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ABSTRACT

In this paper, we consider the optimization of the compound
capacity in multiple input single output channels using par-
tial channel state information at the transmitter side. We
model the channel as a deterministic vector within a known
ellipsoid, and maximize the compound capacity defined as
the worst case capacity within this set. We find that the op-
timal transmit strategy is always beamforming, and can be
found using a simple one dimensional search. These results
motivate the growing use of systems using simple beam-
forming transmit strategies.

1. INTRODUCTION

The use of multiple transmit antennas is known to improve
the capacity and reliability of wireless communication links.
The two common techniques for exploiting this multiple in-
put single output (MISO) channel are space time coding,
and beamforming (BF). Space time coding is a technique
that allows for spatial diversity without any channel state in-
formation (CSI) in the transmitter. On the other hand, when
perfect CSI is available, the standard technique is to apply
BF, i.e., perform spatial matched filtering. These two strate-
gies are based on two extreme assumptions on the availabil-
ity of CSI at the transmitter side. In many practical appli-
cations only partial CSI is available, in which case it is not
clear what the optimal transmit strategy is [1].

The capacity achieving transmit technique in MISO chan-
nels with additive Gaussian noise is signaling using random
Gaussian vectors. The strategy is therefore defined by the
covariance matrix of these vectors. The eigenvectors of this
matrix can be visualized as thedirectionsin which the trans-
mitter signals. Due to its importance, the optimization of
the covariance has been extensively studied. Different opti-
mization criteria were considered, as well as different mod-
els for the CSI. Most of the research in this area is devoted
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to stochastic models of the CSI, i.e., scenarios in which the
transmitter has access to the statistics of the channel. Typi-
cally, the channel is modelled as a complex normal random
vector with known mean and covariance. In this stochastic
CSI model, the conditional mutual information (conditioned
with respect to the channel) is also a random quantity and
must be treated appropriately, either by considering its en-
semble average known as theergodic capacity, or by con-
sidering its cumulative distribution function (CDF) via the
outage mutual information. One of the first papers in this
field is [1]. In this work, the structure of the optimal trans-
mit strategy in the sense of maximizing the ergodic capacity
was derived. The basic result was that if a non zero mean
is available then the optimal strategy is to transmit in its di-
rection and uniformly in all other directions. If a non trivial
covariance matrix is available, then the optimal strategy is
to transmit along its eigenvectors. An extension of this work
was presented in [2] where conditions for the optimality of
beamforming (BF) in rank one Ricean multiple input mul-
tiple output (MIMO) systems were found in closed form.
In [3, 4] the ergodic capacity and the outage mutual infor-
mation were derived analytically and the optimal transmit
strategies were found numerically. One of the interesting
results was that a system which switches between BF and
uniformly transmitting in all directions is close to optimal.
The impact of correlation between the antennas and more
details on the optimal power allocation strategies for maxi-
mizing the ergodic capacity were discussed in [5]. Recently,
in [6], the outage capacity with no available CSI was ana-
lyzed. A competing stochastic CSI model was introduced
in [7] where the channel was modelled using the probabil-
ity distribution function of the phase shifts between the an-
tennas. Similarly to the previous references, here too the
ergodic capacity was optimized.

A different approach for describing partial CSI is using
a deterministic model for the channel, i.e., assuming that
the channel is a deterministic variable within a known set
of possible values. When the set is a singleton, the CSI is
complete and perfect. The bigger the set is, the more uncer-
tainty there is on the actual realization of the channel. The



use of deterministic CSI models is common in the signal
processing community for designing algorithms which are
robust to the uncertainty [8]. In the context of information
theory, the maximal achievable rate of reliable communi-
cation over such channels is thecompound capacityand is
defined as the capacity of the worst case realization within
the set [9] (See also [10] for a tutorial on the topic). A pos-
sible application is in communication through a slow fading
channel. In such channels, the system cannot average over
the realizations of the channel, and must cope with the spe-
cific realization. Assuming a strict constraint on the qual-
ity of service, the system must be designed for the worst
case scenario. In this sense, compound capacity is related
to outage mutual information which also aims at designing
communication systems over slow fading channels. More
details on the compound capacity and its relation to the out-
age capacity and other information theoretic notions can be
found in [11]. Fortunately, the compound capacity is much
easier to handle than the cumbersome outage capacity. For
completeness, we mention that the compound capacity is
also related to the problem of optimizing the capacity of the
worst case noise covariance [12,13].

