
Enhancement of Color Images By Efficient
Demosaicing

Liron D. Grossmann∗ and Yonina C. Eldar†

September 23, 2005

Abstract

We propose a simple yet powerful method for reconstructing a full-
color image from its partially sampled version. The suggested algo-
rithm is non-iterative and is based on the properties of the human
visual system. While several state-of-the-art algorithms invest a great
deal of computational effort in the enhancement of the reconstructed
image to overcome color artifacts, we focus on eliminating the major-
ity of the them in the initial stage of the algorithm. We tested our
algorithm on several problematic images and found it to often be sig-
nificantly superior to state-of-the-art algorithms, without consuming
high computational power.

Index Terms—Demosaicing, interpolation, color spaces, computational com-
plexity.

1 Introduction

It is well known that in order to display a digital color image, one needs
to specify only three values for each pixel, i.e. the red, green, and blue
component (often called the color channels) at the corresponding location.
Due to technology limitations, however, most charge-coupled-device (CCD)
cameras provide a single value for each pixel, that is, either red, green, or
blue. The resulting image is often called a “mosaic”. The problem of demo-
saicing is to reconstruct the original, full-color, image from its subsampled
version.

∗Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa
32000, Israel. E-mail: lirongr@tx.technion.ac.il.

†Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa
32000, Israel. E-mail: yonina@ee.technion.ac.il.

1



Many demosaicing algorithms have been proposed over the last decade;
see, e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] to mention a few. In [14]
the existing methods were broadly divided into three categories. The first
group includes the heuristic approaches and contains the largest number of
existing algorithms. The second class is based on formulating the demosaic-
ing problem as an optimization problem, while the third category relies on
a model of the image formation process and solves an inverse problem. Our
algorithm belongs to the first class, and combines several common ideas into
one method, yielding better visual results, while maintaining a low compu-
tational demand.

Roughly speaking, the algorithms in the first category can be further
classified into three groups. In the first group standard interpolation tech-
niques, such as nearest neighbor, bilinear, or cubic interpolation are used to
interpolate the missing pixels. Such methods are computationally fast and
simple to implement, but result in severe color artifacts. The algorithms be-
longing to this category completely ignore the color attributes of the image,
explaining their degraded visual quality.

The second class of methods takes into account the cross-correlation
among the three color channels [2, 5, 7, 8]. Common use of this correlation
is to assume that the hue changes smoothly between neighboring pixels,
and therefore interpolation is performed on the color ratios instead of on
the channels themselves. However, the assumption of constant hue may
not hold around certain kinds of edges. As a result, some algorithms also
incorporate an edge-detection mechanism to avoid interpolating over edges.
These techniques lead to higher quality images than the algorithms in the
first category, demonstrating that combining knowledge of the human visual
system can improve the quality of the reconstructed image. Nevertheless,
the majority of these methods still yield poor results in certain problematic
regions.

The third category of algorithms includes those whose visual results are
considered the best [1, 4, 9, 10, 11, 12, 13]. Most of them (except [4]) start
with an initial estimation of the original image (such as bilinear interpola-
tion), followed by a correction stage, which is intended to eliminate most
of the color artifacts caused by the initial interpolation scheme. The cor-
rection methods exploit additional properties of color images, which may
require a transformation to another color space. Despite the good quality
obtained by this class of algorithms, there are still several artifacts that
cannot be completely eliminated by them. Usually it happens because of a
poor initial interpolation method creates artifacts, which are hard to track
and compensate.

What is lacking, therefore, is a demosaicing method, which is not too
complex (both conceptually and computationally), but at the same time
can reduce most of the common problems arising from the subsampling of
the color channels. It is clear that a good demosaicing algorithm should be

2



driven by the interaction between color image attributes and the human vi-
sual system. In addition, existing algorithms demonstrate that a correction
method is a useful component in the demosaicing chain. Nevertheless, the
input to this stage should not contain too many visual artifacts, so computa-
tional effort should be split between the initial estimation and the correction
method.

In this paper we present an algorithm which takes into account the prop-
erties of color images, and whose running time is fast when compared to the
existing methods. Our method follows the same pattern as that of the third
category: it starts with an initial estimation of the color image, and then
applies a correction method. In the first stage a classification of the miss-
ing pixels is made, according to which different interpolation schemes are
applied. This strategy allows us to isolate specific visual artifacts and treat
them separately, without affecting the estimation of the rest of the pixels. In
the second stage a correction method, which relies on the smooth behavior
of the hue component of the image, is carried out on problematic pixels.
Simulation results verify that the proposed method succeeds in eliminating
most of the typical artifacts.

