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Abstract—We consider the problem of designing linear pre-
coders for fixed multiple input multiple output (MIMO) receivers.
Two different design criteria are considered. In the first, we H
minimize the transmitted power subject to signal-to-interference ; *C?* Rx, 1> Y1
plus-noise-ratio (SINR) constraints. In the second, we maximize Wi
the worst case SINR subject to a power constraint. We show that
both problems can be st>Ived usiﬁg standard conic optimization b~ T [=Hre—~=Honz % Hps 21> y2
packages. In addition, we develop conditions for the optimal Wo
precoder for both of these problems, and propose two simple .
fixed point iterations to find the solutions which satisfy these :
conditions. The relation to the well known uplink-downlink —’HCh,M"C?—’HRx,M—> YMm

Wum

duality in the context of joint transmit beamforming and power
control is also explored. Our precoder design is general, and Fixed!
as a special case it solves the transmit rank one beamforming
problem. Simulation results in a multiuser system show that the

resulting precoders can significantly outperform existing linear

precoders.

Fig. 1. Block diagram of a precoder for a fixed MIMO receiver.

I. INTRODUCTION There are many applications in which the transmitter and the
receivers are fixed and the designer must resort to precoding
Multiple input multiple output (MIMO) systems arise iNFor example, consider the downlink channel of a multiuser
many modern communication channels, such as multiple uggstem. In code division multiplex access (CDMA) systems
communication [3], and multiple antennas channels [4]. e transmitter is constrained to spreading using staiméatd
is well known that the use of multiple antennas promiseggnatures which cannot be altered. In addition, the recsiv
substantial capacity gains when compared to traditiom@leéi on the mobile hand sets are usually restricted to simple
antenna systems. In order to exploit these gains, the systgp computational complexity algorithms, e.g., matchegfd
must deal with the distortion caused by the channel and tt}@,:) which are not necessarily optimal. Another examplenwit
interference. The conventional way to deal with these distqyowing interest is when the base station transmits using mu
tions is receiver optimization. Recently, the quest fortdret tiple antennas to multiple users using single receive aan
performance with lower complexity led researchers to al§gch user has access only to its received signal and cannot
optimize the transmitter [5]-[11], and even to jointly opize cooperate with the other users. Thus, receive processing is
the transmitter and receiver [12]-{18]. This, as well as neytactically impossible and the system must resort to priegod
results and algorithms in convex optimization theory [Y@lve  one of the first results on optimizing a precoder for a fixed
significantly improved state of the art communication Sy&e |inear MIMO model is due to [5] in the context of CDMA
In this paper, we explore the design of a centralized precodgstems. Specifically, a precoder that applied a lineasfoan
given fixed linear MIMO transmitter, channel and receive?€S mation on the transmitted symbols prior to the spreading was
Fig. I). We define a precoder as a linear transformation on thgrived. This precoder inverted the channel at the tratsmit
transmitted symbols. If the precoded symbols are sent & issfde, and is usually referred to as the transmit zero for(ifg
the channel, then the precoder is the transmitter itseltv-Hoprecoder. The main drawback of the transmit ZF precodes is it
ever, in general, the precoded symbols may be transformggyraded performance in low signal-to-noise-ratio (SNR)es
again before the channel. We refer to this transformatidhes jnyerting the channel increases the noise power. This rtetil/
transmitter, and we assume that it is a fixed design parametge design of transmit MF precoders [7] and transmit rakes
The output of the transmitter is then sent over a fixed MlM‘PZO]—[ZZ] which perform better in low SNR. Recently, trarism
channel (or channels), and is received using a fixed line@fnimum mean-squared erfqfMMSE) precoders that tried to
receiver (or receivers). compensate for the performance in the different SNR regions
were derived in [7]-[11].
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teria were also derived. Variants of the previous precodease BER and capacity, which are intimately associated with
were discussed in [23]-[28]. Linear precoders based on maraximizing SINR [3]. Unlike joint optimization, optimizn
approximate maximum likelihood approach and maximumie precoder to minimize MSE does not necessarily maximize
asymptotic multiuser efficiency with different power conSINR when the receiver is fixed. Thus, following the transmit
straints were derived in [29]. A linear precoding techniqueeamforming approach, we focus on SINR based criteria, and,
based on a decomposition approach was proposed in [30], amcparticular, try to optimize the worst SINR. We consider
a linear precoder design for non linear maximum likelihootivo design strategies. The first maximizes the worst SINR
(ML) receivers was discussed in [31]. Among the non lineaubject to an average power constraint. The second minémize
precoders are the Tomlinson Harashima MIMO precoder [6lke required average power subject to a constraint on thstwor
[10], [32], the well known “Dirty Paper” precoder [33], anidet  SINR. We prove that the proposed precoders have the atacti
vector perturbation precoder [11]. Another non linear poer  property of equal performance among all the sub channels.
which optimizes the transmitted symbol’s vector itself was Our precoder design is based on the powerful framework
derived in [34]. of convex optimization theory [19], which allows for efficie
The problem of precoder design is highly related to othé@umerical solutions using standard optimization pack§gEs
problems in the literature. In our work, we consider the glesi A brief review of such programs and their standard forms is
of linear precoders for fixed linear receivers. A relatedopemn  provided in Section Ill. We then cast the precoder desigh-pro
is the problem of jointly optimizing the precoder/transiit lems as standard conic optimization packages. Specificedly
and the receiver, which has been treated, e.g., in [9], [18}- show that the power optimization problem can be formulated
[35], [36]. The design of the optimal signatures (which can bas a Second Order Cone Program (SOCP) [52], or a semi
considered as a linear precoding scheme) for matched MM8&finite program (SDP) [53] (otherwise known as a linear
receivers was discussed in [37], [38], whereas signatwsigde matrix inequalities (LMI) program). The SINR optimization
for matched decision feedback receivers was explored Gan also by formulated as a standard conic program known as
[39]. One of the interesting properties of these joint desigthe generalized eigenvalue problem (GEVP) [54].
is that maximizing the signal-to-interference-plus-eeiatios ~ Next, we derive optimality conditions for both of the
(SINR) is related to minimizing the MSE [16]. Thus, althouglilesign problems by analyzing the Karush-Kuhn-Tucker (KKT)
different criteria have been explored, most of the reseassh conditions for conic programs. We derive a simple expressio
dedicated to variants of the MMSE criterion. for the structure of the optimal precoder as a function of the
Another related problem is the joint design of rank on@ual variables. The conditions can be used to verify whether
transmit beamforming design and optimal power control{40p Proposed solution is optimal. For example, using these
[42]. This problem is equivalent to precoding when thereonditions it is easy to show that the MMSE precoder proposed
is no transmitter, i.e., the precoder itself is the trantemnit in [7]-[9] does not necessarily maximize the worst SINR,
At first glance it seems that the precoding problem can l&cept in the case of a symmetric channel. Another use for
solved by addressing the transmit beamforming problem afitese conditions is as a stopping criteria in previous titera
then compensating for the fixed transmitter. Unfortunatelgptimization algorithms.
this is not possible when the transmitter is rank deficient Probably the mostimportant use of the optimality condgion
and cannot be inverted. In this asgeaiur problem is more is in deriving new design algorithms. Using the conditions,
general. Unlike the previous references regarding pregpdiwe provide a simple fixed point iteration which is guaranteed
which usually dealt with the MSE criterion and its variantd0 converge to the solution of the power optimization. As a
the beamforming community has successfully managed gpecial case, this simple iteration can solve the well known
optimize SINR based criteria, which are more related @nk one beamforming problem. This allows a simple solution
practical performance measures, such as bit error rate Y\BER the problem without the need for special optimization
and capacity. This problem is mathematically more difficuRackages. A similar fixed point iteration is derived for the
than MSE optimization. It was solved using an interestingINR optimization problem without a convergence proof. In
duality between downlink and uplink beamforming [43]-[45]comparison to the downlink-uplink duality based solutions
The uplink beamforming problem has been solved before @r simple fixed point iterations are considerably more ap-
[46], [47]. Using the duality, the downlink SINR problem carpealing. In addition, following [42], we derive an alterivat
be handled as well [41], [48], [49]. Recently, a non lineaapproach for satisfying the optimality conditions in theveo
Tomlinson Harashima version of these papers was presen@@iimization through a dual SDP/LMI program.
in [50]. One of the advantages of our proposed algorithms is their
In this paper, we integrate the ideas above in the contextf@pustness to the rank of the effective channels. Most of the
MIMO precoding for fixed receivers. The design of most oprevious precoders assume a full rank effective channel. Fo
the previous precoders is based on minimizing variants ef tBxample, one cannot decorrelate the channel in [3] if the
common MSE criterion. This criterion is usually computatio channel is rank deficient, as is the case when the number
ally attractive and performs quite well. However, as fartees t Of users is greater than the spreading factor (or the number

