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ABSTRACT to stochastic models of the CSI, i.e., scenarios in which the
In this paper, we consider the optimization of the compound transmitter has access to the statistics of the channel. Typi-

capacity in multiple input single output channels using par- cally, the_ (r:]hsnnel IS modelledd asa pomplelx nﬁ_rmal rahndo_m
tial channel state information at the transmitter side. We YECtOr With known mean and covariance. In this stochastic

model the channel as a deterministic vector within a known CSI model, the conditional mutual information (conditioned

ellipsoid, and maximize the compound capacity defined asWith respect to the chanpel) Is a_lso a ra”do”? qu_anti.ty and
the worst case capacity within this set. We find that the op- must be treated appropriately, elther by can|der|ng Its en-
timal transmit strategy is always beamforming, and can be semble average known as thegodic capacityor by con-

found using a simple one dimensional search. These result$1d€rng its cumulative distribution function (CDF) via the

motivate the growing use of systems using simple beam-outage mutual informatianOne of the first papers in this
forming transmit strategies field is [1]. In this work, the structure of the optimal trans-

mit strategy in the sense of maximizing the ergodic capacity
was derived. The basic result was that if a non zero mean
1. INTRODUCTION is available then the optimal strategy is to transmit in its di-
rection and uniformly in all other directions. If a non trivial
covariance matrix is available, then the optimal strategy is
to transmit along its eigenvectors. An extension of this work
was presented in [2] where conditions for the optimality of
beamforming (BF) in rank one Ricean multiple input mul-
tiple output (MIMO) systems were found in closed form.
In [3, 4] the ergodic capacity and the outage mutual infor-
mation were derived analytically and the optimal transmit

The use of multiple transmit antennas is known to improve
the capacity and reliability of wireless communication links.
The two common techniques for exploiting this multiple in-
put single output (MISO) channel are space time coding,
and beamforming (BF). Space time coding is a technique
that allows for spatial diversity without any channel state in-
formation (CSI) in the transmitter. On the other hand, when

perfect CSl is available, the standard technique is to applystrategies were found numerically. One of the interesting

B.F’ \.e., perform spatial matched f|Iter|ng. These two str_ate-_ results was that a system which switches between BF and
gies are based on two extreme assumptions on the availabil-

i of CS| at the t tter side. | tical i uniformly transmitting in all directions is close to optimal.
'y 0 atthe transmitier side. n many practical appll- - ¢, o impact of correlation between the antennas and more
cations only partial CSl is available, in which case it is not

. ) . details on the optimal power allocation strategies for maxi-
clear what the optimal transmit strategy is [1].

The capacity achieving transmit technique in MISO chan-.mIZIng the ergodic capacity were discussed in [5]. Recently,

nels with additive Gaussian noise is signaling using randomm [6], the outage capacity with no available CSI was ana-
; i ! | A i tochasti I I i
Gaussian vectors. The strategy is therefore defined by th yzed competing stochastic CSI model was introduced

) trix of th . The ei ; fth'ein [7] where the channel was modelled using the probabil-
covariance matrix ot these vectors. The eigenvectors o Isity distribution function of the phase shifts between the an-
matrix can be visualized as td@ectionsin which the trans-

. i o S tennas. Similarly to the previous references, here too the
mitter signals. Due to its importance, the optimization of y b

, . ) . . ergodic capacity was optimized.
the covariance has been extensively studied. Different opti- g i pactty P o ) ) )
mization criteria were considered, as well as different mod- A different approach for describing partial CSl is using
els for the CSI. Most of the research in this area is devoted® deterministic model for the channel, i.e., assuming that
the channel is a deterministic variable within a known set
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use of deterministic CSI models is common in the signal stochastic CSI models is addressed in Section 4. In particu-
processing community for designing algorithms which are lar, we discuss the relation between the compound capacity
robust to the uncertainty [8]. In the context of information and the outage mutual information. In Section 5, we illus-
theory, the maximal achievable rate of reliable communi- trate our results using a simple numerical example.

