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Abstract — We propose a computationally effi-

cient approximation of the maximum-likelihood (ML)

multiuser detector based on a nonconvex relaxation

of the ML optimization problem. Using the hidden

convexity methodology we obtain an explicit solution

to the relaxed problem, which has the same form as

the linear minimum mean-squared error (MMSE) re-

ceiver, where the constant diagonal loading in the

MMSE receiver is replaced by a data-dependent con-

stant that can be found efficiently by a simple bisec-

tion algorithm. Combining this relaxation with a lo-

cal search algorithm results in a detector whose per-

formance is close to that of the ML receiver, with a

computational complexity on the same order as that

of the linear multiuser receivers.

I. Introduction

The optimal method for detecting symbols transmitted
by different users in a CDMA system is the maximum-
likelihood (ML) detector, which minimizes the joint er-
ror probability. Unfortunately, the ML detector requires
solving a combinatorial optimization problem that has ex-
ponential complexity, rendering it impractical for systems
of more than a few users. Efficient approximations of the
ML solution are therefore of great practical importance.

The simplest approach to multiuser detection is to de-
sign a linear receiver, followed by single user detection.
Examples are the minimum mean-squared error (MMSE)
receiver, the decorrelator [1], the orthogonal multiuser
receiver [2] and the covariance shaping receiver [3]. Lin-
ear receivers are computationally simple to implement,
however, their performance can be far from the ML per-
formance. Therefore, there has been considerable interest
in nonlinear ML approximations. As we discuss in Sec-
tion II, these methods can be broadly characterized into
two groups: Relaxation methods, in which the discrete
ML problem is approximated by a tractable continuous
optimization problem, and heuristic methods in which the
ML problem is solved as a discrete optimization problem
using known heuristics. The drawback of the heuristic ap-
proach is that the quality of the solution depends largely
on the initial point. A good strategy, therefore, which
we follow in this paper, is to begin with a solution of
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a relaxation-based algorithm and then apply a heuristic
method to improve the solution.

The most popular relaxation method is semidefinite
programming (SDP) relaxation [4, 5], which is a convex
optimization problem that can be solved in polynomial
time [6]. However, as we show in Section IV, the main
drawback of this approach is that in practice its computa-
tional load is very high and therefore the SDP relaxation
is not practical for large systems. Nonetheless, it pro-
vides a good approximation of the ML solution. An al-
ternative relaxation approach is to replace the nonconvex
discrete constraint set by a convex continuous constraint
set [7, 8]. As we discuss in Sections II and IV, these
methods result in relaxations that are computationally
less demanding than the SDP relaxation, however, their
performance is often similar to that of the linear receivers.
Furthermore, these algorithms are still computationally
demanding, and are far more complex than the linear re-
ceivers.

In Section III, we propose a relaxation whose compu-
tational complexity is on the same order as that of the
linear receivers, but combined with a local search algo-
rithm it achieves almost ML performance. The receiver
we propose has the same structure as the linear MMSE re-
ceiver, where the constant diagonal loading in the MMSE
receiver is replaced by a nonlinear constant (independent
of the noise level). This constant is determined by solv-
ing a relaxed optimization problem in which the discrete
constraint set is replaced by a continuous nonconvex con-
straint set. Using the hidden convexity methodology [9],
we show that our problem can be transformed into a con-
vex problem, and then solved by using Lagrange duality
theory. The resulting detector depends on a single pa-
rameter which can be found very efficiently by bisection.
To further improve the performance of the proposed re-
laxation, we apply a simple local search algorithm, which
is guaranteed to decrease the objective value and there-
fore lead to an improved solution. Since the complexity
per iteration of both the bisection method and the local
search algorithm is linear in the size of the problem, the
overall computational complexity of the proposed receiver
is on the same order of magnitude as that of the linear
receivers.

II. Known Multiuser Detection Methods

Consider an n-user white Gaussian synchronous
CDMA system where each user transmits information



by modulating a signature sequence. The discrete-time
model for the received signal y is

y = SAx + n = Hx + w, (1)

where S is the m × n matrix of signatures, A =
diag(A1, . . . , An) is the matrix of received amplitudes,
H = SA, x is the data vector with xi ∈ {1,−1} be-
ing the ith user’s transmitted symbol, and w ∈ Rm is
a noise vector whose elements are independent N (0, σ2).
We assume that all data vectors are equally likely with
covariance I.