applications are concerned, the interesting and releviatia Of transmit antennas). Our design algorithms, both thecconi
solutions and the fixed point iterations, are indifferenthe

20n the other hand, the above references deal with beamforroingufik rank o_f the channel, and _?—re therefqre applicable to _SUCh
r > 1 and are therefore more general than precoding. scenarios as well. In addition, following [37], [38] which



addressed this problem in the context of optimal sequendes/e that:
design fpr MMSE_ receivers, we provide an upper bound f i Hrp1Hen Hip 1 W1
the maximal feasible SINRs in these cases. ] H ; 1
An interesting result of our precoders is their performance - : Txb + : @)
symmetric systems. In this case, our precoders admits simpl Y Hrx pvHen,m Hpx,mwWnm

closed form e>_(pressions that hgs already been derived-in [Z\}here the matrice$iy, ; and Hcy, ; denote the receiver and
[11] through different considerations and for general cleds channel associated with th&h usér, the matrixH, is the

Using our optimality conditions, it is easy to show that mescentralized transmittei is the lengthK — M - L vector of

precoders maximize the worst SINR in symmetric Channels'iﬁﬁependent, and unit variance transmitted symbols, &nd

realistic example of such systems is a CDMA scheme, usigg, e noise vectors. The noise vectors may be correlated or

pﬁeudohnms?] (PN%_ seqbulences as m_gnatEres. We agalytlcQ\l)gn identical to each other, and the channels are completel
show that the achievable SINRs using these precoders Wiy ary The only restriction is that the transmitter éal-
MF receivers is identical to those obtained by using MMSE .4 and has access to all of thé transmit components

receivers with no precoders. This result is interestingjtas Three specific examples for which the following problem
allows for each user to use a simple receiver that does BSfmulation holds are given below:

require neither the knowledge of all the other signaturesano
matrix inversion. It is important to note that this featuieed
not extend to non symmetric channels.

