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ABSTRACT
We consider non-ideal sampling and reconstruction schemes in
which the sampling and reconstruction spaces as well as the input
signal can be arbitrary. To obtain a good reconstruction of the sig-
nal in the reconstruction space from arbitrary samples, we suggest
processing the samples prior to reconstruction with a linear trans-
formation that is designed to minimize the worst-case squared-
norm error between the reconstructed signal, and the best possi-
ble (but usually unattainable) approximation of the signal in the
reconstruction space. We show both theoretically and through a
simulation that if the input signal does not lie in the reconstruction
space, then this method can outperform the consistent reconstruc-
tion method previously proposed for this problem.

1. INTRODUCTION

The most common setting considered in the sampling literature is
that introduced by Shannon’s sampling theorem, in which the input
is assumed to be bandlimited, the samples of the signals are ideal,
i.e., they are equal to the signal values at a set of sampling points,
and the reconstructed signal is also a bandlimited function, created
by using the sinc interpolation kernel. In practice, however, the
input signal is never perfectly bandlimited, and the sampling is
never ideal. Another drawback of the Shannon paradigm is the
difficulty in implementing the infinite sinc interpolating kernel.

To overcome these limitations of the traditional sampling
framework, a more recent approach to sampling is to consider sam-
ples that can be represented as the inner products of the input signal
x with a set of sampling vectors, which form a possibly overcom-
plete basis (frame) for the sampling space, denoted by S. The
problem then is to reconstruct x from these samples, using a set
of vectors that form an overcomplete bases for a subspace W , re-
ferred to as the reconstruction space. The input signal x is assumed
to lie in an arbitrary Hilbert space H. Since, in this framework, the
reconstructed signal is constrained to lie in W , if x does not lie
in W , then perfect reconstruction is not possible, regardless of the
sampling and reconstruction method.

If S = W , then by properly processing the samples prior to re-
construction we can obtain the minimal-norm approximation to x
in the space W , given by PWx, where PA denotes the orthogonal
projection onto the subspace A. However, if S is arbitrary, then
the minimal norm approximation is usually unattainable. There-
fore, our problem is to design a linear transformation H to process
the given samples prior to reconstruction (see Fig.1), so that the
reconstructed signal x̂ is close to x in some sense.

The problem depicted in Fig. 1 was first considered in [1], for
the case in which the sampling and reconstruction spaces are shift-
invariant (SI) subspaces of L2, i.e., spaces generated by translates

of an appropriately chosen function. The transformation H was
chosen such that x̂ is a consistent reconstruction of x, namely a
reconstruction with the property that is yields the same samples as
x. This approach was then generalized in [2, 3] to arbitrary sam-
pling and reconstruction spaces, as well as arbitrary input spaces
H. The resulting reconstruction is x̂ = EWS⊥x where EWS⊥ is
the oblique projection onto W along S⊥, and S⊥ is the orthogonal
complement of S. Note, however, that the fact that x and x̂ yield
the same samples does not necessarily imply that x̂ is close to x.

To obtain a reconstruction x̂ that is close to x, we may choose
H to minimize the error norm ‖x̂ − x‖2. However, since the error
norm depends on x, which is unknown, it cannot generally be min-
imized directly. Instead, we may consider a worst-case approach
in which we design H to minimize the worst-case error norm over
all bounded energy inputs x. The drawback of such a minimax
approach is that it may tend to be overconservative, since it con-
siders the worst possible input choice. Indeed, as we will show
in Section 2, the minimax transformation is given by H = 0. To
obtain a reconstruction that is less pessimistic, we consider a com-
petitive approach, similar in spirit to the approaches in [4, 5], in
which we seek the H that minimizes the worst-case regret instead
of the worst-case error norm, where we define the regret as the dif-
ference between the error norm achieved by a transformation H ,
and the smallest possible error norm achievable when S = W . As
we will show in Section 2, the resulting reconstruction is given by
x̂ = PWPSx. We then show, both through analyzing the recon-
struction error in Section 3, and through simulation in Section 4,
that the minimax regret approach can improve the performance
over the traditional consistent reconstruction approach.