Based on the observed signal y ∈ Rm, we design a re-
ceiver to detect the information transmitted by each user,
where we assume that H is known. The ML sequence
detector declares as the detected bit vector the vector
x̂ ∈ {1,−1}n which maximizes the likelihood function
p(y|x) [10]. Since w is Gaussian and white,

x̂ = arg max
x∈{1,−1}n

p(y|x) = arg min
x∈{1,−1}n

‖y−Hx‖2. (2)

Problem (2) is a quadratic binary problem, which is NP-
complete in general [10]. Two main approaches to de-
veloping polynomial-time algorithms which approximate
the ML solution are the continuous approach (relaxation
methods) and the discrete approach.

The Continuous Approach: In this approach we con-
sider a relaxation of the discrete problem (2). The relax-
ation is a continuous optimization problem, that is typi-
cally chosen to be a tractable optimization problem (e.g.,
a convex optimization problem) whose optimal value is
a lower bound of the discrete problem. One of the most
popular relaxation methods is the SDP relaxation [4, 5, 6],
in which the binary problem (2) is replaced by the SDP

{
minX Tr(ZX)
s.t. X º 0,Xi,i = 1, 1 ≤ i ≤ n + 1,

(3)

where X º 0 means that X is positive semidefinite. The
problem (3) is a convex problem, which can be solved
with polynomial complexity [5, 11]. However, as we show
in Section IV, in practice the computational complexity
of the SDP relaxation can be quite high, rendering the
SDP relaxation impractical for large systems.

Two alternative relaxation methods which are compu-
tationally less demanding than the SDP relaxation where
proposed in [7, 8], based on replacing the nonconvex set
{x : x ∈ {−1, 1}n} by a convex set. Specifically, the
Norm Relaxation (NR),

(NR) : min
‖x‖2≤n

‖y −Hx‖2, (4)

and the Bound Relaxation (BR),

(BR) : min
−1≤xi≤1

‖y −Hx‖2. (5)

Both NR and BR are convex problems, which can be
solved, e.g., using the gradient projection algorithm [7].

The discrete solution is obtained by taking the signs of
the continuous solution.

In Section IV we show that the detectors based on the
SDP, NR and BR relaxations are computationally much
more demanding than linear detectors and thus are not
attractive for large systems.

The Discrete Approach: In this approach, (2) is solved
as a discrete optimization problem using known heuristics
such as local search, simulated annealing, and tabu search
(see [11] and references therein). The quality of the so-
lution depends largely on the quality of the initial point
and thus a good strategy might be to combine the two
approaches, i.e., begin with a relaxation-based algorithm
and then apply a heuristic method that will improve the
relaxation-based solution. We would further like both the
relaxation-based and heuristic algorithms to require the
same magnitude of operations as the linear detectors, but
to lead to a smaller bit-error rate (BER).

In the next section we develop a detector that satisfies
these properties. Specifically, we propose a relaxation
of the ML problem that is theoretically tighter than the
NR relaxation of (4), and its solution involves only one
spectral decomposition and a bisection procedure aimed
to find a root of an equation with one variable. The signs
vector of the solution is the initial vector of a local search
algorithm that produces the resulting detector.

III. Hidden Convexity-Based Relaxation

Following the general approach of [7], we develop a re-
laxation based on replacing the set x ∈ {−1, 1}n by a re-
laxed constraint set. However, contrary to the relaxations
of [7], our relaxed constraint set is not convex. Nonethe-
less, we develop an explicit expression for the relaxed op-
timal solution that depends on a single parameter, which
can be found efficiently with bisection.

The constraint set we consider is {x : ‖x‖2 = n}.
Thus, we suggest the following relaxation of (2):

(NER) : min
‖x‖2=n

‖y−Hx‖2 = min
‖x‖2=n

{
xT Qx− 2fT x + c

}
,

(6)
which we call the NER (Norm Equality Relaxation). Here
Q = HT H, f = HT y and c = yT y.

Clearly, the relaxation (6) is tighter than the relaxation
of (4). In contrast with (4), the problem (6) is not convex
since the constraint ‖x‖2 = n does not define a convex
set. However, as we show, by using the hidden convexity
methodology [9], we can transform this problem into a
convex optimization problem.

To develop a solution to (NER), we note that since Q is
positive semidefinite it is diagonalizable by an orthogonal
matrix U, so that UT QU = diag(λ1, λ2, . . . , λn), where
λi ≥ 0, 1 ≤ i ≤ n. Making the change of variables x =
Uz, (NER) is equivalent to

min
‖z‖2=n





n∑

j=1

(λjz
2
j − 2bjzj) + c



 , (7)



where b = UT f . The following lemma will enable us
to transform the problem (7) to a convex optimization
problem.