The paper is organized as follows. We begin in Section
Il by introducing the problem formulation. A brief review
of conic optimization is provided in Section lll. The power
optimization problem is explored in Section IV, in which we
discuss its feasibility, and provide standard conic opation
solutions. In order to improve our design algorithms and
in order to gain more insight into the problem, we then
provide optimality conditions, and suggest a simple fixeithpo
iteration for finding the variables that satisfy them. Nert,
Section V we follow the same steps for the SINR optimization
problem. A few special cases for which a closed form solution
exists are explored in Section VI. In Section VII, we illudt
the use of the aforementioned precoders in the context of
multiple user communication systems.

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column i .
vectors, and standard lower case letters denote scalaes. THN the sequel, we will assume that the transmitkf.,
superscript€ )7, (-)*, (), (-)~! and (-)! denote the trans- the channelsHc, ; and the recelversH_iji are flxed,_a_nd
pose, the complex conjugate, the Hermitian, the matrixrswe &nnot be altered due to budget restrictions, standalizat
operators, and the Moore Penrose pseudoinverse, resphecti?’ Physical problems. Given this fixed structure, we will try
[X];; denotes the ifh,jth) element of the matrixX. By (O improve the performance by introducing a linear precoder
diag {z;} we denote a diagonal matrix witk; being the 1he precoder, denoted W, linearly transforms the original

(ith,ith) element, byvec (X) we denote stacking the elements$ymbol vector prior to t_he transmission, so that the outpfits
of X in one long column vector, by; we denote a zeros vectorthe receiver are now given by

« Point to point multiple antenna system- A single user,
point to point communication system usirdg multiple
receive andL transmit antennas is a special case of (1)
with M = 1.

o CDMA system - The downlink channel of a CDMA
system withL users is a special case of (1) with= 1,
whereHr, is a signature matrix whose columns are the
signatures of each of the useH¢y, ; = I andHgy; are
row vectors representing the linear receive filters of each
of the users..

o Transmit beamforming - A multiuser system in which

L transmit antennas signal fo users each using a single

receive antenna is a special case of (1) with= 1.

Here Hr, is a beamforming matrix whose columns are

the antenna weights of each of tleusers,Hcy, ; are

row vectors which represent the paths from the transmit
antennas to the'th receive antenna, andry,; are
arbitrary scalars.

with a one at the'th element, _by1 we denpte an all ones r vy, Hp, 1 Hen Hp, w1
vector, and byl we denote the identity matrix of appropriate _ . Ho Th + ) @
size. Tr{-}, R{-}, ||, |||l and|||-|||c denote the trace operator, o : Tx : :
the real part, the absolute value, the standard Euclideam,no [ Y M Hrx,mrHen, v Hpx, W
| S —

and the induced row sum matrix norm, respectively. Finally, 7
X > 0 denotes that the matriX is a Hermitian positive semi
definite matrix, andV {-} denotes the Null space operator.

Hgxcn w

For ease of representation, we will use the following notati
y = HTb+w, (©)]

Il. PROBLEM FORMULATION where H = Hg.cn.Htx and the rest of the variables are
Consider a general, block oriented, MIMO communicatiodefined in (2).
system with a centralized transmitter. At each time instant Our goal is to improve the system performance by optimally
block of symbols is modulated and transmitted over a channdésigning the precoder. The system performance is usually
The possibly distorted output is then processed at theusceiquantified by its quality of service (QoS) and the resourtes i
in a linear fashion, as depicted in Fig. |. Denoting oythe uses. The most common QoS metrics are BER and capacity,
length L output of thei'th receiver, fori = 1,--- , M, we both of which are highly related to the output SINRs, and in



particular to the worst SINR. In our model, the output SINRptimization problems. In order to use these algorithms on

of the 7'th sub channel is defined as: must reformulate the problem into a standard form which the
2 algorithms are capable of dealing with. In this section, we
‘[HTL-,Z' will briefly review the three formulations which we use in the

SINR; = ) paper: SOCP, SDP and GEVP programming.

The most widely researched field in optimization is convex
optimization. A convex program is a program with a convex
o jective function and convex constraints. It is well known
ot(s%lat in such programs a local minimum is also a global

2 k)
Zi;ﬁj ‘[HT]M +07
fori=1,---, K whereo? = E{|w;|?} > 0. Another range
of criteria deal with the use of system resources, e.g., p

to average ratio, or maximal transmitted power. The m St imum. Thus. the alobal minimum can be found by an
common resource measure is average transmitted powehwnﬁ.” Cli b . ‘G gd' D ¢ alaorithm. Th y ty
is defined as: ill Climbing” or “Gradient Descent” algorithm. The mos
common convex program is probably the Linear Program (LP)
P =E{||HrTb |*} = Tt {T"H{ H1, T} . (5) [19], i.e., an optimization with a linear objection funatio

