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ABSTRACT

We consider the problem of designing linear multiple input multi-
ple output (MIMO) precoders for fixed receivers. We first derive a
precoder that minimizes the average power subject to Signal to In-
terference plus Noise Ratio (SINR) constraints, and then derive a
precoder that maximizes the worst case SINR subject to an average
power constraint. We show that both problems can be solved using
standard optimization packages. In addition, a more efficient solu-
tion based on Karush-Kuhn-Tucker (KKT) optimality conditions is
presented which gives more insight into the problem. Our design
promises equal SINRs and fairness among the multiple outputs.
Simulation results in a multiuser system show that the proposed
precoders can significantly outperform existing linear precoders.

1. INTRODUCTION

Many communication systems can be modelled in a MIMO set-
ting. Recent examples that gained considerable attention are mul-
tiuser systems and communication through multiple antennas. The
traditional way to deal with channel distortion and interference in
such systems is receiver optimization. Recently, the search for
simple, low complexity receivers, led researchers to optimize the
transmitter without modifying the fixed receiver. In this paper, we
propose methods for designing linear transmit precoders given a
fixed effective MIMO model, which represents both the distorting
channel and the suboptimal linear receiver.

One of the first results on optimizing a precoder for a fixed
MIMO linear model is due to [1]. This precoder decorrelates the
channel at the transmitter side. Other important contributions are
reported in [1]-[7] and references within. Most of the existing pre-
coders are based on the common minimum mean squared error
(MMSE) criterion. This criterion is usually computationally at-
tractive, but does not guarantee optimality in any of the practical
performance metrics, such as Bit Error Rate (BER), throughput,
or multiuser efficiency. On the other hand, in practical systems,
such as systems using error correcting codes, these metrics are di-
rectly related to the output SINRs, and, in particular, to the worst
SINR. Note, that this is in contrast to problems where the receiver
is not fixed but jointly designed with the precoder, in which case
the MMSE and SINR criteria coincide. Therefore, in this paper, we
focus on SINR based precoders. In such precoders, there is a trade
off between the maximal SINRs and the minimal required power.
To account for both requirements, we derive two precoders. The
first maximizes the minimum SINR subject to an average power
constraint. The second minimizes the required average power sub-
ject to Quality of Service (QoS) constraints on the SINRs.
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Our problem formulation is very general and is applicable to
any MIMO system with a fixed receiver. In particular, we exam-
ine the application of the proposed precoders in a multiuser sys-
tem. We prove that, in a symmetric system, such as a system using
pseudonoise (PN) sequences as signatures, the performance using
the precoders with Matched Filter (MF) receivers is identical to
the performance obtained by using MMSE receivers with no pre-
coders. This result is remarkable, as it allows for each user to use a
simple receiver that does not require the knowledge of all the other
signatures or a matrix inversion. In non symmetric systems, the
proposed precoders outperform existing precoders, and promise
fairness among the different users by ensuring equal performance.

Our precoder design is based on the powerful framework of
convex optimization theory [8], which allows efficient numerical
solutions using standard optimization packages. In the sequel,
we show that our design problems can be solved using standard
conic optimization packages, such as Second Order Cone (SOC)
Programming, Semi Definite Programming (SDP), or Linear Ma-
trix Inequalities (LMI) programming. We will also establish the
connection between our problem and the Generalized Eigenvalue
Problem (GEVP) [9]. Moreover, using the KKT optimality condi-
tions and Lagrange duality theory, we obtain more insight into the
problems. Note that similar results were derived independently in
the context of beamforming [10]-[12].

The paper is organized as follows. In Section 2 we introduce
the problem formulation. Next, in Section 3, we express our de-
sign problems as standard optimization programs. In Section 4, we
provide alternative solutions using the KKT conditions. Finally, in
Section 5, we illustrate the use of the proposed precoders in the
context of multiple user communication systems.

