inV w.p. 1, the choice ofŴWW s on V?

does not affect the outputbbb (w.p. 1).

IV. OPTIMAL WHITENING OF STATIONARY RANDOM PROCESSES

We now consider optimal whitening and subspace whitening of a
stationary random process.

A. MMSE Whitening

Let a[n] be a zero-mean stationary random process with positive
spectrumSa(!). Suppose we wish to whitena[n], i.e., find a linear
time-invariant (LTI) whitening filter with frequency responseW (!),
such that the spectrumSb(!) of the filter outputb[n] = a[n] �w[n] is
Sb(!) = c2 for somec > 0. Since [18]

Sb(!) = Sa(!)jW (!)j2 (15)

W (!) is a whitening filter if and only if

jW (!)j2 = c
2
S
�1
a (!): (16)

From all possible whitening filters satisfying (16) we seek the filter
that minimizes

"MSE = E (a[n] � b[n])2 (17)

so thatb[n] is as close as possible toa[n] in an MSE sense.
The MMSE whitening filter is given by the following theorem.

Theorem 3 (MMSE Whitening Filter):Let a[n] denote a random
process with positive spectrumSa(!). Let Ŵ (!) be the frequency re-
sponse of the optimal whitening filter with impulse responseŵ[n] that
minimizes the MSE defined by (17), between the inputa[n] and the
outputb[n] = a[n] �w[n] with spectrumSb(!) = c2 for c > 0. Then

Ŵ (!) = �Sa(!)
�1=2

where

1) if c is specified then� = c;
2) if c is chosen to minimize the MSE then

� =
1

2�

�

��

S
1=2
a (!)d!:

Note that the MMSE whitening filter is the unique zero-phase filter
that satisfies (16).
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Proof: Expanding (17) we have

"MSE =
1

2�

�

��

Sa(!)d! + c
2
�

1

�

�

��

Sab(!)d! (18)

whereSab(!) is the cross spectrum betweena[n] andb[n] and is given
by [18]

Sab(!) = W
�(!)Sa(!): (19)

It, therefore, follows that minimizing (18) with respect tob[n] is equiv-
alent to maximizing

" =
�

��

Sab(!)d! =
�

��

c
2
W

�1(!)d! (20)

where we used (16). Now

" =
�

��

c
2
W

�1(!)d! �
�

��

c
2jW�1(!)jd!

=
�

��

cS
1=2
a (!)d! (21)

with equality if and only if

W
�1(!) = jW�1(!)j =

1

c
S
1=2
a (!) (22)

or, equivalently

W (!) = cS
�1=2
a (!): (23)

We conclude that ifc is specified, then the MMSE whitening filter is
given by

Ŵ (!) = cS
�1=2
a (!): (24)

We may further wish to minimize the MSE with respect toc. Substi-
tuting b̂[n] = ŵ[n] � a[n] into (18) whereŵ[n] is the inverse Fourier
transform ofŴ (!) and minimizing with respect toc, the optimal value
of c is

ĉ = E (a[n](a[n] � ŵ[n])) =
1

2�

�

��

S
1=2
a (!)d! (25)

and the MMSE whitening filter iŝW (!) = ĉS
�1=2
a (!).

The MMSE whitening filter given by Theorem 3 is reminiscent of
the MMSE whitening transformation given by Theorem 1. The optimal
whitening transformation is proportional to the inverse square root of
the input covariance matrix, and is symmetric. Similarly, the Fourier
transform of the optimal whitening filter is proportional to the inverse
square root of the input spectral density function, and has zero phase.

B. MMSE Subspace Whitening

When the correlation function ofa[n] is not positive definite so that
Sa(!) = 0 for some!, in analogy to the finite-dimensional case, we
propose whiteninga[n] on the subspace to which it is confined, which
is equivalent to whiteninga[n] over the frequency intervals for which
Sa(!) 6= 0. Thus, the subspace whitening filter satisfies

jW (!)j2 =
c2S�1

a (!); ! such thatSa(!) 6= 0

arbitrary; ! such thatSa(!) = 0.
(26)

The frequency response of the MMSE subspace whitening filter is
given by Theorem 3 at frequencies for whichSa(!) 6= 0, and is
arbitrary otherwise.

V. APPLICATION TO LS ESTIMATION

We now consider an application of MMSE whitening to the problem
of estimating the unknown deterministic parametersxxx in the linear
model

yyy = HHHxxx+ nnn (27)

whereHHH is a knownn � m matrix andnnn is a zero-mean random
vector with covarianceCCCn. For simplicity of exposition, we assume
thatCCCn = �2IIIn. This application is developed in more detail in [12],
[13].