. i and linear (affine) constraints. Recent advances in convex
Itis easy to see that the SINR metric and average power meffigimization generalize the results and algorithms of L®s t
conflict. One cannot maximize the SINRs while also minimiz;ore complicated convex programs. Special attention isrgiv
ing the power, and vice versa. Depending on the applicatiqg, conjc programs, i.e., LPs with generalized inequalitide

the d.esigner must decide WhiCh criteria is stricter. Wedfure _ two standard conic programs are SOCP and SDP optimization.
consider one of the following two complementary strategie$a standard form of an SOCP is [52]:
The first optimization strategy seeks to minimize the averag

transmitted power subject to QoS constraints. This cdteis miny §R{f’}‘1{x}
interesting from a system level perspective. Given theirequ SOCP : ¢ o { ¢ X +d; } 0 i—1... N ©
. . . . . . sV H K Y, ? ) 9 9
QoS, the system tries to satisfy it with minimum transmitted A x+b;
power [17], [41]: where the optimization variable is the vectoof lengthn and
ming  Tr {THHY Hp, T} f, A;, b;, c; andd; fori =1,--- , N are the data parameters
P(y,) = . |[I-);T],. 2 (6) of appropriate sizes. The notatien, denotes the following
s.t. min; —Evfl[HT]’ e 2 Yo, generalized inequality:
-y il toi
where~, > 0 is the give_n Wors_t S_Il_\lR constr_ai_nt. [ z } k0 o |z < - )
The second strategy is maximizing the minimal SINR sub- z

ject to a power constraint [48], [16]. This problem formidat The standard form of an SDP is [53]:

is interesting when the power constraint is a strict system _ o

restriction which cannot be relaxed. In this case, the bl SDP - { min,  R{f7x} (10)
can be formulated as st Ax) =0,

e N 1T, | whereA(x) = Ag + >, z;A; is an Hermitian matrix that
S(P,) = T 'Y, | T o2 (7) depends affinely ox. The data parameters are the Hermitian
s.t. Tr {THHY HT} < P,, matricesA; for i = 0,--- ,n. The notation denotes the

positive semi definite generalized inequality. A simpleecas

whereF, > 0 is the given power constraint. .an SDP is an SOCP. For example, each of SOC constraints in
Note that although we are optimizing the minimum SINR |r{§) can be written as an LMI [19]:

both problems, it is easy to see that at the optimal solutfon
both problems all users will attain equal SINRs (see als)[41 cAx+d; xHA;,+bl
In other words, the above design criteria both promise éaisn Afx+b; (cFx+d;)I

among all the sup st'reams. This is an important prOper,L}/common optimization package designed to solve SOCP and
in MIMO communication systems. In systems where SOHE%

= 0. (11)

streams demand different QoS, e.g., systems with voice an P isSEDUMI[51] . ' S
data streams, the designer ca’n rep;lace IR in the Ithough most of the research in the f!elq of optimization
optimizations ’withSINR»/p» where p; are constar:t weights concems convex programs, due to their |mportqnce, Some

. v : Co cases of non convex problems have also been investigated.
that denote the importance of the sub streams. This WmmnSLAmong them is the GEVP [54], which is not convex but can
weighted fairness among the streams. !

One of the main observations of our work is that botﬁtIII be efficiently solved. Its standard form is

optimization problems (6) and (7) can be solved using stahda ming x 3
conic optimization algorithms. Therefore, in the next gect s.t. OB(x) — A(x) = 0;
. : GEVP : (12)
we review these algorithms. B(x) = 0;
C(x) = 0,

Ill. REVIEW OF CONIC OPTIMIZATION where § is a real valued optimization variable and(x) =
In recent years, there has been considerable progress And+ > . | 2;A;, B(x) = Bo + Y., x;B; and C(x) =
development of efficient algorithms for solving a variety o, + > .-, z;C; are Hermitian matrices that depend affinely



on x. The data parameters are the Hermitian matrides Proof. In order to prove the proposition we must upper bound
B; andC; for : = 0,--- ,n. The name of the GEVP arisesthe minimal SIR:

from its resemblance to the well known problem of minimizing 2

the maximal generalized eigenvalue of the pepilB], i.e., ) ‘[HT]i,i ) 1 1
minimizing the largests such thatAv = SBv. It is easy to min P 1 17 (18)
show that this problem can be expressed as 2ii MHT]LJ‘ & min; &
ming /3 where¢; = (L and we have used the monotonicit
{ st. BB—A=0 (13) S = ErTTH, Y
- of f(a) = +55 in a < 1. Due to monotonicity, we can

which is of course a simple SDP. The GEVP generalizes trﬂ%undf(a) bCS/ bounding its argument. Thus, we now develop
program to the case wherd and B also depend on the 5 poynd on the minimung;. Let HT have a singular value

optimization variables. decomposition (SVDHT = UAVH, whereU andV are
semi unitaryK x r matrices,A is anr x r diagonal matrix,

IV. POWER OPTIMIZATION andr = rank (HT). Then,

In this section, we consider the power optimization subject |uHAv4\2
to SINR constraints, i.e., th® problem of (6). We begin in &= ! i=1,--- K, (19)

Section IV-A by discussing its feasibility, and then prawid ufA%u;
a few alternative approaches for its solution. In particulayhere u; and v; are thei'th columns of U¥ and V%,
in Section 1V-B, we derive a solution to the problem whichespectively. For every = 1,--- , K, we can bound (19) by
is based on standard SOCP or SDP optimization packaggsplying the Cauchy-Schwarz inequality to the vectdrs;
Next, in Section IV-C, we develop optimality conditions forand v;

this problem, and use them to derive two alternative sahstio =
For completeness, in Section IV-D, we discuss the uplink- |ui Av;
downlink duality in the context of the power optimization. sincevilv; — [(HT)T HT} , we conclude that

i,

‘2 < (Vf{vi)(uflAQui), 1=1,---, K(20)