The paper is organized as follows. In Section 2, we introduce the prob-
lem of demosaicing in a way suitable for the development of the algorithm.
The main steps of the algorithm are outlined in Section 3. Computational
complexity analysis is made in Section 4. Finally, comparisons with existing
demosaicing methods are discussed in Section 5.1

2 Problem Formulation and Main Results

The problem of demosaicing is that of reconstructing a multi-color image
from its subsampled version, given in the form of a single array of pixels.
The most popular pattern is the Bayer Color Filter Array (CFA), which is
shown in Fig. 1, and will be the one considered here [15]. In this pattern,
50% of the pixels are green, 25% are red, and 25% are blue.

As noted in the introduction the demosaicing problem can be regarded
as an interpolation problem. The solution method should yield an outcome,
that is as close as possible to the original image. By close, we mean subjec-
tively close, as there is no universal metric for images, which is in accordance
with the human visual system [16]. Therefore, throughout the paper, when
we refer to a “good” quality image, we mean subjectively good as seen by
the viewer of the image.

A major obstacle in every demosaicing algorithm is handling regions with
rapid changes, where aliasing occurred in the green channel (and therefore

1The images in this paper are best viewed on a monitor. An on-line version is available
at http://www.ee.technion.ac.il/Sites/People/YoninaEldar/ under Journal Publications.

3



Figure 1: The Bayer array pattern

in the red and blue as well). A typical example is demonstrated in Fig. 2, in
which the green channel of black and white vertical stripes is shown together
with its corresponding subsampled version.

(a) (b)

Figure 2: A region in the green channel that is aliased after subsampling (a)
original (b) the corresponding region in the mosaic image.

The main attribute of our algorithm is that it succeeds in interpolating
such regions without causing color artifacts. It does so by “forcing” a good
initial estimation of the image, and then correcting these aliased regions in
subsequent stages.

A block diagram of our algorithm is shown in Fig. 3. The first two blocks
correspond to an adaptive initial interpolation of the color image from the
partially sampled one. The last two blocks constitute the correction part,
which eliminates visual artifacts that remain in the image.

4



Figure 3: A block diagram of the algorithm.

The initial estimation procedure starts with the green channel by clas-
sifying each missing pixels into one of three groups. The classification rule
is based on the the nature of the pixel’s neighborhood, and leads to differ-
ent interpolation methods. The output of this stage are two green channel
images, where in the one certain pixels, which we call “special” pixels, are
interpolated in the horizontal direction, while at the second they are inter-
polated vertically. This splitting aims at treating the situation of aliasing
that was shown in Fig. 2. The determination of the right direction is left to
subsequent stages.

Following the green estimation, the red and blue are interpolated ac-
cording to the inter-channel correlation. Since we have two green estimates,
horizontal and vertical, we interpolate the red and blue channels twice, once
for each direction.

The resulting two color images are passed through the correction stage,
in which color artifacts are reduced. The goal of this step is to determine the
right direction of the “special” pixels from the first stage. The assumption
we make is that pixels which possess a smoother chrominance value, indicate

5



the correct interpolation direction. One way to test the chrominance of a
pixel is to transform its RGB values into the YIQ space, where the I and Q
components stand for the chromaticity of the pixel [3, 17]. The resulting I
and Q components are then compared with their neighbors to evaluate the
relative chromatic smoothness of the pixels. The output of this stage is a
color image where the “special” pixels are interpolated correctly. Finally,
the image is median filtered in order to reduce possible pointwise artifacts.

A more detailed description of the above method is given in the next
section.

3 A Description of the Algorithm

The following steps describe the proposed algorithm together with figures
corresponding to the outputs of each stage. We chose the Lighthouse im-
age, which is considered to be a very difficult image to reconstruct from its
mosaic, in order to emphasize the power of our technique.

