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ABSTRACT

Motivation: Array Comparative Genomic Hybridization (aCGH)
is used to scan the entire genome for variations in DNA copy number.
A central task in the analysis of aCGH data is the segmentation into
groups of probes sharing the same DNA copy number. Some well
known segmentation methods suffer from very long running times,
preventing interactive data analysis.
Results: We suggest a new segmentation method based on
wavelet decomposition and thresholding, which detects significant
breakpoints in the data. Our algorithm is over 1000 times faster
than leading approaches, with similar performance. Another key
advantage of the proposed method is its simplicity and flexibility. Due
to its intuitive structure, it can be easily generalized to incorporate
several types of side information. Here, we consider two extensions
which include side information indicating the reliability of each
measurement, and compensating for a changing variability in the
measurement noise. The resulting algorithm outperforms existing
methods, both in terms of speed and performance, when applied
on real high density CGH data.
Availability: Implementation is available under software tab at:
http://www.ee.technion.ac.il/Sites/People/YoninaEldar/
Contact: yonina@ee.technion.ac.il

1 INTRODUCTION
Array Comparative Genomic Hybridization (aCGH) is used to
scan the entire genome for variations in DNA copy number. DNA
from a test and reference cell populations is differentially labeled
and hybridized on the array, and the log ratio between the two
hybridization results is used to detect copy number variations. High
density aCGH, spanning hundreds of thousands of probes, is a
powerful tool in the research of cancer (Barrett et al., 2004; Pinkel
and Albertson, 2005) and copy number polymorphisms (Conard
et al., 2006; Perry et al., 2008; Redon et al., 2006). A central task
in the analysis of aCGH is the segmentation of the data into groups
of probes that share the same DNA copy number.

Various segmentation methods have been proposed over the last
years. Olsen et al. (2004) suggested a circular binary segmentation
(CBS) algorithm, based on recursively applying a statistical test
to detect significant breakpoints in the data. Picard et al. (2005)
developed a dynamic programming procedure to segment the data
when the number of segments is known in advance, which is referred
to as CGHseg. The actual number of segments in real data is
determined by maximizing a penalized likelihood function. While
other segmentation methods exist, such as Lipson et al. (2005, 2006),
a comparison study (Lai et al., 2005) which tested 11 segmentation
methods, concluded that CBS and CGHseg tend to have the best
performance under various conditions. Another comparison study
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(Willenbrock and Fridlyand, 2005) compared three methods and
proclaimed CBS as the method with the best results.

While presenting good segmentation performance, CBS is not
sensitive to short segments, and often fails to detect them. On the
other hand, CGHseg is sensitive to outliers in the data, leading to
short segments corresponding to noise. A common drawback of both
CBS and CGHseg is the long running time required to segment real
high density arrays. Furthermore, it is not clear how to extend these
methods to support side information.

In this article we present HaarSeg, a new segmentation method,
based on well known wavelet denoising principles. HaarSeg
identifies statistically significant breakpoints in the data, using the
maxima of the Haar wavelet transform, and segments accordingly.
HaarSeg is a fast method, over 1000 times faster than CBS
and CGHseg, enabling interactive data analysis, with a slight
compromise in performance. Due to its simple and intuitive
structure, it is also a flexible method, and therefore easy to extend.
We show how HaarSeg can be generalized to use quality of
measurement data, additional information which exists in some
platforms, indicating the reliability of each measurement. The use of
quality of measurement was first suggested in Lipson et al. (2005),
and it is currently used in ADM2, a segmentation algorithm based
on (Lipson et al., 2005, 2006) and used for example in de Smith
et al. (2007) and in Perry et al. (2008). Since ADM2 does not
have a freely available implementation we did not compare our
performance to this segmentation algorithm. We also suggest an
extension to compensate for the large variance in the log ratio
measurements which occurs when one of the raw measurements
has a very low value. Using these two generalizations, we show
that HaarSeg outperforms existing methods, while remaining much
faster.

The use of the Haar wavelet for microarray analysis is not new.
Hsu et al. (2005) suggested applying standard wavelet denoising on
microarrays, using the Haar wavelet. HaarSeg is different from that
approach as it performs segmentation rather than smoothing of the
data. To emphasize this difference we compare our results to Hsu
et al. and show that HaarSeg outperforms this method as well.