A. FEASIBILITY & < {(HT)T HT} =1, K (1)
The first important property of any optimization problem is . _ o
its feasibility (admissibility), i.e., whether a soluti@xists. In  Thus, the minimurr; is bounded by

other words, we need to verify whether for a giventhere | X s
exists aT such that 2 ming < - ;gi < > [(HT)T HTLZ (22)
[T, ) -
min i > . (14) _ %Tr {(HT)THT} _ rank [((HT) - ran};{(H)'
' ZZ;&‘[HTL +07 I . . . .
I 7 Substituting (22) into (18) yields the required condition o
Since we have assumed that the noise variances are positive, O
gﬁo‘:l?‘g;)ére strictly lower than the signal-to-interf@@n ¢ o otreciive channeH is full rank, then the condition
: results iny, < oo, i.e., any SIR is feasible. This is easily
‘[HT] 2 ‘[HT] 2 verified as the condition in (14) can be satisfied by choosing
b bt T = aH™' for large enough: > 0. This choice of precoder
< 5 15) 9 ghu . P
S |[HT), 2 +o2 Y., |[HT], . inverts the channel and eliminates all interference.
i e ! 7 “J Unfortunately, when the effective channel is rank defigient

for i = 1,---, K. By scalingT to «T for large enough the interference cannot be eliminated, and there is an upper
a > 0, the difference between the SIRs and the SINRs can beund on the maximal SIRs. Similar conditions were provided
made insignificant. Therefore, for the sake of examining the [37] in the context of optimal signature design using MMSE
feasibility, the interesting metrics are the SIRs. A coiodit receivers (which is a special case of a MIMO system), and in
for feasibility is provided in the following proposition. [17] in the context of joint transmit and receive processing
. . these works it was shown that the condition of Propositios 1 i
Proposition 1. There exists &' such that o oo . )
necessary and sufficient for feasibility using MMSE recesve

2 In our case, the receivers are fixed, and therefore the ¢ondit

min ‘[HT]M > (16) is only necessary. In.gen.era_l, we cannqt always attain the
i S ‘[HT]. _ bound when the receiver is fixed. Two smple examplgs for
17 J channels in which the bound cannot be achieved are a diagonal
only if H with K — rank (H) diagonal zeros, or a channEl with
1 two identical rows. In both of these examples, it is easy to
Yo < & 71 (17) see that, no matter what the precoder is, we will not attaén th

rank(H) bound.



Nonetheless, experimenting with arbitrary channels showshich can be written as the SOCs

that in almost all practical channels the bound can be aetiev
even for a fixed sub optimal receiver. For example, consider

1+ 5 [HT],

a rank K — 1 channelH, with the normalized null vector T"H"e; k0, i=1 K (29)
u € N {H"}. Except for the case in which; = 0 for some op
i=1,---, K, the bound can always be attained by choosing simijlarly, the power constraint in (26) can be reformulated

T = Hidiag{1/u]}Q,
whereQ is a matrix with unit diagonal elements af@|, ;, =
—1/(K — 1) for the non diagonak # j elements. This is
easily shown by considering the following chain:

(23)

HT = HHdiag{l/u}}Q = diag {1/u}} Q, (24)

where we have useHHH! = I — uu’ and the fact that €
N {Q}. Substituting the abov@IT into the SIRs yields the
maximal SIRs in rankk’ — 1 channels:

|

Zz’;ﬁj ’[HT]”

5 (25)

B. CONIC OPTIMIZATION SOLUTION

We now show that th@ problem of (6) can be represente
as a standard conic optimization program. Thus, using

the shelf optimization packages, we can numerically veri%

its feasibility, and find its optimal solution. In order toeus

the standard forms of the conic programs, we must cast ik

problem constraints using the standard notations destiibe
Section Il

Using a real valued slack variable,, the program can be
rewritten as

F,

Zi¢j|[HT],;1j|2+U? =Ter
i=1,-,K;
Tr {THH{«IXHTXT} < P,.

minr p,
2

s.t.

P(%) : (26)

The argumentT of the P program is defined up to a
diagonal phase scaling on the right, i.e.,if is optimal,
then Tdiag {79}, whereg; for i = 1,--- , K are arbitrary
phases, is also optimal. This is easy to verify, as the pha
do not change the objective nor the constraints. Therefoee
can restrict ourselves to precoders in whighT], , > 0 for

i=1,---,K,i.e. each has a non negative real part, and a zer

imaginary part. Taking this into account, we now recast t
SINR constraints in standard form. Rearranging the coimstra
and using matrix notations, the constraints yield

1 2 HyHe.
Yo ’ g,
Since[HT],, > 0 for i = 1,--- , K, we can take the square
] 2
root of ‘[HT]M resulting in
1 HyyH 4.
\(1+_[HT]11>H T ? ci Ha Z.:]-v"'?Kv (28)
Yo i

S

using thevec(-) operator as|vec(HrT)| < v/P,, which is
equivalent to the SOC
Vb,
[ vec(HryT) =x 0.