I. Green Estimation. This step consists of two part: classification,
and interpolation.

Each missing green pixel is classified to one of three classes according
to the degree of smoothness of its neighborhood, where smoothness means
that the neighboring pixels are “close” to each other in a sense to be ex-
plained below. The three classes are shown in Fig. 4. Pixels with smooth

Class A Class B Class C

Figure 4: The three classes used in the classification process.

neighborhood are said to be class A pixels. Class B contains pixels that
do not belong to A, but whose value can be inferred with the aid of pixels
from other channels, i.e. the red and blue, in an enlarged neighborhood. In
Class C we find all the rest of the pixels, that we call “special”. These are
pixels, whose value cannot be determined using their neighbors in the green
channel nor in the other channels (like the stripes in Fig. 2).

Denoting the surrounding pixels of the missing green by {G1, G2, G3, G4}
(see Fig. 5), a smooth neighborhood is one, where at least three of them

6



are “close”. Pixels in class C will be those where G1 is close G3, while G2 is
close to G4 but different from G1. The rest of the pixels will belong to class
B.

Figure 5: The neighborhood of a missing pixel.

We now explain what we mean by “close” pixels. Two pixels, denoted
by G1 and G2 with G1 < G2, are said to be close if their relative difference,

G2 −G1

G1
, (1)

is below a predetermined threshold, which is device dependent. The thresh-
olds we use also depend on the intensity level of G1, and were obtained via
visual experiments. Therefore, they may change according to the user’s own
camera. In order to avoid division by zero, if G1 is smaller than some thresh-
old, then the difference, G2 − G1 is used instead of the ratio in (1). The
thresholds we use are summarized in Table 1 for G1 and G2 assuming values
between 0 and 255. Note that the first value corresponds to the difference
and not to the ratio.

The discrimination rule in (1) is reminiscent of the Weber’s law, which
states that the ratio of the increment in the light intensity to the back-
ground is constant [17]. However, it is known that in practice this ratio
is not perfectly constant, justifying the thresholds being dependent on G1.
Furthermore, when (1) is used on a raw image, i.e. a nonrendered one, the
green channel is highly correlated with the light intensity, and this further
motivates the use of Weber law to discriminate green pixels. The thresholds
used may change as well using rendered and nonrendered images.

We shall now describe how to interpolate each class. Since pixels of
class A have a “smooth” environment, each missing green is replaced by
the average of its neighbors, in order to preserve the smoothness. If the
neighborhood is completely smooth, that is, all of its pixels are “close”,

7



Intensity level Threshold
0 ≤ G1 ≤ 30 20
30 < G1 ≤ 75 0.7
75 < G1 ≤ 120 0.27
120 < G1 ≤ 141 0.16
141 < G1 ≤ 161 0.11
161 < G1 ≤ 201 0.08
201 < G1 ≤ 235 0.06
235 < G1 ≤ 255 0.08

Table 1: Thresholds for using the discrimination rule.

then the estimated green, Ĝ, is given by

Ĝ =
G1 + G2 + G3 + G4

4
. (2)

If the neighborhood is partially smooth (such as the right one in class A
of Fig. 4), then we use the interpolation

Ĝ =
G1 + G2 + G3

3
. (3)

In class B the estimation is carried out using a larger neighborhood that
contains pixels from the red and blue channels as well. Fig. 6 shows the
pixels, which are included in the interpolation of this class. Note that we
could also use this scheme for class A, but it is not necessary there, since the
intra-channel correlation suffices. In fact, using the inter-correlation in class
A may even decrease the visual performance. We adopt the approach of
[5] to exploit the inter-channel correlation. The value of the estimate, Ĝ, is
computed by adding R (which is given) to the estimated difference G − R,
leading to the interpolation formula

Ĝ = R+
(G1 − (R1+R)

2 ) + (G2 − (R2+R)
2 ) + (G4 − (R4+R)

2 ) + (G3 − (R3+R)
2 )

4
.

(4)
Each summand in the numerator is an estimate of the difference G − R,
and the final estimate is their average. A similar procedure is applied when
the neighborhood contains pixels of the blue channel.