The rest of the article is organized as follows: The basic HaarSeg
algorithm is discussed in Section 2.1. Generalizations including
quality of measurement data and adaptation to non-stationary
variance are presented in Section 2.2. In Sections 3.1 and 3.2 we
provide simulation results, and finally, analysis of real CGH data is
presented in Section 3.3.

2 METHODS
Each measurement in aCGH data is the log ratio of two raw measurements,
red and green, which we denote by log(R/G).

Our signal, y[n], is a set of log(R/G) measurements from a single
chromosome, ordered according to their genomic coordinates. Alternations
in the number of copies in the aCGH data occur in contiguous regions of
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the chromosome, often spanning multiple probes. We therefore consider
the problem of recovering a piecewise constant signal x[n] from its noisy
measurements y[n], which can be viewed as the segmentation of y[n].

2.1 The basic HaarSeg algorithm
We suggest the following scheme, which is explained in detail in the next
subsections:

• Apply the undecimated discrete wavelet transform (UDWT) (Mallat,
1998) on the data, using the Haar wavelet.

• Select a set of detail subbands from the transform {LMIN ,
LMIN+1, … , LMAX }.

• Find the local maxima of the selected detail subbands.

• Threshold the maxima of each subband separately, using an FDR
thresholding procedure.

• Unify selected maxima from all the subbands to create a list of
significant breakpoints in the data.

• Reconstruct the segmentation result from the list of significant
breakpoints.

2.1.1 Undecimated discrete wavelet transform The discrete wavelet
transform (Mallat, 1998) decomposes a given signal into an approximation
subband and a set of detail subbands at different resolution scales. The
approximation subband is a coarse or smooth version of the original signal,
containing the scale coefficients. The detail subbands describe the higher
frequencies of the signal, and are composed of the wavelet coefficients. Here
we consider the undecimated discrete wavelet transform (UDWT), where
each subband has the same number of coefficients. The UDWT is well suited
for the task of data analysis, mainly due to its translation invariance property
(Starck et al., 2004).

The Haar wavelet is a natural choice for the recovery of piecewise constant
signals (Mallat, 1998). In this case, the detail coefficients of subband Lare
given by:

wL [n]= 1√
2L+1

⎛
⎝n+(2L−1)∑

k=n

y[k]−
n−1∑

k=n−2L

y[k]

⎞
⎠. (1)

The wavelet coefficients wL[n] in (1) can be viewed as the difference between
two averages. In places where no breakpoint occurred in the signal, we expect
wL[n] to be zero, as it is the difference between two identical averages. When
zero mean additive noise is present it will typically average out for large
enough L, so that wL[n] will still be close to 0. In places where a breakpoint
occurred, we expect a high absolute value of wL[n], as the two averages are
different.

Let zL[k] denote the local maxima of the absolute values of wL[n]:

zL [k]= localmax
(|wL [n]|), 1�k �K, (2)

Where, K is the number of local maxima in |wL[n]|. A coefficient is a
local maximum if it is larger than its neighbors. We start by examining
the two closest neighboring coefficients, and in case of equality we extend
the neighborhood until we encounter a larger or smaller coefficient. High
amplitude coefficients in zL[k] correspond to locations where abrupt changes
occurred in y[n], and low amplitude coefficients correspond to changes in y[n]
which were caused by noise. Finer detail subbands provide better localization
of abrupt changes, but are more sensitive to noise.

2.1.2 FDR thresholding Given a list of coefficients z[k] from a specific
subband L, we wish to keep just the larger ones, which in our case correspond
to significant breakpoints in the data. To this end we consider the false
discovery rate (FDR) thresholding procedure (Benjamini and Hochberg,
1995), where FDR is defined as the proportion of false-positives out of all
positives. FDR thresholding is a data-adaptive procedure, which controls the
FDR. Specifically, we perform multiple hypotheses testing, where the null

model assumes that the coefficient comes from a normal distribution with
zero mean and a given standard deviation σ . We select the maximum number
of coefficients such that the estimated FDR is kept under a predefined level
q,where 0 < q < 0.5.

To apply FDR thresholding, we first sort z[k] in descending order, such
that:

z(
1
)�z(

2
)� ...�z(

i
)� ...�z(

K
).

For each measurement z(i) we calculate the two-sided P-value:

p(
i
)=2

(
1−�

( z(
i
)

σ

))
,

Where, � is the normal CDF. Starting from i = 1, we then find the largest
index i for which

p (i ) �
(
i/K

)
q.