2. MINIMAX REGRET ESTIMATOR

Consider the sampling scheme depicted in Fig.1, in which we are
given a set of samples c[n] = 〈sn, x〉 of a signal x ∈ H, where
the vectors {sn} are the sampling vectors and form a frame (i.e.,
an overcomplete basis) for the sampling space S, and 〈x, y〉 is
the inner product on H. The reconstruction x̂ of x is obtained as
x̂ =

∑
n d[n]wn for a set of samples d[n], where {wn} are the re-

construction vectors that form a frame for the reconstruction space
W , and d = Hc for some linear transformation H . Here d and c
are the sequences in l2 with elements d[n] and c[n], respectively.
Using set transformations1 we can express c and x̂ as c = S∗x
and x̂ = Wd = WHS∗x, where S, W : l2 → H are the set
transformations corresponding to {sn} and {wn}, respectively.

1A set transformation V : l2 → H corresponding to vectors {vn} ∈
H is defined by V a =

∑
n a[n]vn for all a ∈ l2. From the definition of

the adjoint, if a = V ∗y then a[n] = 〈vn, y〉.
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x � S∗ � H � W � x̂

c[n] d[n]

Figure 1: General sampling and reconstruction scheme.

Our problem is to choose H such that x̂ is a good approxima-
tion of x in some sense. One approach to choosing H is to require
that x̂ is a consistent reconstruction of x i.e., a reconstruction sat-
isfying S∗x = S∗x̂, for all x ∈ H [1, 2, 3]. Under this criterion H
is given by H = (S∗W )†, where (·)† denotes the Moore-Penrose
pseudo inverse, and x̂ is the oblique projection x̂ = EWS⊥x. If
x ∈ W , then for this choice of H , x̂ = x. However, if x /∈ W ,
then x̂ may not necessarily be close to x.

To obtain a reconstruction x̂ that is close to x for x /∈ W , we
may instead seek the transformation H that minimizes the norm
of the reconstruction error ‖x − x̂‖2. However, since this norm
depends explicitly on x, it cannot in general be minimized di-
rectly. Instead, we may consider minimizing the worst possible
error norm, over all bounded inputs x, so that H is the solution to

min
H

max
‖x‖≤L

‖x − x̂‖2 = min
H

max
‖x‖≤L

‖x − WHS∗x‖
2
. (1)

Unfortunately, as we now show, the criterion (1) is over-
pessimistic and yields the trivial solution H = 0. To
this end we first note that exchanging the order of the min-
imum and maximum, minH max‖x‖≤L ‖x − WHS∗x‖2 ≥

max‖x‖≤L minH ‖x − WHS∗x‖2. To determine the Ĥ min-
imizing ‖x − WHS∗x‖2, we note that if x ∈ S⊥, then
‖x − WHS∗x‖2 = ‖x‖2 for any choice of H . If x /∈ S⊥, then
since miny∈W ‖x − y‖2 = ‖PW⊥x‖2, it follows that if we can
find an Ĥ (depending on x) such that∥∥∥x − WĤS∗x

∥∥∥2

= ‖PW⊥x‖2, (2)

then Ĥ = arg minH ‖x − WHS∗x‖2. Expressing PW as PW =
W (W ∗W )†W ∗, it is easy to see that with

Ĥ =
1

x∗SS∗x
(W ∗W )†W ∗xx∗S, (3)

(2) is satisfied. Since max‖x‖≤L,x/∈S⊥ ‖PW⊥x‖2 = L2

and max‖x‖≤L,x∈S⊥ ‖x‖2 = L2, we conclude that

minH max‖x‖≤L ‖x − WHS∗x‖2 ≥ L2. For H = 0,
max‖x‖≤L ‖x − WHS∗x‖2 = max‖x‖≤L ‖x‖2 = L2, and
therefore H = 0 is the solution to (1).

We note that if S = W , then following similar arguments we
can show that for all x ∈ H,

min
H

‖x − x̂‖2 = min
H

‖x − WHW ∗x‖
2

= ‖PWx‖2 , (4)

and the minimizing H is (W ∗W )†. Thus, in this case, the minimal
error can be achieved even without knowledge of x (in contrast
with the case in which S �= W in which the optimal H given
by (3) depends on x). Therefore, instead of trying to minimize
the worst-case error norm ‖x̂ − x‖2, we consider minimizing the
worse-case regret, i.e., the worst-case difference between the error

obtained in the case in which S �= W , and the best possible error
attainable when S = W . Thus, we now consider the problem

min
H

max
‖x‖≤L

(
‖x − x̂‖2 − ‖PW⊥x‖2)

= min
H

max
‖x‖≤L

‖x̂ − PWx‖2 . (5)

The solution to (5) is given in the following theorem.