The following notation is used:[X]i,j denotes the (i,j)th el-
ement of the matrixX, diag {xi} denotes a diagonal matrix with
the elementsxi, vec (X) denotes the vector obtained from stack-
ing the columns ofX, ei is a vector of zeros with a one on the
ith element, andX � 0 denotes a semipositive definite matrix
X. Finally, the operators(·)H , Tr {·}, E [·], ⊗, and‖ · ‖ denote
the conjugate transpose, the trace, the expectation, the Kronecker
product, and the Euclidean norm, respectively.

2. PROBLEM FORMULATION

Consider a general, block oriented, MIMO communication sys-
tem. At each time instant, a block of symbols is precoded, modu-
lated, and transmitted over a channel. The signal at the output of
the receiver can be expressed as

y = HRHCHT Tb + HRw, (1)

wherey is a lengthK output vector, the matricesT, HT , HC , and
HR represent the precoder, the transmitter, the channel, and the



receiver, respectively,b is a lengthK vector of independent, unit
variance symbols, andw is a noise vector with covarianceRw.
The expected SINR at the receiver’s output for thei’th symbol,
and the expected transmitted power given by:

γi =

∣∣[HT]i,i
∣∣2∑

j 6=i

∣∣[HT]i,j
∣∣2 + σ2

i

, i = 1, · · · , K;

P = Tr
{
THHH

T HT T
}

, (2)

whereH = HRHCHT is the effective MIMO channel, andσ2
i =[

HRRwHH
R

]
i,i

.
It is well known that the performance metrics of a commu-

nication system (BER, throughput, etc.) are highly related to its
SINRs, and, in particular, are dominated by the worst SINR, namely,
the smallest SINR. A conflicting performance metric is the average
transmitted power. Thus, we propose two opposite criteria for the
design. The first designs the precoder to maximize the minimum
SINR, subject to a power constraint:

PCO(Po) :

{
maxT,γo γo

s.t. γi ≥ γo, i = 1, · · · , K;
P ≤ Po.

(3)

The second criterion designs the precoder to minimize the required
power subject to SINR constraints1:

SCO(γo) :

{
minT,Po Po

s.t. γi ≥ γo, i = 1, · · · , K;
P ≤ Po.

(4)

Optimizations PCO and SCO are closely related. The only differ-
ence is that in PCO the parameterPo is fixed andγo is optimized,
whereas in SCO the parameterγo is fixed andPo is optimized.
It is easy to see that the optimalγo of PCO is continuous, and
strictly monotonically increasing inPo, and that the optimalPo

of SCO is continuous, and strictly monotonically increasing inγo.
Furthermore, ifγo is optimal for PCO(Po), thenPo is optimal for
SCO(γo), and vice versa. An interesting and attractive property of
the optimization problems is that at the optimal solution of both
problems all the constraints are active, i.e., the designs promise
equal SINRs and fairness among all the outputs.

3. STANDARD SOLUTIONS

In this section, we show that the two design problems can be rep-
resented as standard optimization programs. Thus, both can be
efficiently solved using standard optimization packages.

3.1. SCO program

It can be shown that the SCO program can be formulated as:

minT,
√

Po

√
Po

s.t.
√

γ−1
o [HT]i,i ≥

∥∥tbic
∥∥ , i = 1, · · · , K;√

Po ≥ ‖vec(HT T)‖ ,

(5)

where

tbic =

[ (
I− eie

H
i

)
THHHei

σi

]
, i = 1, · · · , K. (6)

1In general, each output can be constrained to a different value, but in
this paper we consider the case of equal values.

The two constraints in (5) are of the formz1(x) ≥‖ z2(x) ‖,
where the scalarz1(x) and the vectorz2(x) depend affinely on
the optimization variablesx. Such inequalities define convex sets
which are called SOC. Thus, the program in (5) can be solved
using any standard SOC package [13].

Moreover, any SOC can also be represented as an LMI, i.e., a
cone obeyingZ(x) � 0, where the matrixZ(x) depends affinely
on the optimization variablesx. For example, the SINR inequali-
ties are also equivalent to

[√
γ−1

o [HT]i,i tH
bic

tbic
√

γ−1
o [HT]i,i I

]
� 0, i = 1, · · · , K. (7)

Thus, the SCO program can also be solved using standard LMI
packages [14]. However, SOC solvers have a much better worst
case computational complexity than LMI solvers for this problem.