Lemma III.1. Let w = (w1, w2, . . . , wn) be an optimal
solution of min‖z‖2=n q(z) where q(z) =

∑n
j=1(λjz

2
j −

2bjzj). Then wjbj ≥ 0 for 1 ≤ j ≤ n.

Proof: Let wk = (w1, w2, . . . , wk−1,−wk, wk+1, . . . , wn).
Then ‖wk‖2 = ‖w‖2 = n, so that wk is feasible. Since
w is optimal, q(w) ≤ q(wk) for 1 ≤ k ≤ n, which implies
that

−
n∑

j=1

2bjwj ≤ −
n∑

j=1,j 6=k

2bjwj + 2bkwk. (8)

Therefore, bkwk ≥ 0, and the result follows. ¤
In view of Lemma III.1, we can make the change of

variables zj = sign(bj)
√

vj , where sign(bj) = 1 if bj ≥ 0
and −1 otherwise, and vj ≥ 0. Using the variables zj ,
(NER) is equivalent to the convex optimization problem

min
vj≥0





n∑

j=1

(
λjvj − 2|bj |√vj

)
+ c :

n∑

j=1

vj = n



 . (9)

Since the problem (9) is convex with linear constraints,
the optimal value is equal to the value of its dual problem.
To develop the dual problem, we use the Lagrangian of
(9),

L(v, η) =
n∑

j=1

(
(λj + η)vj − 2|bj |√vj

)− ηn + c. (10)

Differentiating (10) with respect to vj and equating to
zero,

vj =
b2
j

(λj + η)2
, 1 ≤ j ≤ n, (11)

subject to η ≥ −λj for 1 ≤ j ≤ n. Thus, the dual function
is

h(η) = min
vj≥0

L(v, η) = −
n∑

j=1

b2
j

λj + η
− ηn + c, (12)

and the dual problem of (9) is

(D) : max
η
{h(η) : η ≥ α} , (13)

where α
4
= max1≤j≤n{−λj}. Since h(η) is continuous in

η > α, the maximum of h(η) is obtained either at a local
maximum or at one of the end points η = α or η → ∞.
Noting that h(η) → −∞ at both of the end points, the
solution of (D) is at a local maximum. Differentiating
h(η) with respect to η and equating to 0,

∑n
j=1 b2

j/((λj +
η)2) = n. Denoting

G(η) =
n∑

j=1

b2
j

(λj + η)2
− n, (14)

it follows that the optimal η is the root of G(η). Since G(η)
is continuous and monotonically decreasing for η > α,
there is only one root in the domain (α,∞), which can
be easily found by bisection.

We conclude that the solution to (6) is x = Uz,
where zj = bj/(λj + η), b = UT HT y, and η ≥ α is
the unique root of G(η). Since HT H = UDUT , where
D = diag(λ1, λ2, . . . , λn),

x = U (D + ηI)−1 UT y =
(
HT H + ηI

)−1
HT y. (15)

The solution (15) has the same form as the linear MMSE
receiver, where the constant load σ2 in the MMSE re-
ceiver is replaced by the data-dependent constant η.
Note, that the receiver of (15) does not require knowl-
edge of σ2. As we detail further in Section IV, since the
complexity per iteration of the bisection method is lin-
ear in the size of the problem, the overall computational
complexity of the proposed receiver is on the same order
of magnitude as that of the MMSE receiver.

We summarize our results in the following theorem.

Theorem III.1. Let H ∈ Rm×n,y ∈ Rm and let HT H =
UDUT where D = diag(λ1, λ2, . . . , λn). Then the solu-
tion to

min
‖x‖2=n

‖y −Hx‖2

is

x = U (D + ηI)−1 UT y =
(
HT H + ηI

)−1
HT y,

where η ≥ α is the unique solution of
∑n

j=1 b2
j/(λj+η)2 =

n with b = UT HT y and α = max1≤j≤n{−λj}.
To obtain a solution to the original ML problem of (2)

we need to relax the continuous solution of (NER) to a
discrete solution. The simplest approach is to choose the
detected bits as the signs of the solution x; we refer to
this approach as Algorithm NER1.