The “special” pixels (class C) are treated differently. Their neighborhood
is a result of the aliasing created in the subsampling of the green channel

8



Figure 6: The mosaic image, where the marked pixels are used in the inter-
polation of class B.

itself. In Fig. 2 the effect of aliasing in the green channel was shown, where it
is clear that the right direction of the stripes can no longer be inferred from
the subsapmled green. The aliasing phenomenon is even more disastrous
in the red and blue channels, since their sampling rate is lower than that
of the green. We are therefore led to a situation, where the inter-channel
correlation can no longer be exploited in the interpolation process. Enlarg-
ing the size of the neighborhood in the green channel is not helpful either.
As the correct interpolation is not known, we assume it may take on two
possible directions, horizontal or vertical. Therefore, each “special” pixel is
interpolated twice: horizontally by,

Ĝ =
G2 + G4

2
, (5)

and vertically by,

Ĝ =
G1 + G3

2
. (6)

This choice of reconstruction stems from two reasons: the first is driven by
the simplicity of implementation, while the other is a psychophysical one.
Using only two possible directions for interpolation reduces the complexity
of the comparison and selection process in the correction stage. In addition,
it is a known fact that the human eye is most sensitive to edges in the
horizontal and vertical directions, and less sensitive to diagonal edges [18].

As a consequence, we end up with two versions of the reconstructed
green. One, called the horizontal image, has all its aliased regions estimated
in the horizontal direction. The second image, the vertical one, has them all
vertically interpolated. The pixels belonging to the other two classes remain
the same in both images. Figure 7 shows the outputs of this stage.

9



(a) (b)

Figure 7: The outputs of the green estimation stage (a) horizontal green
channel (b) vertical green channel.

II. Red and Blue Estimation. In this step we “fill in” the missing red
and blue pixels. Using the two green versions of the previous step, the red
and blue channels are estimated by adding the green value at the missing
red or blue location to an estimated difference. The red and blue pixels’
neighborhoods differ from the green ones and are shown in Fig. 8 for the
red channel. Concentrating on the top red neighborhood in this figure, we

Figure 8: The missing red environment.

interpolate R2 using the following rule,

R̂2 =
{

G2 + (R1 − Ĝ1) if R1 < R3

G2 + (R3 − Ĝ3) otherwise,
(7)

10



where Ĝ1, Ĝ3 are the estimated values of the green channel. This rule takes
into account the possible difference in the red and green pattern, and pre-
vents misalignment of edges due to phase shift between the given samples.
Suppose that there is an increase in the green level, i.e G2 > Ĝ1, while at
the same time, the intensity of the red pixel (which is missing) R2 decreases
compared to R1. Using the difference R1 − Ĝ1 instead of R3 − Ĝ3 would
cause an increase in the value of R2, instead of a desired decrease. A similar
situation occurs when the missing red has two vertical neighbors. The case
where the estimate has four diagonal neighbors is treated by taking into
account only one diagonal. The missing red is interpolated along it as in
(7).

The interpolation of the missing red and blue pixels is performed twice
- once based on the horizontal green image, and once based on the vertical
green image. The resulting two color images at the output of this stage are
shown in Fig. 9.

(a) (b)

Figure 9: The output of the red and blue estimation stage (a) horizontal
interpolation (b) vertical interpolation.

III. YIQ transformation. It remains to decide on the right direction
of the “special” pixels. This is done in three steps. First, transforming the
two images at the output of stage II to the YIQ space. Second, grouping
neighboring “special” pixels into clusters. Third, selecting the cluster version
(horizontal or vertical), which results in a smoother I component. We now
elaborate on each of theses steps.

In order to detect the smoothness of the chrominance we first transform

11



the image to the YIQ space, using the formula,



Y
I
Q


 =




0.299 0.587 0.114
0.596 −0.2755 0.321
0.212 −0.523 0.311







R
G
B


 . (8)

In this space, as opposed to the RGB one, the achromatic behavior of the
image (the Y component) is separated from its chromatic behavior (the I and
Q components). Since the human eye is more sensitive to abrupt changes in
the luminance than to the changes in the chrominance [19], it is reasonable
to expect that the right direction of the “special” pixel should yield smoother
I and Q components. In the proposed method we shall test the smoothness
only in the I component due to two reasons. First, it reduces the number
of comparisons to only one component, and therefore accelerate the running
time of the algorithm. Second, it is known that the human eye is more
sensitive to the changes in the I component then in the Q component. This
fact is also exploited in analog TV transmission, where the I component is
allocated more bandwidth than the Q component [17].

Considering the I component of each version, i.e. horizontal and vertical,
“special” pixels which are in a 3×3 environment are clustered together. It is
the spatial correlation assumption that stands behind the idea of clustering.