3.2. PCO program

Let us now turn to the PCO program. At first glance, it seems sim-
ilar to SCO. However, it turns out to be considerably more com-
plicated. This is because the matrix inequalities in (7) are linear

in βo =
√

γ−1
o or in T, but not in both simultaneously. Thus,

whenβ is an optimization variable and not a parameter, these con-
straints are no longer LMIs. In fact, the sets which they define are
not convex2. Nonetheless, if we rewrite (7) and separate out the
terms which are linear, we have

β

Ai(T)︷ ︸︸ ︷[
[HT]i,i 0

0 [HT]i,i I

]
�

Ai(T)︷ ︸︸ ︷[
0 −tH

bic
−tbic 0

]
, (8)

whereAi (T) andBi (T) are matrices that depend affinely onT.
Using (8) we can express PCO as

minT,βo βo

s.t. βoAi (T) � Bi (T) , i = 1, · · · , K;
P ≤ Po.

(9)

Although not convex, problems with the structure in (8) have been
investigated in the context of control theory, and are known as
GEVP, i.e., minimizing the maximum generalized eigenvalue of
a pencil of matricesAi (T) andBi (T) that depend affinely on
the optimization variables (for more details see [9] and references
within). Such problems can be solved using appropriate software,
e.g., the GEVP command in the LMI toolbox [14].

A different approach for solving PCO, that does not require
a dedicated GEVP software, exploits the connection between the
PCO program and the SCO program. Specifically, we can solve
PCO(Po) by iteratively solving its convex counterpartP̂o =SCO(γ̂o)

for differentγ̂o’s until we find a solution in whicĥPo = Po:

2The exact definition of such sets is quasi convex [8].



PCO(Po)
1 γmax ← MaxSINR
2 γmin ← MinSINR
3 repeat
4 γo ← (γmin + γmax) /2

5 [T, P̂o]← SCO(γo)

6 if P̂o ≤ Po

7 then γmin ← γo

8 else γmax ← γo

9 until P̂o = Po

10 return T, γo

Due to the strict monotonicity, the algorithm will converge.

4. KKT BASED SOLUTIONS

In the previous section we showed that the PCO and SCO pro-
grams can be solved efficiently using standard optimization pack-
ages. To reduce the computational complexity of the algorithms,
and obtain more insight into the problems, we present alternative
solutions based on the KKT conditions.

4.1. SCO program

We can develop a solution to SCO by solving the necessary and
sufficient KKT conditions for optimality, e.g., [8]. Tedious alge-
braic manipulations result in the following solution:

T =
[
HHΛH + HH

T HT

]−1
HHdiag {αi} , (10)

Po =
∑

i

λiσ
2
i , (11)

whereΛ = diag {λi}, and

α2
i =

∑
k

[((
1 +

1

γo

)
diag

{
[F]i,i

}
− F

)−1
]

i,k

σ2
k, (12)

[F]i,j =

∣∣∣H [
HHΛH + HH

T HT

]−1
HH

∣∣∣2
i,j

, i, j = 1, · · · , K,

and the dual parametersλi ≥ 0 satisfy

λi

[
H

(
HHΛH + HH

T HT

)−1
HH

]
i,i

=
γo

1 + γo
, (13)

for i = 1, · · · , K. Thus, to determine the optimal solutionT and
Po, we need to find the variablesλi that are the solution to (13).
We now present two methods for finding them. The first method
solves (13) using the following fixed point iteration:

λ
(n+1)
i =

γo

1 + γo

1[
H (HHΛ(n)H + HH

T HT )
−1

HH
]

i,i

, (14)

for i = 1, · · · , K. It can be shown that this iteration is a gener-
alization of the beamforming algorithm in [11] to the problem of
beamforming, and that convergence is promised. Following [10],
an alternative approach for findingλi is:

maxλi≥0

∑
i
λiσ

2
i

s.t. HHΛH + HH
TxHTx −

(
1 + 1

γo

)
λiH

Heie
H
i H � 0,

i = 1, · · · , K.