We can further improve the relaxation solution by us-
ing a heuristic algorithm. In particular, the solution de-
rived from (NER) does not satisfy the necessary opti-
mality conditions [12] XQXe − Xf ≤ Diag(Q), where
X = diag(x) and e = (1, 1, . . . , 1)T . We can improve the
derived solution and obtain a solution that does satisfy
the necessary conditions by applying the local search al-
gorithm [13] on the solution obtained by NER1, leading
to an improved algorithm which we refer to as algorithm
NER2. We note that each iteration of the local search
algorithm requires O(n) operations.

IV. Simulation Results

We now demonstrate that the NER2 algorithm
achieves almost the same performance as the SDP relax-
ation and the ML solution, while maintaining a computa-
tional complexity similar to that of the MMSE receiver.

In the examples below we assume equal power users
with A = I. For each SNR, the BER is evaluated by
counting the number of erroneous decisions in 10000 re-
alizations.



IV.A Comparison of NER with ML

We first compare the performance of the NER1 and
NER2 methods with the ML detector. Since the com-
putational complexity of the ML detector is exponential
in the number of users, we consider a 6-user system with
signatures that are generated using a 21-chip Gold code
sequence of length 31.

In Fig. 1 we plot the BER averaged over all users as
a function of the SNR, which is defined as −10 log σ2,
using the NER1, NER2 and ML detectors. As can be
seen in the figure, the NER2 detector has almost the same
performance as the ML detector. It is also evident that
the local search algorithm can improve the performance,
particularly at high SNR values.
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Figure 1: BER as a function of SNR for a 6-user CDMA
system.

IV.B Comparison with Other Relaxations

We now compare the NER2 relaxation with other non-
linear relaxations, and the linear MMSE and decorrelator
detectors. In this example, we consider a 15-user system
with signatures that are generated using a 30-chip Gold
code sequence of length 31.

In Fig. 2 we plot the BER averaged over all users as
a function of the SNR using the NER2, SDP, NR, BR,
decorrelator and MMSE detectors. It is evident from the
figure that the SDP and the NER2 detectors have al-
most the same performance. Furthermore, the other re-
laxations have essentially the same performance as the
linear receivers. In the next example we show that al-
though the performance of the SDP relaxation is almost
identical to that of the NER2 detector, the computational
complexity of SDP is much heavier. In fact, the complex-
ity of NER2 is roughly the same as the linear detectors,
but achieves almost ML performance.
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Figure 2: BER as a function of SNR for a 15-user CDMA
system.

IV.C Large-System Performance

In this last example we consider a large system with
n = 512 users. We used 1023-length Gold code sequences
and m = 768. We compared the NER2 only with the
linear receivers, decorrelator and MMSE, since each run
of the SDP detector requires approximately 800 seconds
on a Pentium 4, 1.8 Ghz computer and thus we cannot
approximate the BER of the SDP detector in reasonable
time. All the other detectors are also computationally too
demanding to be applied thousands of times (see Table 1).

In Fig. 3 we plot the BER averaged over all users
as a function of SNR using the NER2, decorrelator and
MMSE detectors.

Table 1 illustrates the efficiency of NER2. In the table
we present CPU times averaged over 100 realizations for
different choices of the number of users n and m = 1.5n,
with an SNR of 4dB. The CPU time of NER2 is divided

n DEC/ NER2 NR/BR SDP
MMSE PRE POST

16 0.004 0.0063 0.0066 0.0078 0.24
32 0.01 0.0103 0.0141 0.0225 0.465
64 0.015 0.024 0.0292 0.1232 1.44
128 0.09 0.064 0.0664 1.39 6.038
256 0.28 0.141 0.210 5.19 47.78
512 1.292 1.162 1.23 44.9 796.8
1024 8.54 8.55 5.16 - -

Table 1: CPU time in seconds on a Pentium 4, 1.8Ghz.

into two parts. The first part is the eigenvalue decom-
position of the matrix HT H, which we refer to as pre-
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Figure 3: BER as a function of SNR for a 512-user CDMA
system.

processing (PRE). The second time (POST) is the CPU
time of the rest of the algorithm (solving the NER re-
laxation and the local search). In applications where the
matrix H is constant over a large time period, the actual
time required per transmutation is the post processing
time. Even if we consider the CPU time of all of NER2
(PRE and POST) it is very clear that it is considerably
more efficient than all the other relaxation-based detec-
tors. Furthermore, its complexity is on the same order as
the linear decorrelator and MMSE detectors.
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