Our next step is to compute the relative smoothness of each cluster
version and to select the smoother one. The relative smoothness of each
version is taken to be the ratio between the mean value of the pixels inside
the cluster and the mean value of the pixels, which are outside the cluster,
but are close to its boundary. Specifically, denote by Ch and by Cv the
horizontal and vertical version of a cluster, respectively, and denote the
average value of their I components by AvCh and AvCv. We denote the
averages of the horizontal and vertical environments outside the clusters
by AvEh and AvEv, respectively. The selected cluster, denoted by Cs, is
determined by the following rule:

Cs =
{

Ch if AvCh
AvEh

< AvCv
AvEv

Cv otherwise.
(9)

The selection of a cluster involves inserting its pixels’ values (that is the
corresponding Y, I and Q values) into the final image.

After the selection of each cluster is performed, we obtain one color im-
age, which is a mixture of clusters, either horizontal or vertical, together
with pixels belonging to class A and B (whose values were already deter-
mined in the previous stage). In Fig. 10, the Lighthouse image (in its RGB
representation) at the output of this stage is presented.

IV. Median Filtering. The resulting image from the last step may
still contain splotches, that are very annoying to the human eye. To elim-

12



Figure 10: The output of the YIQ stage.

inate these false color points, we perform median filtering on the I and Q
components of the image, using a 3 × 3 neighborhood median filter. The
final Lighthouse image is shown in Fig. 11.

4 Computational Complexity

One of the attractive features of the proposed algorithm is that it is con-
ceptually easy to understand and implement. In addition, simulations show
that the running time of our algorithm is comparable with several algorithms
(i.e. [2, 7, 11, 12]), i.e. it takes about ten to twenty seconds to run on a
pentium four PC for medium size images. This is, for example, in contrast
with the algorithm of [1], which has a relatively slow running time. Our
code was not optimized, so complexity can be further reduced.

Table 2 summarizes the computational complexity of our algorithm. It
shows the number of calculation performed for each pixel in the worst case.
In practice, the numbers will usually be smaller.

In the interpolation stage, the most computationally expensive pixels
are class B ones. The classification to this group requires 8 comparisons
(6 for class A and 2 for class C), where each comparison gives rise to one
substraction and one division. The interpolation results in 12 additions
(or subtractions) along with 5 fixed multiplications (multiplications by a
constant).

The conversion from RGB to YIQ requires 2 additions and 3 fixed mul-
tiplications. Since pixels from class C are interpolated twice, the number of

13



Figure 11: The final output of the algorithm.

Stage adds fixed multiplies compares divides
Interpolation 20 5 8 8
YIQ transformation 6 10 0 0
Clustering 38 2 17 2
Median filtering 0 0 16 0

Table 2: Computations performed per pixel.

operations is doubled. Moreover, color transformation is performed twice,
from RGB to YIQ and back to RGB.

In the clustering stage, each “special” pixel is associated with its 3× 3
environment, leading to 8 comparisons for checking possible pixels to be
clustered. The calculation of the average of its neighbors requires 9 addi-
tions and 1 fixed multiplication. The same number of operations to compute
the average of its border (if the pixel’s neighborhood is on the border of the
cluster). Computation of the ratio between the average of the cluster and its
border requires one division. This is done for both horizontal and vertical
versions of the image, resulting in a total of 36 additions, 4 fixed multipli-
cations, and 2 divisions. The two versions are then compared yielding and
additional comparison to the clustering stage. Finally, the I and Q plane of
the unified image is median filtered leading to a number of 16 comparisons.

It should be mentioned that if one is willing to trade off computational

14



complexity for visual quality, then the algorithm can be made even more
efficient. For example, the number of classes in the green interpolation can
be reduced from three to two, by dropping class A, turning the classification
into a binary decision process. The reason for not using two classes in the
original algorithm is that in smooth regions, the average of the green pixels
results in better visual performance than using pixels from the other chan-
nels. The clustering step can also be made less computational demanding,
due to possibly large number of clusters may contain only one pixel. Instead
of using a 3× 3 environment and compare it with its border, we can avoid
the comparisons in single pixel clusters, and interpolate them later. The
interpolation of single pixels clusters is performed using the Y component of
the partial image. In the Y component, the missing pixel is replaced by the
average of its 3×3 neighborhood. The I and Q components may be taken to
be the average of the horizontal and vertical versions. This, however, may
create splotches in the resulting image, which may be partially reduced by
the median filtering. In addition, the median operation can exploit a smaller
neighborhood leading to less comparisons.