Thresholding is obtained by keeping the i largest coefficients, z(1),...,z(i).
Since in practice the standard deviation of the noise is unknown, we estimate
it by using the robust median absolute deviation (MAD) estimator (Donoho,
1995) on the finest detail subband w0[n];

σ̂ = median
(|w0 [n]|)

0.6745
. (3)

2.1.3 Signal reconstruction To reconstruct the signal x[n] from the local
maxima in each subband, we first need to unify maxima from all the selected
detail subbands {LMIN , LMIN+1 ,…, LMAX } into a single list of breakpoints. To
take into account the possibility that the same breakpoint is detected at several
levels with a slight offset, we use the following procedure. We first select
all the significant coefficients detected at LMIN , the finest detail level, and
add them to the final list of breakpoints. We then add coefficients from level
L = LMIN + 1, provided that they are at least 2L−1 + 1 measurements away
from any breakpoint in the final list. This step is repeated for all remaining
subbands L = LMIN + 2, …, LMAX .

At the end of this process we remain with a single list of significant
breakpoints in y[n]. Given the list of breakpoints, we estimate the piecewise
constant signal x[n] by setting the value of the signal between two
consecutive breakpoints to be the average of all probes in y[n] over that
interval.

2.1.4 Algorithm parameters Two parameters need to be selected properly
for HaarSeg:

(1) The set of detail subbands {LMIN ,LMIN+1, …, LMAX };

(2) The FDR parameter q.

The values of LMIN and LMAX are determined by the sampling resolution
of our measurements. As LMIN increases, we are less sensitive to noise, but
are also less likely to detect short segments in the data. As a general rule of
thumb, if we expect a single segment in the data to span at least k probes,
then we choose:

LMIN =⌈log2 k
⌉
.

LMAX should be set large enough to reduce the sensitivity to noise, but small
enough to avoid detection of slow, unimportant changes in the data, such as
the genome-wide technical artifact described in Marioni et al. (2007). In all
our experiments we used detail subbands {1, 2, 3, 4, 5}.

The FDR parameter 0 < q < 0.5 controls the FDR of breakpoints in the
data. Low values of q will reduce the false-positives at the possible cost of
increasing the false-negatives, and vice versa.

2.1.5 Complexity Let N be the total number of measurements in y[n].
Calculating wL[n] in the case of Haar UDWT, (1) can be performed in O(N)
operations regardless of the size of L,since it can be viewed as the difference
between two running averages. FDR thresholding, applied to the transform
maxima, has complexity O(NlogN) as it requires sorting the data. Since the
entire procedure is applied to a small finite set of detail subbands, the total
complexity remains O(NlogN).
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2.2 Application to aCGH
We demonstrate the flexibility of HaarSeg by suggesting two extensions
which are specific to aCGH. In Section 3, we show that these extensions
lead to better segmentation on real aCGH data.

2.2.1 Quality of measurement Each raw measurement, red or green, is
estimated from a set of pixels, associated with the same probe on the array.
The median is usually used to estimate the raw measurement from the set
of pixels. Current array platforms often provide the user with a value of
σ [n], which is the empirical standard deviation of the pixels corresponding
to y[n]. High σ [n] indicates poor measurement. The use of this additional
information in a segmentation algorithm was first suggested in (Lipson et al.,
2005). This quality measure can be easily incorporated into our framework as
well. Two steps need adjustment: the calculation of the wavelet coefficients
and the final signal reconstruction.

The coefficients wL[n] in (1) can be rewritten as the difference between
two averages:

wL[n]=
√

2L−1

⎛
⎝ 1

2L

n+(2L−1)∑
k=n

y[k]− 1

2L

n−1∑
k=n−2L

y[k]

⎞
⎠.

When each probe has a different variance, we suggest using the difference
between two weighted averages for the calculation of wL[n]:

wL [n]=
√

2L−1

⎛
⎝∑n+(2L−1)

k=n

(
y[k]/σ 2[k])∑n+(2L−1)

k=n

(
1/σ 2 [k]

) −
∑n−1

k=n−2L

(
y[k]/σ 2 [k]

)
∑n−1

k=n−2L

(
1/σ 2 [k]

)
⎞
⎠.

(4)

Note that when σ [n] is constant for all n, (4) reduces to the original definition
of wL[n] in (1).

To reconstruct the signal, we use a weighted average instead, in order to
estimate the signal values between two consecutive breakpoints:

µ̂=
∑

n y[n]/σ 2 [n]∑
n 1/σ 2 [n]

.