Using (29) and (30), and denoting= +/P,, the program (6)
can be cast in the standard SOCP form [52]:

(30)

mint, p
1+ L [HT],,
s.t. THHHei >r 0,
Pl) o (31)
) i=1,---, K;
| Vec(}]I?TXT) } =k 0.

Thus it can be efficiently solved using any standard SOCP
package [51]. Such a solver can also numerically determine

(}he feasibility of the optimization problem. A similar apach
Ngs taken in [42] in the context of transmit beamforming.

As explained in Section Ill, each SOC constraint can be
placed with an SDP constraint using (11). Thus the problem
also be expressed as a standard SDP:

mint, p
Ply): 4 st A(T) =0, i=1,---,K; (32
C(T) = 0,
where
1+ % [HT], [ e//HT o; ]
Ai(T) = THHH e, n ; (33)
{ o, } 1+ 5 [HT] I
fori=1,---,K, and
H
B P vec (Ht,T)
C(T) = [ vec(Hr, T) pI ' (34)

I-é%wever, solving SOCPs via SDP is not very efficient. Interio
point methods that solve SOCP directly have a much better
worst case complexity than their SDP counterparts [52].

It is important to note that the above formulations are
Eneral and do not depend on the rank of the channel. Thus,

ese solutions are also appropriate for rank deficientradlan

C. OPTIMALITY CONDITIONS

In this section, we will derive the KKT optimality conditien
for the power optimization. These conditions provide more
insight into the solution. In particular, we derive a simple
structure for the optimal solution based on the Lagrangeé dua
variables. Given this structure, we propose two altereativ
methods for finding the dual variables. In Section IV-C.1, we
derive a simple fixed point iteration which converges to ¢hes
variables. The computational complexity of this approash i



lower than that of the conic solution. Moreover, this santi eigenvalue ofF is less thanljrﬁ:
does not require any external conic package which is not al-

. ) . . i <
ways available. Alternatively, in Section I1V-C.2, we prepaa Cigmax(F) < |I[F[loc ) (40)
dual SDP program, whose optimal arguments are the necessary = maXZ ’ {A%HG (/\i)T HHA%} (41)
variables. The main results are summarized in the following L ©J
theorem: = max [A%HG ) HAAHG () HHA%} (42)
1 1,1
Theorem 1. Consider the power optimization progra®(-,) i AL
of (6). Define the dual variables; > 0 for i = 1--- K, and = max { {AQHG (M) H AQLZ, (43)
denoteA = diag {\;} and G (\;) = HY AH + HY Hr,. If ’
there exist\; > 0 such that - [ATHG () HELHLG () HTAY] }
. <max{[AéHG (AZ—)THHA%]} (44)
- r=1.--- . K 2,2
Yo - 1 - - 17 7 9 1) 9 (35) _ [HG ()\z) HHA} ] (45)
[AEHGT(Ai)HHAi]Z_ v N b
= 46
1+ ( )

where the inequality in (40) stems from the fact that any
induced matrix norm upper bounds the maximal eigenvalue
of the matrix. The equality in (41) is the definition of the row
sum induced matrix norm. The inequality in (44) stems from
. neglecting the non positive terms in (44), and the equatity i
T = G'(\)H"A>diag{6;}, (36) (45) is due to (35). We still need to prove that the inequality
is strict, but this can be proven as follows. Assume that the
inequality is not strict, i.e., there exists ansuch that the
where §; are the positive weights that allocate the powegecond element in (44) is zero, i.#l. G (\) HTAze; =
between the users: 0, and therefore{A%HRxchHTxG (M) HHA%} - =0.But,

since~, > 0, this a contradiction to (35), and therefore the
inequality in (44) must be strict.

holds, then the program is strictly feasible. Moreover,hié t
condition in (35) holds, then the optimdl is of the form

Yo -1 ) We now show that the arguments of the squared roots in
5 o= > (1 e I- F) Ajoss (87)  (37) are non negative. Using a series expansion for the xnatri
j ¢ irj inversion yields [55]
2
F|,, = [A%HGT () HHA%} , (38) 62 [ het
| | = [ Doy _ F}
147 '
5%( )\KO‘%(
fori,j =1,---, K. This structure ofT" is unique within the - [ Ao?
range of HZ. . At this optimal solution, all the constraints are I e Z Yo g ’ : (47)
active, i.e., there are equal SINRs for all the subchanrigis. Yo “— |14+ ) ’
- L - J=1 Ak o2
optimal objective value is K

The elements ofIV—"DF are nonnegative. Therefore, the ele-
ments of the sum will also be non negative, and we can take the
P, = Z Aio2. (39) element wise squared roots and solve&_pfor_ 1=1,--- ,K._
Thus, we have shown that the solution in (36)-(38) exists.
Plugging this solution into the SINR constraints satisfiethe
constraints with equality. Therefore, the problem is felgsi

Moreover, sinces? > 0 for i = 1,--- , K, we can always

!Droof. The proof consists of two parts.. First, we show tha§cale the solutiofT' by ¢ > 1, and satisfy the constraints with
if (35) holds then the problem is strictly feasible. Next