cation over such channels is thempound capacitand is The following notation is used. Boldface upper case let-
defined as the capacity of the worst case realization withinters denote matrices, boldface lower case letters denote col-
the set [9] (See also [10] for a tutorial on the topic). A pos- umn vectors, and standard lower case letters denote scalars.
sible application is in communication through a slow fading The superscript§)” and(-)~! denote the transpose and the
channel. In such channels, the system cannot average ovematrix inverse operators, respectively]; denotes the’th

the realizations of the channel, and must cope with the spe-element of the vectax. By Tr {-} we denote the trace op-
cific realization. Assuming a strict constraint on the qual- erator, and by we denote the identity matrix of appropriate
ity of service, the system must be designed for the worstsize. |-| denotes the determinant, || denotes the standard
case scenario. In this sense, compound capacity is relateduclidean norm. FinallyX > 0 means thaX is a Hermi-

to outage mutual information which also aims at designing tian positive semidefinite matrix.

communication systems over slow fading channels. More

details on the compound capacity and its relation to the out- 2. PROBLEM FORMULATION

age capacity and other information theoretic notions can be

found in [11]. Fortunately, the compound capacity is much Consider the following MISO channel model:

easier to handle than the cumbersome outage capacity. For

completeness, we mention that the compound capacity is y=h"s+w, (1)

also related to the problem of optimizing the capacity of the . . .
b b g pacly wherey is a received sampléy is a lengthK channel vec-

worst case noise covariance [12, 13]. ) ) , T
L ) tor, s is alengthK’ random vector with covariandé{ss" } =
Due to its importance, the compound capacity recently Q satisfyingTr {Q} < P, andw is a Gaussian noise sam-
gained considerable attention. In [14] it was shown that if ple of variancer?. We model the MISO channél as an

the. set of chan.nels is |sot.rop|c.ally unconstrained .then the | nknown deterministic vector within the following set
optimal transmit strategy is uniform power allocation. A

similar result was obtained in [15]. In another work, the h=x+d;

compound capacity was analyzed and bounded under a rank dTWd < 1 )

one Ricean MIMO model where the specular component -7

was unknown [16]. It was shown that if this component is wherex is a lengthK vector, andW > 0 is a weight ma-

random with an isotropic distribution then the compound trix. In our terminologyx is the specular component of the

capacity is equal to the average capacity. However, it is channel, and is the scattering component. We assume that

difficult to compare the results of [14-16] with the results the transmitter knows andW, but does not have access to

of [1-3] since the deterministic uncertainty sets are very dif- the specific realization di within the set. In Section 4, we

ferent from the structure of the stochastic CSI models. will show that this CSI model is the deterministic analog of
In our work, we follow the deterministic approach, but the stochastic CSI model used in [1, 3], wheris the mean

use an uncertainty set with a structure which is very simi- channel andV is related to its covariance.

lar to the CSI model used in [1-3]. We model the MISO A classical result in information theory states that the

channel as a vector within a known ellipsoid defined us- following compound capacity is the maximal achievable rate

ing the deterministic analogues of the channel’s mean andof reliable communication over the above channel [9, 10].

covariance. We find that the optimal transmit strategy for

maximizing the compound capacity in such CSI modelsis € (W) = oo% g 1(Q.d), ®)
always BF. If the ellipsoid is symmetric with respect to its ™{Q} <P
center (mean) vector, then the optimal direction is the cen—Where

ter (mean) vector. In more general scenarios, we provide a
simple strategy for finding the optimal direction based on a

one dimensional search. These results motivate the growing  1(Q,d) = log (1 +
use of simple BF transmit strategies.

The paper is organized as follows. We begin in Section is the mutual information betweerands. It can be achieved
2 by defining our channel model and introducing the com- by signaling with Gaussian vectassvith covariancez {ss’ } =
pound optimization problem. In Section 3, we provide our Q > 0. BF is defined as the transmit strategy wh@n=
main result in Theorem 1 and discuss its consequences. Theq” is rank one, i.es = sq wheres is a Gaussian random
connection between our work and previous works based onvariable.

o2

<x+d>TQ(x+d)>7 @



3. OPTIMIZATION OF THE COMPOUND
CAPACITY

In this section, we provide our main results in the following
theorem:

Theorem 1. Consider the optimization of the MISO com-
pound capacity of” (x, W) in (3). If x’Wx < 1 then
C (x, W) = 0 and any feasibl&) will attain it. Otherwise,
its optimal value is

C (x, W) = log (1 n J%) , )

A -1]?
I—<I+PW> ]x,

and A > 0 is the unique root of the following non linear
equation

where

c= PxT

(6)