Due to its importance, the compound capacity recently
gained considerable attention. In [14] it was shown that if
the set of channels is isotropically unconstrained then the
optimal transmit strategy is uniform power allocation. A
similar result was obtained in [15]. In another work, the
compound capacity was analyzed and bounded under a rank
one Ricean MIMO model where the specular component
was unknown [16]. It was shown that if this component is
random with an isotropic distribution then the compound
capacity is equal to the average capacity. However, it is
difficult to compare the results of [14–16] with the results
of [1–3] since the deterministic uncertainty sets are very dif-
ferent from the structure of the stochastic CSI models.

In our work, we follow the deterministic approach, but
use an uncertainty set with a structure which is very simi-
lar to the CSI model used in [1–3]. We model the MISO
channel as a vector within a known ellipsoid defined us-
ing the deterministic analogues of the channel’s mean and
covariance. We find that the optimal transmit strategy for
maximizing the compound capacity in such CSI models is
always BF. If the ellipsoid is symmetric with respect to its
center (mean) vector, then the optimal direction is the cen-
ter (mean) vector. In more general scenarios, we provide a
simple strategy for finding the optimal direction based on a
one dimensional search. These results motivate the growing
use of simple BF transmit strategies.

The paper is organized as follows. We begin in Section
2 by defining our channel model and introducing the com-
pound optimization problem. In Section 3, we provide our
main result in Theorem 1 and discuss its consequences. The
connection between our work and previous works based on

stochastic CSI models is addressed in Section 4. In particu-
lar, we discuss the relation between the compound capacity
and the outage mutual information. In Section 5, we illus-
trate our results using a simple numerical example.

The following notation is used. Boldface upper case let-
ters denote matrices, boldface lower case letters denote col-
umn vectors, and standard lower case letters denote scalars.
The superscripts(·)T and(·)−1 denote the transpose and the
matrix inverse operators, respectively.[x]i denotes thei’th
element of the vectorx. By Tr {·} we denote the trace op-
erator, and byI we denote the identity matrix of appropriate
size. |·| denotes the determinant,‖ · ‖ denotes the standard
Euclidean norm. Finally,X º 0 means thatX is a Hermi-
tian positive semidefinite matrix.

2. PROBLEM FORMULATION

Consider the following MISO channel model:

y = hT s + w, (1)

wherey is a received sample,h is a lengthK channel vec-
tor,s is a lengthK random vector with covarianceE{ssT } =
Q satisfyingTr {Q} ≤ P , andw is a Gaussian noise sam-
ple of varianceσ2. We model the MISO channelh as an
unknown deterministic vector within the following set

h = x + d;

dT Wd ≤ 1, (2)

wherex is a lengthK vector, andW º 0 is a weight ma-
trix. In our terminology,x is the specular component of the
channel, andd is the scattering component. We assume that
the transmitter knowsx andW, but does not have access to
the specific realization ofh within the set. In Section 4, we
will show that this CSI model is the deterministic analog of
the stochastic CSI model used in [1,3], wherex is the mean
channel andW is related to its covariance.

A classical result in information theory states that the
following compound capacity is the maximal achievable rate
of reliable communication over the above channel [9,10]:

C (x,W) = max
Q º 0

Tr {Q} ≤ P

min
dT Wd≤1

I(Q,d), (3)

where

I(Q,d) = log

(
1 +

(x + d)T Q (x + d)
σ2

)
, (4)

is the mutual information betweeny ands. It can be achieved
by signaling with Gaussian vectorss with covarianceE{ssT } =
Q º 0. BF is defined as the transmit strategy whenQ =
qqT is rank one, i.e.,s = sq wheres is a Gaussian random
variable.



3. OPTIMIZATION OF THE COMPOUND
CAPACITY

In this section, we provide our main results in the following
theorem:

Theorem 1. Consider the optimization of the MISO com-
pound capacity ofC (x,W) in (3). If xT Wx ≤ 1 then
C (x,W) = 0 and any feasibleQ will attain it. Otherwise,
its optimal value is

C (x,W) = log
(
1 +

c

σ2

)
, (5)

where

c = PxT

[
I−

(
I +

λ

P
W

)−1
]2

x, (6)

and λ > 0 is the unique root of the following non linear
equation

xT

(
I +

λ

P
W

)−1

W
(
I +

λ

P
W

)−1

x = 1. (7)

In this case, the optimalQ is

Q = P
q (λ)qT (λ)
‖q (λ) ‖2 , (8)

where

q (λ) =

[
I−

(
I +

λ

P
W

)−1
]
x. (9)