Theorem 1. Let HREG be the solution to

min
H

max
‖x‖≤L

‖x̂ − PWx‖2 = min
H

max
‖x‖≤L

‖WHS∗x − PWx‖
2
.

Then HREG is independent of L and is given by

HREG = (W ∗W )
†
W ∗S (S∗S)

† (6)

and x̂ = PWPSx.

Proof. We first note that max‖x‖≤L ‖x̂ − PWx‖2 ≥

max‖x‖≤L,x∈S⊥ ‖x̂ − PWx‖2. But since for x ∈ S⊥ we
have that x̂ = 0,

min
H

max
‖x‖≤L

‖PWx − x̂‖2 ≥ max
‖x‖≤L,x∈S⊥

‖PWx‖2

≥ max
‖x‖≤L

‖PWPS⊥x‖2 . (7)

The theorem then follows from showing that with H = HREG, the
lower bound in (7) is achieved.

The consistent reconstruction of [1, 2, 3] assumes explicitly
that W and S satisfy H = W ⊕ S⊥, where ⊕ denotes the direct
sum; otherwise W ∗S is not necessarily invertible (or pseudo in-
vertible). In contrast, the reconstruction algorithm of Theorem 1
does not require such an assumption and therefore can be applied
to arbitrary subspaces W and S of an arbitrary Hilbert space H.

2.1. Reconstruction In Shift-Invariant Spaces

A special case of Theorem 1, first considered in [1], is the case
in which x = x(t) is a real signal in L2, and S and W are
real SI spaces generated by W = {z(t) =

∑
n a[n]w(t − n)}

and S = {f(t) =
∑

n b[n]s(t − n)}, where s(t) and w(t)
are appropriately chosen functions. In this case, the samples
c[n] =

∫
s(t − n)x(t)dt correspond to samples at times t = n

of the output of a filter with impulse response s(−t) with x(t) as
its input. The reconstructed signal corresponds to the output of a
filter with impulse response w(t), with an impulse train whose
values are the corrected measurements d[n] as its input where,
from Theorem 1, d = (W ∗W )†W ∗S(S∗S)†c and S and W
are the set transformations corresponding to {sn(t) = s(t − n)}
and {wn(t) = w(t − n)} respectively. Since 〈wi(t), sn(t)〉 =
g(n− i), where g(t) = w(t) ∗ s(−t), W ∗S is an infinite Toeplitz
matrix, and is therefore equivalent to a filtering operation. Like-
wise, W ∗W and S∗S are equivalent to filtering operations, so that
the corrected samples d can be obtained from c using a discrete-
time filter with frequency response

H(ω) =

{ ∑
∞
k=−∞

S(ω+2πk)W∗(ω+2πk)∑
∞
k=−∞

|S(ω+2πk)|2
∑

∞
k=−∞

|W (ω+2πk)|2
, ω ∈ I;

0 ω /∈ I.
(8)

Here I is the set of frequencies ω for which
∑

k |W (ω−2πk)|2 �=
0 and

∑
k |S(ω − 2πk)|2 �= 0, and W (ω) and S(ω) denote the

continuous-time Fourier transforms of w(t) and s(t), respectively.
The sampling scheme of Fig. 1 then reduces to the scheme depicted
in Fig. 2.
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x(t) � S∗(ω) ���
�

t = n

� H(ω) � �× � W (ω) � x̂(t)

∑∞
n=−∞ δ(t − n)

�

c[n] d[n]

Figure 2: Minimax regret reconstruction of x(t) in SI spaces.

3. ERROR ANALYSIS

We now analyze the error eREG = x−PWPSx of the minimax re-
gret reconstruction, and compare it with the error of the consistent
reconstruction eCON = x − EWS⊥x. In particular, we develop
bounds on the norm of the reconstruction error in both cases, and
show, that if the spaces S and W are far enough apart, or if x has
enough energy in S, then the worst-case and best-case error using
the minimax regret reconstruction are smaller than the worst-case
and best-case error using the consistent reconstruction.