It is interesting to compare the above table with the results in [13],
one of the state-of-the-art algorithms. Our algorithm has less stages and
requires a smaller number of calculations per pixel. In addition, comparing
our method to [20], our computational effort is substantially lower (in [20]
method about 348 additions and multiplications are needed per pixel), while
our visual results are better. Finally, the algorithm of [21] requires an order
of 5000 operations per pixel, proving again that our method is much less
computationally demanding.

5 Examples

We now compare our algorithm with several state-of-the-art algorithms. In
our comparison, we consider the following reconstruction methods: bilin-
ear [2] interpolation, a constant hue based algorithm [7], a color correction
algorithm [11], a color gradient based algorithms [12], Kimmel’s method [1]
and ours.

5.1 Lighthouse

The Lighthouse image is a very difficult image to demosaic, due to the alias-
ing that occurs during the subampling of the green channel. The house and
fence are excellent examples where this aliasing occurs. Figure 12 shows the
original Lighthouse. Figures 13 -18 show the result of the above mentioned
algorithms, and Fig. 19 shows our algorithm.

The bilinear interpolation method creates many color artifacts, especially
in the aliased regions, i.e. the fence and the house. Better results are
achieved by all of the human visual system based algorithms. Assuming

15



Figure 12: The original Lighthouse.

smooth hue transitions improves the visual quality of the image in certain
regions, but still results in sever color artifacts in the fence and house regions,
where the aliasing of the three channels occurs. In all of the above images,
we can see that the fence and house suffer from false color artifacts. In Figs.
16 and 18 the artifacts are less severe. In our outcome, Fig. 19, both the
fence and the house have no color artifacts, and our result is the closest to
the original.

5.2 Sails

The Sails image is also a benchmark. A problematic region is the number
“14255”. Figure 20 shows our outcome, which is very close to the original
Sails. Kimmel’s method and the variable gradients method are shown in
Fig. 21. It can be seen that false colors are created by these methods, in
particular across the edges of the digits.

16



Figure 13: Bilinear interpolation.

5.3 Window

The Window image exhibits a rapid transition region in the stem of the
flower. An enlarged part of this image containing that region is shown in
Fig. 22. The variable gradients method are shown in Fig. 23. It can be
seen that splotches of various colors are created by these methods across the
stem. In addition false colors appear in the shutters of the window in the
variable gradients method.

5.4 Fruits

The Fruits is a raw image. This image possesses a lot of details, and color
changes. In Fig. 26 an enlarged part of the bowl is shown. Splotches of
various colors are created around the golden strip of the bowl and on the
glasses. Our method eliminates them.

17



Figure 14: Smooth hue transition.

6 Conclusions

We have proposed a simple algorithm for the demosaicing algorithm. The
solution is based on the interaction between color attributes and the human
visual system. We have shown that our algorithm outperforms many of
the existing methods. Our design consists of two basic steps, an initial
interpolation followed by an enhancement stage. Our approach differs from
the existing methods in that it focuses on accomplishing a better initial
reconstruction of the image, rather than a better enhancement method. This
strategy has proven to be successful in both preventing most of the color
artifacts, and in controlling the inevitable ones. In addition, we introduced
a simple method for detecting and correcting color artifacts, relying on the
orientational sensitivity of the human eye and on the smooth color transition
assumption. The method may be extended to other color image applications,
such as image enhancement and denoising.

A computational analysis shows that our algorithm requires a relatively

18



Figure 15: Edge detection algorithm.

small number of operations and therefore can be implemented directly as a
part of the camera chip.

7 Acknowledgment

The authors wish to thank Gil Rosenfeld and Noam Lipcer for implementing
the code, and for their contribution to the algorithm. We also wish to thank
Nimrod Peleg and the SIPL lab at the Technion for supporting this research,
and for Creo for providing us with the Fruits image. Finally, we wish to
thank Dr. Yacov Hel-Or for fruitful discussions.

References

[1] R. Kimmel, “Demosaicing: Image reconstruction from color CCD sam-
ples,” IEEE Trans. on Image Processing, vol. 8(9), pp. 1221–1228, Sept.