Many signal processing estimation problems can be represented by
the linear model (27), and consequently, this problem has been studied
extensively in the literature (see, e.g., [19], [18]). A common approach
to estimating the parametersxxx is to restrict the estimator to be linear and
unbiased, and then seek the estimator of this form that minimizes the
variance [19]. The optimal estimator is the well-known LS estimator

x̂xxLS = (HHH�
HHH)yHHH�

yyy (28)

which also minimizes the LS error defined by

"LS = kyyy � ŷyyk2 = (yyy � ŷyy)�(yyy � ŷyy) (29)

whereŷyy = HHHx̂xx.
The LS estimator seeks the estimate ofxxx that results in an estimated

data vector̂yyy that is as close as possible to the original data vectoryyy.
However, in an estimation context, typically we are more interested in
minimizing the error betweenxxx and the estimate ofxxx. In many cases,
the data vectoryyy is not very sensitive to changes inxxx, so that a large
error in estimatingxxx may translate into a small error in estimating the
data vectoryyy, in which casêxxxLS may be a poor estimate ofxxx. This
effect is especially predominant at low to moderate SNR, where the
data vectoryyy is typically affected more by the noise than by changes
in xxx; the exact SNR range will depend on the properties of the model
matrixHHH . To improve the performance of the LS estimator at low to
moderate SNR, we propose a modification of the LS estimate based
on the concept of MMSE whitening, which we refer to as the WTLS
estimator.

Sincex̂xxLS = xxx + ~nnn where~nnn = (HHH�
HHH)�1HHH�

nnn, the covariance of
the noise component~nnn in x̂xxLS is equal to the covariance ofx̂xxLS, which
is given by�2(HHH�

HHH)�1. Evidently, the estimation error resulting from
the LS estimator can have a large variance and a covariance structure
with a large dynamic range. These properties of the estimation error
tend to limit the performance of the LS estimator. Therefore, to improve
the performance of the LS estimator, we propose whitening the noise
component in the estimatorx̂xxLS on the space in which it is contained, so
that we control the dynamic range and spectral shape of the covariance
of the estimation error. From Theorem 1, it follows that the optimal
whitening transformation is proportional tôWWW = (HHH�

HHH)1=2 so that
the WTLS estimator, denoted bŷxxxWTLS, has the form

x̂xxWTLS = �(HHH�
HHH)1=2x̂xxLS = �(HHH�

HHH)y=2HHH�
yyy (30)

for some constant�, where we introduce the notation(�)y=2 =
((�)1=2)y.

The scaling� is chosen to minimize the total variance of the data
erroryyy � ŷyy, where the data estimatêyyy is given by

ŷyy = HHHx̂xxWTLS = �HHH(HHH�
HHH)y=2HHH�

yyy: (31)

Using (31) we may express this covariance as

E (yyy0 � ŷyy
0)�(yyy0 � ŷyy

0)

= E yyy
0�(IIIn � �HHH(HHH�

HHH)y=2HHH�)2yyy0

= �
2Tr (IIIn � �HHH(HHH�

HHH)y=2HHH�)2

= �
2

n+ �
2Tr(HHH�

HHH)� 2�Tr((HHH�
HHH)1=2) (32)
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Fig. 1. MSE in estimating a set of AR parameters using the LS estimator and the WTLS estimator.

whereyyy0 = yyy � E(yyy), andŷyy0 = ŷyy � E(ŷyy). Minimizing (32) with
respect to�, the optimal value of� is given by

� =
Tr (HHH�HHH)1=2

Tr(HHH�HHH)
: (33)

Analysis of the MSE of the WTLS estimator [12] demonstrates that
over a wide range of SNR, this estimator results in a lower MSE than
the traditional LS estimator, for all values of the unknown parameters.
Specifically, let� = kxxxk2=(�2m) denote the SNR per dimension.
Then withf�k; 1 � k � mg denoting the eigenvalues ofHHH�HHH , where
we assume thatHHH has full rank, and denoting

� =

m

k=1

�
1=2
k

m

k=1

�k

the MSE of the WTLS estimator is less than or equal to the MSE of the
LS estimator for� � �WC, where

�WC =

(1=m)
m

k=1

��1k � �2

��
1=2
 � 1

2
(34)

and

 = argmax ��
1=2
k � 1

2

: (35)

Note that�WC is a worst case bound. In practice, the WTLS estimator
will outperform the LS estimator for higher values of SNR than�WC.

Examples presented in [12], [4] indicate that in a variety of applications
�WC can be quite large.

In Fig. 1, we illustrate the performance advantage in using the WTLS
estimator with one simulation from [12]. In this figure, we plot the
MSE in estimating a set of autoregressive (AR) parameters in an au-
toregressive moving average (ARMA) model contaminated by white
noise, using both the WTLS and the LS estimators from 20 noisy ob-
servations of the channel, averaged over 2000 noise realizations, as a
function of�10 log�2, where�2 is the noise variance. As can be seen
from the figure, in this example, the WTLS estimator significantly out-
performs the LS estimator. Further simulations presented in [4], [12]
strongly suggest that the WTLS estimator can significantly decrease
the MSE of the estimation error over the LS estimator for a wide range
of SNR values.