Before proceeding to the detailed development, we note that
if x ∈ W , then the consistent reconstruction will yield perfect
reconstruction of x, which is not true for the minimax regret re-
construction. Therefore, if we know that x ∈ W , then we should
use the consistent reconstruction algorithm. The interesting ques-
tion is how to reconstruct the signal when x does not necessarily
lie in W . In this case we now show that we can often reduce the
error by using the minimax regret reconstruction. These analytical
results are also demonstrated through simulation in Section 4.

Since the samples c = S∗x are obtained with sampling vec-
tors that are in S, c = 0 for any x ∈ S⊥, and therefore the re-
construction error for any such x is equal to the norm of x, re-
gardless of the choice of H . Thus, instead of developing bounds
on the norm of the reconstruction error, we consider the ratios
γREG = ‖eREG‖

2/‖P⊥
S x‖2 and γCON = ‖eCON‖

2/‖P⊥
S x‖2

where we assume explicitly throughout this section that x /∈ S⊥.
Denoting by eOPT = PW⊥x the error attainable when the

sampling method is not restricted i.e., S = W , we have that

‖eREG‖
2 = ‖eOPT‖

2 + ‖PWPS⊥x‖2 . (9)

Note that for x ∈ S, ‖eREG‖
2 = ‖eOPT‖

2, so that the minimax
regret reconstruction is optimal. If x /∈ S, then

γREG = γOPT +
‖PWPS⊥x‖2

‖PS⊥x‖2 , (10)

where γOPT = ‖eOPT‖
2/‖P⊥

S x‖2. Using the fact that
PS⊥x/ ‖PS⊥x‖ ∈ CS⊥ , where for an arbitrary subspace A,
CA � {a; a ∈ A, ‖a‖ = 1}, we have

inf
v∈C

S⊥

‖PWv‖2 ≤
‖PWPS⊥x‖2

‖PS⊥x‖2 ≤ sup
v∈C

S⊥

‖PWv‖2 . (11)

Now, from the definition of the angle between two closed sub-
spaces of a Hilbert space2 [1, 6],

infv∈C
S⊥

‖PWv‖2 = cos2
(
S⊥,W

)
supv∈C

S⊥
‖PWv‖2

� M2
(
S⊥,W

)
= 1 − cos2 (W,S) . (12)

2Given two closed subspace A1 and A2 of a Hilbert space H,
cos (A1,A2) � infa∈CA1

∥∥PA2
a
∥∥. Similarly, M (A1,A2) �

supa∈CA1

∥∥PA2
a
∥∥ =

√
1 − cos

(
A1,A⊥

2

)
=

√
1 − cos

(
A2,A⊥

1

)
.

Combining (10), (11) and (12),

cos2
(
S⊥,W

)
≤ γREG − γOPT ≤ M2

(
S⊥,W

)
. (13)

If v ∈ S⊥ achieves the maximum (minimum) angle with W ,3 then
with x = v+s with any s ∈ S, x achieves the upper (lower) bound
of (13). Therefore, the bounds of (13) are tight.

An upper bound on the error using the consistent reconstruc-
tion method was developed in [1] using the fact that

eOPT = PW⊥eCON. (14)

From (14) we can also develop a lower bound which results in

1

1 − cos2 (S⊥,W)
≤

γCON

γOPT

≤
1

cos2 (W,S)
. (15)

As in the case of the bounds (13), it can be shown that the bounds
of (15) are tight.

3.1. Bound Comparison

We now develop conditions under which the worst-case (best-case)
error using the consistent reinstruction is larger than the worst-case
(best-case) error using the minimax regret reconstruction.

To ensure that the worst-case and best-case values of γCON

are larger (respectively) than the worst-case and best-case values
of γREG, we must have that γOPT

cos2(W,S)
≥ γOPT+1−cos2 (W,S),

and γOPT

1−cos2(S⊥,W)
≥ γOPT + cos2

(
S⊥,W

)
, or, equivalently,

γOPT =
‖PW⊥x‖2

‖PS⊥x‖2 ≥ cos2 (W,S) , (16)

for the worst case and

γOPT =
‖PW⊥x‖2

‖PS⊥x‖2 ≥ M2
(
S⊥,W⊥

)
, (17)

for the best case. These results are intuitive: If most of the energy
of x lies in S then γOPT tends to be very large and both inequalities
hold. Similarly, if W and S are “far apart”, then the bounds will
be small, and again the inequalities will typically hold.