A -1 A -1
xT (I+PW> W(I+PW) x =1. )
In this case, the optimdl is
a(Na” (V)
—_— 8
@ eV ®
where
-1
q(A) = [I — <I+ ;;W) X. 9)

Proof. Consider the optimization in (3)-(4). It is easy to
show that ifx”Wx < 1thend = —x, C(x,W) = 0
and any feasibl€) will attain it. We now consider the case
whenx”Wx > 1. Due to the monotonicity of the objective
function in the quadratic fornx + d)” Q (x + d), we can
optimize it instead:

c= max min (x+d)" Q(x+d). (10)
Q-0 dTWd<l
r{Q} <P

Itis easy to see that the objective is convediand concave
(linear) inQ. Moreover, the constraint set of the minimiza-
tion is convex, and the constraint set of the maximization i

convex and compact. Therefore, minimax theory [17] states

that there is a saddle point, i.e., a pojet, Q} such thalQ
solves the problem

max  (x+d) Q(x+d), (11)
Q>0
™{Q} <P
andd solves the problem
min  (x+d)" Q(x+d). (12)

dTWd<1

The Lagrangian associated with program (11) is
—(x+4d)" Q(x+4d) - T+ {YQ}
+v[Tr{Q} — P],(13)

ﬂhereY = 0 andr > 0 are the dual variables. The matrix
Q is optimal if and only if it satisfies:

Ll (Q,Y’I/) =

— (x+d) (x+d) =Y +1I=0;
Tr{YQ}:O;

v [Tr {Q} — P} =0. (14)
It is easy to check that
— (x+d) (x+a)"
=P — , 15
RS e o)
along with
Y =[x +d|’T— (x+d) (x+d)" ;
v =[x +d|? (16)

satisfy these exact conditions. In addition, the saddle point
must satisfy the optimality conditions associated with pro-
gram (12). The Lagrangian of this problem is

Ly (d;N) = (x+d)" Q(x+d) +A[aTWd - 1], (17)

where) > 0 is a Lagrange multiplier. The necessary and
sufficient optimality conditions are

(Q+2\W)d = -Qx; (18)
A [HTWa - 1] —0. (19)
PluggingQ from (15) into (18) results in:
P(x+d)+AWd=0. (20)
Solving ford yields
d=— (I+)\W>_lx. (21)
p

Due tox”Wx > 1, the optimal multiplietA > 0 is strictly

g Positive. Therefored must satisfy the complementary slack-

ness condition:

Ao\ ! Ao\ !
T —_— —_— =
x <I+ PW) W<I+ PW> x = 1. (22)
It is easy to see that the left hand side of (22) is monoton-
ically decreasing im from x”Wx > 1 when) = 0 to
0 when A — oco. Therefore, a solution foA in (22) al-
ways exists. Finally, plugging the optimdlandQ into (10)
and (15) yields (6) and (8), respectively. This concludes the
proof. O



The main result of Theorem 1 is that the optimal trans- The inverse is unique due to the monotonicity of the CDF.
mit strategy for maximizing the compound capacity in our The meaning of (25) is that there is a probabilityrf,., that
model is always BF in the direction @f (\) in (9). This in any realization oH from the ensemble, we will obtain a
direction is defined by the which satisfies (7). Finding mutual information/ less than/,,;. Therefore, the system
this X is very easy. Using the eigenvalue decomposition of is designed to maximize the outage mutual information [3].

W = Udiag {§;} UT we rewrite the condition as In general, the calculation of the outage capacity is very
) difficult. In [3], it was derived for the MISO case using in-
Z _ PRy ([UTx] _)2 —1. (23) tegrals over the complex plane. Using these integrals, the
— (P +\)° ’ authors maximize®U T (P,,;) with respect toQ. In the

special case oW, = g1, they found that the optimal

has the structur® = p;x,x. + p.I for some power allo-
cationp; > 0 andp, > 0. To our knowledge, there is no
solution for the general case of arbitratyandW . Fortu-
nately, the following lemma shows that there is an intimate
relationship between the compound capacity and the outage
mutual information:

As explained in the proof, the left hand side of (23) is mono-
tonically decreasing i > 0. Therefore, any simple bisec-
tion can efficiently solve foi. Moreover, (23) belongs to
a well known family of non linear equations calledcular
equationsfor which there are highly efficient root finding
algorithms [18].