Proof. Consider the optimization in (3)-(4). It is easy to
show that ifxT Wx ≤ 1 thend = −x, C (x,W) = 0
and any feasibleQ will attain it. We now consider the case
whenxT Wx > 1. Due to the monotonicity of the objective
function in the quadratic form(x + d)T Q (x + d), we can
optimize it instead:

c = max
Q º 0

Tr {Q} ≤ P

min
dT Wd≤1

(x + d)T Q (x + d) . (10)

It is easy to see that the objective is convex ind and concave
(linear) inQ. Moreover, the constraint set of the minimiza-
tion is convex, and the constraint set of the maximization is
convex and compact. Therefore, minimax theory [17] states
that there is a saddle point, i.e., a point{d,Q} such thatQ
solves the problem

max
Q º 0

Tr {Q} ≤ P

(
x + d

)T
Q

(
x + d

)
, (11)

andd solves the problem

min
dT Wd≤1

(x + d)T Q (x + d). (12)

The Lagrangian associated with program (11) is

L1 (Q;Y, ν) = − (
x + d

)T
Q

(
x + d

)− Tr {YQ}
+ν [Tr {Q} − P ] ,(13)

whereY º 0 andν ≥ 0 are the dual variables. The matrix
Q is optimal if and only if it satisfies:

− (
x + d

) (
x + d

)T −Y + νI = 0;

Tr
{
YQ

}
= 0;

ν
[
Tr

{
Q

}− P
]

= 0. (14)

It is easy to check that

Q = P

(
x + d

) (
x + d

)T

‖x + d‖2 , (15)

along with

Y = ‖x + d‖2I− (
x + d

) (
x + d

)T
;

ν = ‖x + d‖2, (16)

satisfy these exact conditions. In addition, the saddle point
must satisfy the optimality conditions associated with pro-
gram (12). The Lagrangian of this problem is

L2 (d;λ) = (x + d)T Q (x + d) + λ
[
dT Wd− 1

]
, (17)

whereλ ≥ 0 is a Lagrange multiplier. The necessary and
sufficient optimality conditions are

(
Q + λW

)
d = −Qx; (18)

λ
[
d

T
Wd− 1

]
= 0. (19)

PluggingQ from (15) into (18) results in:

P
(
x + d

)
+ λWd = 0. (20)

Solving ford yields

d = −
(
I +

λ

P
W

)−1

x. (21)

Due toxT Wx > 1, the optimal multiplierλ > 0 is strictly
positive. Therefore,d must satisfy the complementary slack-
ness condition:

xT

(
I +

λ

P
W

)−1

W
(
I +

λ

P
W

)−1

x = 1. (22)

It is easy to see that the left hand side of (22) is monoton-
ically decreasing inλ from xT Wx > 1 whenλ = 0 to
0 whenλ → ∞. Therefore, a solution forλ in (22) al-
ways exists. Finally, plugging the optimald andQ into (10)
and (15) yields (6) and (8), respectively. This concludes the
proof.



The main result of Theorem 1 is that the optimal trans-
mit strategy for maximizing the compound capacity in our
model is always BF in the direction ofq (λ) in (9). This
direction is defined by theλ which satisfies (7). Finding
this λ is very easy. Using the eigenvalue decomposition of
W = Udiag {δi}UT we rewrite the condition as

∑

i

P 2δi

(P + λδi)
2

([
UT x

]
i

)2
= 1. (23)

As explained in the proof, the left hand side of (23) is mono-
tonically decreasing inλ ≥ 0. Therefore, any simple bisec-
tion can efficiently solve forλ. Moreover, (23) belongs to
a well known family of non linear equations calledsecular
equationsfor which there are highly efficient root finding
algorithms [18].

An important practical case is when the optimal BF is in
the direction ofx. This is probably the standard technique
in many applications due to its simplicity. Theorem 1 shows
that this strategy is optimal ifW has x

‖x‖ as an eigenvector,
since in this caseq (λ) is a scaled version ofx for all λs.
A common example where this condition holds isW = αI
for someα ≥ 0.