(15)

This problem is concave and can be easily solved using an LMI op-
timization package. Note that it is more efficient than the solution
in (5) as it has onlyK optimization variables, rather thanK2 + 1.
On the other hand, it requires an LMI software, and therefore is
less appealing than the fixed point iteration in (14).

4.2. PCO program

The PCO program can also be solved using the previous KKT con-
ditions. As explained, the optimal solution of PCO is also optimal
for an inverse SCO program. Thus it must fulfill the previous con-
ditions too. The only difference is that, becauseγo is unknown,
we need to find a different scaling forλi that will satisfy (11). A
simple iteration in this case is

λ̃i =
1[

H (HHΛ(n)H + HH
T HT )

−1
HH

]
i,i

;

λ
(n+1)
i =

λ̃i∑
i
σ2

i λ̃i

Po, i = 1, · · · , K (16)

Once the iteration converges, the optimalT is given by (10).

4.3. Symmetric case

The KKT conditions in (13) allow a simple closed form solution
for the symmetric case. In this case, the matrixH has equal diag-
onal elements, equal off diagonal elements, andσ2

i = σ2. Due to
the symmetry it is clear that choosingλi = P

Kσ2 will satisfy (13).
Therefore, the optimal solution is

T = c

[
HHH +

Kσ2

Po
HH

T HT

]−1

HH ,

γo =
1

1[
H
(
HHH+ Kσ2

Po
HH

T
HT

)−1
HH

]
i,i

− 1
, (17)

wherec is a constant that scales the matrix to satisfy the power
constraint. An identical precoder was previously proposed in [4]
and [5] using an MMSE design criterion. However, it maximizes
the SINR only in the symmetric case, and not in general. Note,
that the well known decorrelator of [1] is a good approximation
for (17) whenPo � Kσ2.

5. APPLICATION TO MULTIUSER SYSTEMS

In this section, we present an application of the proposed precoders
to a multiuser downlink system. At each symbol’s period the base
station transmitsK symbols using anN × K signature matrix
HT = S. The signatures are normalized so that

[
SHS

]
i,i

=

1, and the cross correlations are denoted by
[
SHS

]
i,j

= ρi,j .

We assume an ideal channelHC = I and equal noise variances
σ2. Each user detects its symbols using one of the standard linear
receivers:

• MF receiver,HR = SH .

• Decorrelator,HR =
(
SHS

)−1
SH .

• MMSE receiver,HR =
(
SHS + σ2I

)−1
SH .
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Fig. 1. SINR of a symmetric 3 users system.

We first consider the symmetric case in whichρi,j = 0.9. In
Fig. 1 we plot the output SINRs given by (17) for the three lin-
ear receivers. For comparison, we also plot the output SINRs that
result from similar systems without a precoder. From the figure,
we see that our precoder using a MF receiver attains the perfor-
mance of an MMSE receiver without a precoder. Moreover, when
our precoder is used with a ZF or an MMSE receiver, the output
SINRs improve even more.

As a second example, we consider an equal power system with
unequal cross correlations between the users signatures. In such
systems, there is no closed form expression for the performance.
Therefore, we resort to Monte Carlo simulations. Following [1],
we simulate the cross correlationsρ12 = 0.8, ρ13 = 0.9, and
ρ23 = 0.7. Each user uses an MF receiver. For comparison, we
provide BER results of the decorrelator precoder [1], and the PCO
precoder. In addition, a system without a precoder using a ZF re-
ceiver is also examined. The results are provided in Fig. 2. Due to
the asymmetry, each of the three users performs differently with-
out the precoders. On the other hand, the precoders promise fair-
ness and equal BERs for all the users. Naturally, the performance
of the best user degrades, but this is less important from a system
prospective because the overall performance is dominated by the
worst user. When compared to the decorrelator, the PCO precoder
gains up to1dB.
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