LT : ) : . strict inequalities, i.e., the problem is strictly feasibl
assuming it is strictly feasible, we will use the KKT optirityal In the next part of the proof, we will show that if (35) holds,

conditions to show that the proposed solution is necessay a,an the solution in (36)-(38) is necessary and sufficient fo

sufficient. optimality. The power optimization problem can be written a
We begin by proving that if (35) holds, then the proposefllows:

i

solution in (36)-(38) is feasible. Fiést, let us prove thhist miny Tr {TYHY Hr, T}
solution exists, i.e., that the matrix—=-I — F| in (37) is THHHe, |

' ’ T+, . 7 o 1 2
invertible and that the argument of the squared root is ng%w(’) NS { o } (1 + %) [ [HT]; ; | (48)

negative. The matrix is invertible because that the maximal <0, i=1,--- K



The above program is not written in convex form (in order tavhere §; = (1 + WL) {A%HTH} fori =1,--- K. As
o i

write it in convex form,_ <_:onic inequalities_ must be us_ed)._lg”eady explained, if (35) holds ‘then the solution in (36)-
general, the KKT conditions are not_ sufficient _for optimalit (38) satisfies (54). In addition, it has the structure of (&6JI
in non convex programs. However, in Appendix I, we shoyg therefore sufficient. Moreover, it is easy to show thas thi

that in this special case, if the program is strictly feasibhen gy cture is also necessary (within the rang#Idf ). Plugging
its KKT conditions are necessary and sufficient for optityali T from (53) into (54) yields

The Lagrangian associated with program (48) is

1 1 2 1 2 2
viie 17 (14 5) FlL =D L FL 2 el 69)
= i [T ) ()R
1 ' 2 for i = 1,--- K, where F is the matrix defined by (38).
- (1 + ,y—) ‘[HT]M } (49) Rewriting in matrix form, we have
where \; > 0 are the Lagrange dual variables. As we have o7 Aot
shown in the first part of the proof, if (35) holds, then the { Jo_y_ F} : = : . (56)
problem is strictly feasible. Therefore, its primal and ldua L+ 5'2 )\K'Uz
variables are optimal if and only if the following conditi®n K K
are satisfied: Since [HT]M >0fori=1,---, K, the unique solution to
1) Feasibility: The variabldl is feasible this set of equations in given by (37)-(38). Finally, theioyat

objective value in (39) can be easily found using (5) and.(52)
50) For completeness, it should be noted that when the problem

2

)

(o 2 =

Yo is solvable there always exist; for i = 1,--- , K such that
for i = 1,---,K, and the dual variables are duaf35) holds. This can be shown since if we left multiply both
feasible, i.e.\; >0fori=1, -, K. sides of (53) byH and examine the diagonal elements, then
2) Complementary Slackness: For each= 1,---,kK, (35) is a direct consequence of (53) (which is a necessary
either \; = 0 or condition for optimality). O
(1 . i) ‘[HT] 2_ { THH e, } 2 (51) Theorem 1 provides a simple strategy for designing the
Yo Byt o precoder. Given a feasible,, all one has to do is find

A; > 0 which satisfy (35). Once these are fouril,can be

derived through (36)-(38). As we will show in Section VI, in

some special cases, these variables can be derived in closed

) { A%HT} } ~ 0. (52) form. Otherwise, we now propose two alternative methods for
i finding these variables. In Section IV-C.1, we present a Emp

3) Zero derivative: The derivative of with respect toT
is zero, resulting in

, 1
G (M) T — H? A3 diag { (1 + o

At the optimal solution all the constraints are active,, i.e/X€d Pointiteration, and in Section IV-C.2 we propose an SDP

(51) holds with equality foi = 1,--- , K. As proof, note that dual program.

if one constraint does not hold with an equality, then we can 1) FIXED POINT _'TERATIQN FOR F_INDI_NGV T_he_
always scale the row ifl' associated with it, and arrive with aStructure of (35) motivates a fixed point iteration for firgiin

feasible solution that results in a lower objective valugjol i~ BY rearranging (35), we arrive at the following simple

is a contradiction. iteration:

Another important property of the optimal solution, is that (n+1) _ o 1 i—1...K (57)
all the dual variables are strictly positive. As proof, assu " 14+ {HGT ( )\(n)) HH} ’ ’ '
the contrary, i.e., there exists a@nsuch that\; = 0. Then, ! iy

multiplying (52) by T*' on ti}w{e If[ﬁ and examining theth  cjearly, the optimal); satisfy this fixed point. As we now
diagonal element, we have/T"G (i) Te; = 0, which  gpoy "if p(+,) is feasible, then the above iteration will
holds if and Oqu ifA2HTe; = 0 and HryTe; = 0, in converge from any\\”) to a setA!™ > 0 that satisfies (35).
which case the'th SINR is clearly zero. But, since, > 0, The convergence proof is based on tsendard function

this contradicts the SINR (':o.nstraints.. . approach introduced in [56], which can be summarized as
In general, theT that satisfies (52) is not unique. Nonethefollows Consider the fixed point iteration

less, expressindl as T = T + T, where T = PT,
T, = (I-P)T, andP = H}, Hr,, we can findT| which AP = A =1, K, (58)
is unique within the range off%,. UsingHT = HT, we ) )
arrive with the following necessary and sufficient condisio Where A" = diag {A("}. If the functions f;(A) obey the
| _— following properties:
Ty =G (A) H Az diag {9} ; (53) , Positivity f;(A) > 0 for all i;
« MonotonicityIf \; > X, for all ¢, then f;(A) > f;(A')
for all ¢;
« ScalabilityIf o > 1, thenafi(A) > fi(aA) for all 4,