4. RELATION TO STOCHASTIC CSI MODELS

Most of the previous references regarding the optimality
of BF examined the use of stochastic CSI models. As ex-
plained in the introduction there is an intimate relation be-
tween this model and our deterministic CSI model. The
most common stochastic CSI model is the Gaussian model
[1,2]:

hs = xs + ds, (24)

wherexs is a lengthK vector, andds is a zero mean, ran-
dom normal vector with covariance1 W−1

s . It is easy to see
the resemblance between the deterministic model in (2) and
the stochastic model in (24). The only difference is that in
the deterministic modeld is a deterministic vector within
an ellipsoid defined byW, and in the stochastic modelds

is a random vector whose covariance is defined byWs.
In stochastic CSI models, the mutual information in (4)

is actually the mutual information conditioned onds. As
such, it is a random quantity and must be addressed ac-
cordingly. One of the standard measures for analyzing such
quantities is the outage mutual information, i.e., the inverse
function of the CDF of the mutual information

Iout = OUT (Pout), (25)

where

Pout = Prob (I(Q,ds) ≤ Iout) . (26)

1In this section, we restrict ourselves to an invertibleWs.

The inverse is unique due to the monotonicity of the CDF.
The meaning of (25) is that there is a probability ofPout that
in any realization ofH from the ensemble, we will obtain a
mutual informationI less thanIout. Therefore, the system
is designed to maximize the outage mutual information [3].

In general, the calculation of the outage capacity is very
difficult. In [3], it was derived for the MISO case using in-
tegrals over the complex plane. Using these integrals, the
authors maximizedOUT (Pout) with respect toQ. In the
special case ofWs = βI, they found that the optimalQ
has the structureQ = p1xsxT

s + p2I for some power allo-
cationp1 ≥ 0 andp2 ≥ 0. To our knowledge, there is no
solution for the general case of arbitraryxs andWs. Fortu-
nately, the following lemma shows that there is an intimate
relationship between the compound capacity and the outage
mutual information:

Lemma 1. Leths satisfy the stochastic model in (24). Then,

C (xs, βWs) ≤ OUT
(

1− CDFχ2
K

(
1
β

))
, (27)

whereCDFχ2
K

(·) is the cumulative distribution function of
a Chi Squared random variable withK degrees of freedom.

Proof. Let us define the eventAβ as the event when the
realization ofhs falls within the ellipsoid set defined in (2)
with x = xs andW = βWs. The probability of this event
is

Prob (Aβ) = Prob
(
dT

s Wsds ≤ 1
β

)

= CDFχ2
K

(
1
β

)
. (28)

By conditioning onAβ , we have

Prob (I(Q,ds) ≤ C (xs, βWs))
≤ 0 · Prob (Aβ) + 1 · (1− Prob (Aβ))

= 1− CDFχ2
K

(
1
β

)
. (29)

ApplyingOUT (·) on both sides and noting the monotonic-
ity of OUT (·) yields the required inequality.

In other words, the compound capacity provides a lower
bound on the outage capacity, and instead of maximizing
the outage capacity we can maximize the bound. Given a
target probabilityP ∗out, one can solve forβ∗ in

P ∗out = 1− CDFχ2
K

(
1
β∗

)
, (30)

and then the optimalQ of C (xs, β
∗Ws) will promise a

lower bound on the outage mutual information of proba-
bility P ∗out. This is a very simple ad hoc approach to the
outage capacity problem. Due to Theorem 1, it will allow a
BF based solution for this important problem.
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Fig. 1. The normalized inner product between the BF direc-
tion and the center of the ellipsoid:xT q(λ).

5. NUMERICAL EXAMPLE

In this section, we provide a simple example that illustrates
our results. We consider a system withK = 2 transmit
antennas. We model the channel using (2) with:

x =
[

1
0

]

W =
1
ε

[
1 α
α 1

]
. (31)

The parameterε controls the volume of the ellipsoid, i.e., is
a function of the amount of uncertainty inx. The parame-
ter α defines the correlation between the elements ofh. In
Fig. 1 we plot the normalized inner product betweenx and
the optimalq(λ) for different α’s as a function ofε. It is
easy to see that whenα = 0 the optimalq(λ) is always in
the direction ofx. Intuitively, whenα > 0, the inner prod-
uct decreases asε increases, i.e., BF alongx is less optimal
as the uncertainty increases. This resemblance the previous
results regarding stochastic CSI, where BF along the mean
becomes sub optimal as the uncertainty increases. The main
difference is that in our case BF is still optimal but the di-
rection changes.

6. CONCLUSION

We derived the compound capacity in a MISO channel us-
ing a deterministic CSI model. We showed that the optimal
transmit strategy in this case is always beamforming, and
can be found using a simple one dimensional search. These
results strengthen previous results on the optimality of BF
and motivate the growing use of systems using this practi-
cal transmit strategy. Due to its simplicity, we find that the

compound capacity is an attractive alternative to the outage
capacity as a design criterion in slow fading MISO chan-
nels.
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