2.2.2 Non-stationary variance In real CGH data, we observed that while
most of the log(R/G) measurements have similar variance, there are segments
of measurements with larger variance. Typically the raw measurements in
those segments, either red or green, have a very low value compared to the
rest of the raw measurements.An example from real data is shown in Figure 4.
Note that in the previous subsection we discussed the variance of pixels inside
the same probe, while now we consider the variance between consecutive
probes. The connection between low value of the raw measurements and
large variance of the log ratio can be explained by sensitivity analysis of the
log ratio function:

∂

∂R
log

(
R

G

)
= 1

R
,

∂

∂G
log

(
R

G

)
=− 1

G
..

Hence, if all the raw measurements are perturbed with the same additive
noise, then raw measurements with lower values will result in larger
variations of the log ratio signal.

In the case of gene expression microarrays, several variance stabilization
and normalization techniques have been suggested to cope with
non-stationary variance. For example see the review of Steinhoff and Vingron
(2006).

In order to adjust HaarSeg to reduce the effect of the non-stationary
variance, we suggest splitting the transform peaks into two groups: a
group of high variance, containing peaks that correspond to low raw
measurements, and a group of typical variance that corresponds to the
remaining measurements. We adjust the FDR thresholding to use these two
variances accordingly, by suggesting the following scheme:

• Create a binary mask b[n] using a fixed threshold TNSV . Values of ‘1’
correspond to probes with low raw measurements:

b[n]=
{

1 if min
(
R[n],G[n]

)
<TNSV

0 else.

• For each detail subband wL[n], defined in (1), calculate a matching
binary mask bL[n]. True values in bL[n] indicate that at least half of the
measurements used to calculate wL[n] where marked as high variance
in b[n]:

bL [n]=
{

1 if
(

1
2L+1

∑n+2L−1
k=n−2L b[k]

)
�0.5

0 else.

• We estimate two standard deviations from the finest detail subband,
w0[n], by splitting it to two groups according to the mask b0[n] and
using the estimator in (3) on each group:

σ̂high ⇔b0 [n]=1
σ̂typical ⇔b0 [n]=0.

• Update the transform peaks zL[k], defined in (2), such that all the peaks
will have the same standard deviation.

z′
L [k]=

{
zL [k]/σ̂high if bL [k]=1
zL[k]/σ̂typical else.

• Apply FDR thresholding on z′
L[k], using standard deviation of 1.

We set TNSV to a fixed value of 50 in our CGH analysis below.

2.3 Determining aberrant intervals
In the segmentation process of CGH arrays there is a need to determine
which segments are aberrant, and set remaining segments to zero. As in
CBS, CGHseg, and other segmentation methods, we approach this as a
post-processing step. Several algorithms have been proposed for this task.
A simple suggestion is to consider all segments with values outside m
times the standard deviation range to be aberrant (Hodgson et al., 2001),
where m is frequently set to three. An iterative method based on non-
parametric statistical tests called MergeLevels was suggested in Willenbrock
and Fridlyand (2005). Tibshirani and Wang (2008) used an FDR based
approach.

In our tests, we used the simple method of considering all segments
with values outside m times the standard deviation range to be aberrant.
To estimate the standard deviation, we calculate the difference between y[n],
the original signal, and x[n], the segmentation result and apply the robust
MAD estimator:

σ̂ = median
(|y[n]−x[n]|)
0.6745

.

Any other preferred method can be used instead, as this is simply a post-
processing step.

3 RESULTS
We compared the performance of HaarSeg to CBS (Olshen et al.,
2004), CGHseg (Picard et al., 2005), and to the wavelet denoising
scheme suggested by (Hsu et al., 2005), which we denote as Wave.

3.1 Simulated data
In their comparison study, Willenbrock and Fridlyand (2005) created
simulated CGH data using empirical distributions of segment length
and copy number, taken from CBS segmentation results on real data.
The noise model used in this simulation is additive i.i.d Gaussian
noise. The original simulation contained 500 arrays, where every
array included 20 chromosomes of 100 probes each. In order to
simulate chromosome sizes which are closer to current high density
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Fig. 1. ROC curves of the tested algorithms, using the simulation model
from Willenbrock and Fridlyand (2005).

CGH arrays, we modified Willenbrock’s simulation to produce 100
arrays, each containing a single chromosome of 10 000 probes. We
used the exact same model and noise levels used to produce the
original simulations.