19



Figure 16: Color correction algorithm.

1999.

[2] J. E. Adams, “Interactions between color plane interpolation and other
image processing functions in electronic photography,” Proceedings of
SPIE, vol. 2416, pp. 144–151, Feb. 1995.

[3] Y. Hel-Or and D. Keren, “Demosaicing of color images using steerable
wavelets,” Tech. Rep. HPL-2002-206R1 20020830, HP.

[4] S. Susstrunk D. Alleysson and J. Herault, “Linear demosaicing inspired
by the human visual systems,” IEEE Trans. Image Processing, vol. 14,
pp. 439–449, 2005.

[5] S.C. Pei and I.K. Tam, “Effective color interpolation in CCD color filter
array using signal correlation,” Proc. ICIP, pp. 488–491, Sept. 2000.

[6] X. Wu et.al., “Color restoration from digital camera data by pattern
matching,” Proceedings of SPIE, vol. 3018, pp. 12–17, 1997.

20



Figure 17: Gradient based algorithm.

[7] D. R. Cok, “Reconstruction of CCD images using template matching,”
Proc. of IS & Ts Anual Conference/ICPS, pp. 380–385, 1994.

[8] C. A. Laroche and M. A. Prescott, “Apparatus and method for adap-
tively interpolating a full color image utilizing chrominance gradients,”
U.S. Patent, 5,373,322, 1994.

[9] D. Keren and M. Osadchy, “Restoring subsampled color images,” vol.
11, pp. 197–202, 1999.

[10] R. W. Schafer J. W. Glotzbach and K. Illgner, “A method for color
filter array interpolation with alias cancellation of images,” Proc. IEEE
Int. Conf. Image Processing, vol. 1, pp. 141–144, 2001.

[11] J. E. Adams et.al., “Design of practical color filter array interpolation
algorithms for digital cameras,” Proceedings of SPIE, vol. 3028, pp.
117–125, Feb. 1997.

21



Figure 18: Kimmel’s algorithm.

[12] Ed. Chang et.al., “Color filter array recovery using a threshold-based
variable number of gradients,” Proceedings of SPIE, vol. 3650, pp. 36–
43, Jan. 1999.

[13] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed de-
mosaicing algorithm,” IEEE Trans. on Image Processing, vol. 14, pp.
360–369, 2005.

[14] Y. Altunbasak R. W. Schafer B. K. Gunturk, J. Glotzbach and R. M.
Merseau, “Demosaicking: color filter array interpolation,” IEEE Signal
Processing Magazine, vol. 22, pp. 44–54, 2005.

[15] B. E. Bayer, “Color imaging array,” U.S. Patent, 3,971,065, 1975.

[16] J. L. Manos and D. J. Sakrison, “The effects of a visual fidelity criterion
on the encoding of images,” IEEE Trans. on Information Theory, pp.
525–536, 1974.

22



Figure 19: Our Lighthouse.

[17] A. N. Netravali and B. G. Haskell, Digital Pictures: Representation
and Compression, New York, NY: Plenum Press, 1988.

[18] M. D. Levine, Vision in Man and Machine, New York, NY: McGraw-
Hill, 1985.

[19] M. D. Fairchild, Color Appearance Models, Reading, Mass:Addison-
Wesley, 1988.

[20] Y. Altunbasak, B. Gunturk and R. Mersereau, “Color plane inter-
polation using alternating projections,” IEEE Transactions on Image
Processing, vol. 11, pp. 997–1013, 2002.

[21] D. D. Muresan and T. W. Parks, “Demosaicing using optimal recovery,”
IEEE Trans. on Image Processing, vol. 14, pp. 267–278, 2005.

23



(a) (b)

Figure 20: (a) The original Sails (b) Our Sails.

(a) (b)

Figure 21: (a) Gradient based Sails (b) Kimmel’s Sails.

24



(a) (b)

Figure 22: (a) The original Window (b) Our Window.

25



(a) (b)

Figure 23: (a) Gradient based Window (b) Kimmel’s Window.

26



Figure 24: The mosaic Fruits.

27



Figure 25: Our Fruits.

28



(a) (b)

(c) (d)

Figure 26: (a) Gradient Based Fruits (b) Color correction Fruits (c) Edge
detection Fruits (d) Our Fruits.

29