Since cos2 (W,S) , M2
(
S⊥,W⊥

)
≤ 1 for all S and W , it

follows that if ‖PW⊥x‖ ≥ ‖PS⊥x‖ then both in the best case and
in the worst case, the minimax regret reconstruction is better than
the consistent reconstruction.

4. EXAMPLE

We now consider an example illustrating the performance of the
minimax regret and consistent reconstruction methods.

We consider the case in which we sample a continuous-time
signal x(t) using a non-ideal sampler, so that the samples c[n] are
equal to the average of the signal over intervals of length ∆:

c[n] =
1

∆

∫ nT

nT−∆

x(t)dt. (18)

3The inf and the sup in the definition of the angle can be replaced by
min and max respectively, assuming CS⊥ is a compact set.
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Figure 3: PSD of the speech fragment and the frequency responses
of the non ideal low-pass filters.

The samples c[n] can be obtained by filtering the signal x(t) with
a filter whose impulse response s(t) is given by

s(t) =

{
1
∆

, 0 ≤ t ≤ ∆;
0, otherwise,

(19)

and then sampling the output at times t = nT . The filter s(t)
can be viewed as a (non-ideal) low-pass filter (LPF). In the sim-
ulations below, we use T = 4000−1[sec] and ∆ = 1.125[ms].
The reconstructed output x̂(t) is obtained from the transformed
sequence d = Hc using an interpolation kernel w(t), i.e., x̂(t) =∑

n d[n]w(t − nT ). Specifically, we consider w(t) to be a non-
ideal LPF with support on t ∈ [0, 1.75][ms] which approximates
an ideal LPF with cutoff frequency of 2[kHz].

For the purpose of simulation we approximate the continuous-
time signal x(t) with a discrete sequence x[n] on a fine grid. In
particular, we have used a speech fragment, taken from the Timit
database [7], at a sample rate of 8[kHz]. The continuous time in-
tegration kernel s(t) is approximated by the discrete filter

s[n] =

{
1
N

, 0 ≤ n ≤ N − 1;
0, otherwise,

(20)

with N = 10 samples. The ideal sampling is implemented by
down-sampling the filter output with a decimation factor of 2.
The (non-ideal) LPF followed by decimation can be described by
proper construction of the sampling matrix S∗.

To implement the reconstruction we use a linear-phase FIR fil-
ter of order 14 (with cutoff frequency 2[kHz]) as the interpolation
kernel. Here as well, the discrete-time interpolation kernel sim-
ulates the continuous-time interpolation kernel, by constructing it
over the 8[kHz] fine grid and up-sampling the input sequence d by
a factor of 2, prior to filtering. The up-sampling followed by the
filtering operation can be described by properly constructing the
matrix W .

In Figure 3 we plot the power spectrum density estimate of
the input speech signal and the frequency responses of the sam-
pling and the reconstruction kernels. Figure 4 presents the input
sequence x[n] and 3 different reconstructed signals, correspond-
ing to H = I (that is, not applying a correcting transformation at
all), H = (S∗W )† (consistent reconstruction) and H = HREG of

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [ms]

Input
Direct
Consistent
Regret

Figure 4: The original speech fragment x[n] and the reconstructed
signal using three different methods: direct reconstruction, consis-
tent reconstruction and the minimax regret reconstruction.

Theorem 1. As can be seen from the figure, the results of direct
reconstruction are poor. The consistent reconstruction and mini-
max reconstruction methods perform much better. However, it can
be seen that the minimax regret reconstruction leads to better re-
sults than the consistent reconstruction method. Computing the
error ‖x − x̂‖ for this example, we obtain that the errors result-
ing form direct, consistent and minimax regret reconstruction are
2.5977, 1.9111 and 1.2101, respectively.

Similar results where obtained for other choices of the input
signal. Thus, not only does the minimax regret estimator minimize
the worst-case error, it seems to lead to superior results for other
choices of x as well.
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