Since this simulation does not contain quality of measurement, or
the original raw red and green measurements, we use only the basic
HaarSeg algorithm, without any of the suggested extensions.

In order to compare results between HaarSeg and other
algorithms, we computed the true positive rate and FDR for all
possible aberration thresholds, and plotted the receiver operating
characteristic (ROC) curve for each segmentation algorithm. We
computed the true positive rate (TPR) as the number of probes inside
aberrations whose fitted values are above the threshold level divided
by the number of probes inside aberrations. The FDR was calculated
as the number of probes outside aberrations whose fitted values are
above the threshold level divided by all the probes whose fitted
values are above the threshold level.

The ROC curves and running times for HaarSeg, CBS, CGHseg
and Wave appear in Figure 1. HaarSeg takes only 2 s to produce a
result for all 100 arrays; this is over 1500 times faster than CBS, and
over 9000 times faster than CGHseg, which was the slowest method.
However, the speed gain of the basic HaarSeg algorithm comes with
some performance price. HaarSeg performs slightly worse compared
to CBS, about 1% worse in FDR and 1% worst in TPR. HaarSeg
allows higher TPR than CGHseg, but at the cost of 1% in the FDR.
Wave showed the worst ROC curve among the compared methods.

3.2 Simulated data with quality of measurement
In order to test the performance gain when using our suggested
extensions to HaarSeg, we created a simulation based on real data.
We took three control self–self hybridization arrays, 236 404 probes
each, from de Smith et al. (2007). These arrays contain quality of
measurement and the raw red and green measurements. The true
segmentation result of a self–self array is zero everywhere. We used
the self–self arrays to create a simulation in the following manner:
We reordered the self–self arrays and created 70 arrays of 10 000
probes each. For each array, we created a mask of aberrant segments.
Each segment was given a slightly different height, uniformly
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Wave (6.7sec)
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W-HaarSeg (2.2sec)

Fig. 2. ROC curves of the tested algorithms, using a simulation based on
real self–self data, with segment length distributions of CBS.

distributed between 0.1 and 0.2. To create the aberrant mask we used
the empirical length distribution of CBS, taken from Willenbrock
and Fridlyand (2005).

Figure 2 shows the ROC curve of TPR versus FDR at various
thresholds, and running times for all tested algorithms. We denote
HaarSeg as the basic algorithm and W-HaarSeg as the algorithm
with quality of measurement and non-stationary variance extensions
described in Section 2.2. W-HaarSeg and CBS achieve the best
results, where W-HaarSeg is about 1000 times faster than CBS.

Using the empirical length distributions of CBS is biased towards
CBS. Short segments of 2–4 probes rarely exist since CBS is not
sensitive enough to detect such segments. We therefore repeated the
experiment using the segment length distribution of W-HaarSeg,
taken from segmentation results on the real data in de Smith et al.
(2007). Since short segments are harder to detect, we increased the
segment height to be uniformly distributed between the values of
0.15 and 0.25. Figure 3 shows the ROC curve and running times for
this experiment. In this case, W-HaarSeg outperforms all the other
tested methods. This demonstrates that W-HaarSeg is able to detect
short segments, which CBS cannot, while keeping the false positive
at a low rate.

3.3 Real high density CGH data
In order to test performance on real high density arrays, we used
data from de Smith et al. (2007), which enables performance
evaluation to some extent, and contains quality of measurement
side information. de Smith et al. (2007) compared samples from 50
healthy subjects to a reference sample in order to detect copy number
variations in healthy individuals. This experiment also includes three
control self–self hybridizations of the reference sample, used to
estimate false positives.

Since the reference sample was a female and the test samples
were males, we excluded chromosome Y from all our tests, and
compensated chromosome X by adding a constant, estimated as the
mean of the median of all X chromosomes in the 50 arrays. No other
normalization was applied to the data. Each array therefore contains
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Fig. 3. ROC curves of the tested algorithms, using a simulation based on
real self–self data, with segment length distributions of W-HaarSeg.

Table 1. Results for real data

Method FDR(%) Average active Run time
probes number (s)

CBS 4.3 4603 36 420
CGHseg 10.0 5031 237 600
Wave 10.7 6284 121
HaarSeg 9.9 5317 29
W-HaarSeg 0.9 4782 38

23 chromosomes and a total of 236 404 probes. Each chromosome
contains between 2000–18 000 probes.