APPENDIX

SUBSPACEMMSE WHITENING

Let aaa = VVV �aaa andbbb = VVV �bbb, wherebbb is white onV so thatbbb has
covarianceCCCb = c2VVV ~IIIVVV �. The covariance ofaaa is thenVVV �CCCaVVV = DDD,
and the covariance ofbbb is VVV �CCCbVVV = c2~III . As in MMSE whitening,
instead of seeking a subspace whitening transformation that minimizes

the MSE betweenaaa andbbb, we may seek a transformation^WWW s such that

the vectorbbb =
^
WWW saaa is as close as possible toaaa, and such thatbbb has

covariancec2~III . From (3) it then follows that̂WWW s = VVV
^
WWW sVVV

�, where
ŴWW s is the optimal subspace whitening transformation that minimizes
the MSE betweenaaa andbbb.

Using the Cauchy–Schwarz inequality, it follows that^WWW s is such
thatbk = cak=

p
dk for 1 � k � n. Since the covariance ofb must

be equal toc2~III , ^
WWW s must also be chosen so thatvar(bk) = 0 for

n+1 � k � m. Now, the covariance ofaaa isDDD, where thekth diagonal
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element ofDDD is equal to0 for n+1 � k � m. Consequently,ak = 0

w.p. 1 for n + 1 � k � m. Therefore, we conclude that^WWW s is block
diagonal. The upper leftn�n block is a diagonal matrix, with diagonal
elementsc=

p
dk; the lower right block is arbitrary, sincebk = ak = 0

regardless of the choice of this block. We, therefore, choose^
WWW s to be a

diagonal matrix with the firstn diagonal elements equal toc=
p
dk and

the remaining diagonal elements equal to0. Thus, ^WWW s = c(DDD1=2)y,
and

ŴWW s = cVVV (DDD1=2)yVVV � = c(CCC1=2
a )y: (36)

If we choose to minimize the MSE with respect toc as well, then it
is straightforward to show that the optimal value ofc is given by

�s =
1

n

n

k=1

dk:
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Deviation Bounds for Wavelet Shrinkage

Dawei Hong and Jean-Camille Birget

Abstract—We analyze the wavelet shrinkage algorithm of Donoho and
Johnstone in order to assess the quality of the reconstruction of a signal
obtained from noisy samples. We give a deviation estimate for the maximum
squared error (and, consequently, for the average squared error), under
the assumption that the signal comes from a Hölder class, and the noise
samples are independent, of zero mean, and bounded. Our main technique
is Talagrand’s isoperimetric theorem. Our result shows a better behavior
of the wavelet shrinkage.

Index Terms—Deviation bound, maximum squared error, wavelet
shrinkage.

I. INTRODUCTION

We address the classical problem of the reconstruction of signal sam-
ples from noisy samples. We consider an original signal of bounded du-
rationf : t2 [0; 1]! f(t)2R. We also have additive noisee: [0; 1]!
R. Thus, the observednoisy signalat timet is y(t)=f(t)+e(t).

We sample the noisy signal atn uniformly spaced instants and we
denote the sample values by

yi = fi + ei = f
i

n
+ e

i

n
(for1 � i � n):

Our goal is to recover a good approximation of the original signal sam-
ples (f1; . . . ; fn) from the noisy signal samples(y1; . . . ; yn). For
this to be possible we need some assumptions that distinguish the signal
from the noise.

• The original signalf has a certain degree of “smoothness,” i.e.,
f belongs to a Hölder class��(M) for some� > 0 andM > 0.

• The noise is “random,” i.e.,(e1; . . . ; en) consists ofn indepen-
dent random variables.

TheHölder classesare defined as follows:

For0 < � � 1; ��(M) = fh 2 R[0; 1] :

(8x1; x2 2 [0; 1]); jh(x1)� h(x2)j �M jx1 � x2j�g:
For1 < �; ��(M) = fh 2 R[0;1] : (8x 2 [0; 1])

jh0(x)j �M; hb�c exists, and(8x1; x2 2 [0; 1])

jhb�c(x1)� hb�c(x2)j �M jx1 � x2j��b�cg:

Let (~y1; . . . ; ~yn) be an approximation of(f1; . . . ; fn), obtained
from (y1; . . . ; yn). Most commonly, the closeness of this approx-
imation is measured by1

n

n

i=1
(~yi � fi)

2 or by the expectation
E[ 1

n

n

i=1
(~yi � fi)

2].
The wavelet shrinkage algorithm of Donoho and Johnstone [6], [7]

is a very efficient tool for finding good estimates~y. In outline, the al-
gorithm works as follows:
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