An important practical case is when the optimal BF is in
the direction ofx. This is probably the standard technique Lemma 1. Leth, satisfy the stochastic modelin (24). Then,
in many applications due to its simplicity. Theorem 1 shows 1
that this strategy is optimal W has % as an eigenvector, C (x5, W) < OUT <1 — CDF, 2. (ﬂ)) ., @D

fIx]
since in this case ()\) is a scaled version at for all \s.

A common example where this condition holddAé = al WhereCDin (+) is the cumulative distribution function of
for somea > 0. a Chi Squared random variable witli degrees of freedom.

Proof. Let us define the eventlsz as the event when the
4. RELATION TO STOCHASTIC CSI MODELS realization ofh; falls within the ellipsoid set defined in (2)

with x = x, andW = gW,. The probability of this event
Most of the previous references regarding the optimality s

of BF examined the use of stochastic CSI models. As ex- 1
plained in the introduction there is an intimate relation be- Prob(Ag) = Prob (dSTWSdS < )
tween this model and our deterministic CSI model. The B
most common stochastic CSI model is the Gaussian model — CDF. (1) _ (28)
[1,2]: K\ B
h, = x, +d., (24) By conditioning onAg, we have
wherex, is a lengthK vector, andd, is a zero mean, ran- Prob (1(Q,ds) < C (x,, BW,))
dom normal vector with covariant® ;L. It is easy to see < 0-Prob(Ag) + 1 (1 —Prob (4p))
the resemblance between the deterministic model in (2) and 1
the stochastic model in (24). The only difference is that in =1- CDFx% B : (29)

the deterministic modadl is a deterministic vector within ) ) . .
an ellipsoid defined by, and in the stochastic moddl Applying OUT (-) on both sides and noting the monotonic-

is a random vector whose covariance is definedWy. ity of OUT (-) yields the required inequality. O

_ In stochastic CSI m_odels, the mutua_l _information in (4) In other words, the compound capacity provides a lower
is actually the mutual information conditioned dnp. As bound on the outage capacity, and instead of maximizing

such, it is a random quantity and must be addressed acy,q oytage capacity we can maximize the bound. Given a
cordingly. One of the standard measures for analyzing S”Chtarget probabilityP* ., one can solve fof* in

quantities is the outage mutual information, i.e., the inverse out”

function of the CDF of the mutual information % 1
Pl =1—CDF,z2 (ﬁ*) , (30)
Iout = OZ/{T(Pout)v (25)
and then the optimaQ of C (x,, 5*W) will promise a
where lower bound on the outage mutual information of proba-

bility PZ,.. This is a very simple ad hoc approach to the
outage capacity problem. Due to Theorem 1, it will allow a
LIn this section, we restrict ourselves to an invertisie. BF based solution for this important problem.

Pyut = Prob (1(Q, d) < Iow) . (26)
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Fig. 1. The normalized inner product between the BF direc-

tion and the center of the ellipsoist’ q()).

5. NUMERICAL EXAMPLE

compound capacity is an attractive alternative to the outage
capacity as a design criterion in slow fading MISO chan-

nels.

(1]

(2]

(3]

In this section, we provide a simple example that illustrates [4]

our results. We consider a system wikh = 2 transmit
antennas. We model the channel using (2) with:

o)

W_i{;ﬂ (31)

The parameter controls the volume of the ellipsoid, i.e., is

a function of the amount of uncertainty in The parame-
ter « defines the correlation between the elementk.olin
Fig. 1 we plot the normalized inner product betweeand
the optimalg(\) for differenta’s as a function ok. Itis
easy to see that when = 0 the optimalg(}\) is always in
the direction ofx. Intuitively, whena > 0, the inner prod-
uct decreases asncreases, i.e., BF alongis less optimal

(5]

(6]

(7]

as the uncertainty increases. This resemblance the previous
results regarding stochastic CSI, where BF along the mean
becomes sub optimal as the uncertainty increases. The main

difference is that in our case BF is still optimal but the di-

rection changes.

6. CONCLUSION

We derived the compound capacity in a MISO channel us-
ing a deterministic CSI model. We showed that the optimal
transmit strategy in this case is always beamforming, and

(8]

9]

can be found using a simple one dimensional search. These

results strengthen previous results on the optimality of BF

and motivate the growing use of systems using this practi- [10]

cal transmit strategy. Due to its simplicity, we find that the
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