To estimate the FDR, we divided the average number of aberrant
probes in the 3 self–self arrays, which we expect to be zero in the
ideal case, by the average number of aberrant probes in the 50 arrays.
Estimating the false negative is not possible on real data, where the
exact true answer is not known.

We tested the performance of both HaarSeg, and W-HaarSeg,
which is the HaarSeg algorithm with quality of measurement
and non-stationary variance extensions described in Section 2.8.
We compared results to CBS, CGHseg and Wave. For all tested
segmentation methods, we used the aberrant threshold from Section
2.9, setting m to 3.

Table 1 shows the FDR estimate, average number of active probes
in the 50 arrays, and the time it took to segment all 53 arrays in each
method. W-HaarSeg has the best false positive score, <1%, and CBS
has the next best score, 4.3%. Compared to CBS, W-HaarSeg detects
more active probes on average. This suggests that W-HaarSeg has
a better false negative score, since it detects more probes, with a
lower false positive estimate. Both HaarSeg and W-HaarSeg excel
at running times compared to CBS and CGHseg. HaarSeg and
W-HaarSeg segment the entire data in <1 min, while CBS takes
10 h and CGHseg takes 66 h to produce the segmentation result.

Figure 4 demonstrates the non-stationary variance effect in a
section from a self–self array. The correct segmentation result in
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4000
red and green raw data

−0.5

0

0.5 CBS
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0.5 CGHseg
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0

0.5 Wave

−0.5

0

0.5 HaarSeg

−0.5

0

0.5 W-HaarSeg

Fig. 4. Segmentation results of a section from chromosome 1 in a ‘self–
self’ array, GSM215042, demonstrating the non-stationary variance effect.
Graphs are in genomic coordinates. The correct result is zero at all the probes.
Segmentation results are shown after applying the aberration threshold.

this case is zero everywhere. Only W-HaarSeg achieves an exact
zero result for this section.

Figure 5 shows an example of segmentation results of a short
possible deletion spanning four probes. The true answer is not
known, but in this example CBS was the only method that did
not detect the deletion, indicating that CBS is less sensitive in the
detection of short segments. This example also demonstrates the
difference between the results of Wave, where each measurement
has a different value, and HaarSeg, where all measurements in the
same segment share the same value.

3.4 Parameter settings
We used R package DNAcopy version 1.12 for CBS, R package
tilingArray version 1.16 (Huber et al., 2006) for CGHseg, and R
package waveslim version 1.6.1 (Whitcher, 2007) for Wave.
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Fig. 5. Segmentation results of a possible deletion in chromosome 6, array
GSM214509. Graphs are in genomic coordinates. Segmentation results are
shown before applying the aberration threshold.

We used default parameters for CBS. For CGHseg we set the
maximum number of allowed segments in a chromosome to 300
and the maximum length of a segment to 2000 probes. To determine
the actual number of segments in CGHseg, we used the BIC penalty
term. For Wave we used SURE soft thresholding with a maximum
detail subband of four, according to the description in Hsu et al.
(2005). For HaarSeg, we used five detail subbands, L = {1,2,3,4,5}
and set q to 0.05 for the simulated data in Section 3.1, and q = 0.001
for the simulated data in Section 3.2 and for the real data in Section
3.3. Running times were calculated on AMD Athlon 64X2 with 2GB
RAM.

4 DISCUSSION
We presented HaarSeg, a new method for the segmentation of
high density aCGH. Applied on both simulated and real data, our
method is considerably faster, but with a slight performance penalty
compared to leading approaches. We demonstrate the flexibility of
our method by suggesting two extensions. First, we propose using
quality of measurement. This additional information, when it exists,
enables HaarSeg to better handle outlier measurements. Second, we
suggest an extension to compensate for the large variance in part
of the log ratio measurements, which occurs when at least one of
the raw measurements has a very low value. This extension enables
HaarSeg to avoid over segmentation. Using both additions, HaarSeg
outperforms existing algorithms.

It is interesting to note that each of the two suggested
extensions contributes about the same performance gain to the final
result. Applying just one of the extensions, either the quality of
measurement or the non-stationary variance, will result in about
half the total performance gain. These extensions do not change the
low complexity of HaarSeg, and running times remain short. The
importance of reasonable running times will become more and more
evident as microarray size and resolution continue to grow rapidly.

While we showed application of our method to aCGH, where
we seek to detect breakpoints in the data, our method can also be
extended to detect other interesting features in microarray data. This
is a subject for future research.
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