2

e

T4

(1 + %) ’[HTHL,i



by ~ Ay —~Hcn,1 "(?—’HRX,l—’yl b1 - Ay *H§X,1*th,1_ Y1
Wi
by ~{ A, —>: WH ~Hry > Hcn,2 *%9* HRpy,2 Y2 by = Ay ng,2 e thg "O"C?" HY -+ W [— 2
W9 W
by — A — *HCh,]W"(?—’HRx,J\I—’ yu  ba ~{ Ay HHE -~ YM
WM

Fig. 2. Block diagram of a downlink (broadcast) system. Thericeg A,,, Fig. 3. Block diagram of a uplink (multiple access) system. Tiegrices
form =1,--- , M, are diagonal matrices with thgs associated withb,,. A, form =1,---, M, are diagonal matrices with the;s associated with
b.,. The vectorw is the virtual uplink noise vector.

‘he”_”.‘? |ter(e(1)t)|on h"’?s a _f|xed _pomt, It is unique, and foa{rises in the broadcast channel of a downlink system, and
any |_n|t|al AT the iteration wil converge to it !n AP~ the other arises in the multiple access channel of an uplink
pendix 11, weT show that if the problem is feasible anéystem. Fortunately, the uplink beamforming problem isezas
[H (HY Hry) HHLL < oo fori = 1,---, K, then the {5 solve. Using the duality, the downlink solution can be
functions in (57) satisfy these properties, and the iterawill derived through the uplink solution. For simplicity, in the
converge. sequel, we restrict ourselves to full rank channels (as tid a
2) DUAL PROGRAM FOR FINDING;: Alternatively, the the works in this context). Mathematically, the duality dae

dual variables can be found through a dual program. Thk&ated as follows:

dual program is a concave program that optimizes the d

. T . ) - l’\"’I’leorem 2. Consi [ i :
variables. Due to space limitations, the details of its\@gion sider the followingsplink program

are omitted but can be found in [57]. The resulting program miny, >o,w PO )
is: ﬁ(’}’o): st Xi [W?H]m > 7,,(60)
maxy, >o > hio? i N [[WHH, | +[WH¥XH?XWH]i,i -
Po(v):{ st 122G (A) - AH el H=0, (59) - i=1l, K
i=1,--- K. ProgramP(~,) is the dual of the prograrP(,) of (6) in the

This is a simple SDP/LMI program, which can be efficientl S?:i;”l\?t g;gt;OpttkI‘r:sltﬁ;gnglﬁ:: g\g%&?\ﬁc\t/l;ﬁ ;/a;fu?;of
solved by any standard SDP/LMI optimization package. More; T > P )

; o . . " PMlso P,, and its optimal argument i = W A2 diag {4;},
;)(;/e[r(,znoha}s _onIyK opt.|m|zat|('3n vanablle's, in comparlsoncyvhereéi are defined in Theorem 1.
ptimization variables in the original program, an
therefore has a lower computational complexity. A similaProof. It is easy to see that each constraintZhdeals with
result was obtained in [42] in the context of beamforming. one row of W and that the objective is not a function W at
all. Therefore, it is clear that each row W will be chosen to
maximize the SINR associated with it. Thus, for fixed the
D. INTERPRETATION VIA UPLINK-DOWNLINK DUAI‘”_Yoptimal receiverW is the well known scaled MMSE matrix
In this section, we provide an alternative solution for thgs):
power optimization problem based on the well known uplink- 1
downlink duality [43], [44]. As explained in the previous W=HG" (A), (61)
sections, the problem can be solved efficiently without thehich is unique up to a diagonal matrix multiplication on
use of duality. However, previous attempts for solving théhe left. In addition, similarly to the downlink problem,l al
downlink beamforming problem, which is a special case ¢fie constraints of the uplink problem are active (otherwise
precoding (whereHr, = I), are based on this approachone can always decrease the associated with the passive
Therefore, for completeness, we now review this method andnstraint and decrease the objective). Thus, at the optimu
generalize it to the case of precoding, i.e., arbitréfy.,.
Moreover, the duality is interesting from an engineeringnpo Ai
of view, as it provides an interesting physical interpiietaof 2
the solution. P i P 2oji N ‘[WHH]iJ + [WHE, Hr, W]
Recently, an interesting duality was found between dowfor ; = 1,... | K. Plugging in the optimaW and simplifying
link beamforming and another problem called uplink beanhe terms results in
forming. It is usually referred to as downlink (broadcast) - 1 i Yo .
uplink (multiple access) duality, since one problem tyfhca Ai [HG (\i) H Lz =7 e i=1,---,K. (83)

[WH"]

i

= Yo, (62)

iy
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Thus, the optimal\;’s of P satisfy (35). Due to (61), the A. CONNECTION WITH POWER OPTIMIZATION

precoderT = WH A% diag {0} satisfies also (36). Therefore, The most interesting property of the SINR optimization
according to Theorem 1, this precoder is optimal®r [ program is its relation to the power optimization program. |

) ) ) ) ] order to mathematically define this relation, we introduoe t
This uplink-downlink duality was developed in [43] forfollowing theorem:

the special case aHt, = I. In Theorem 2 we generalize
this result to arbitraryH . The importance of this theorem Theorem 3. The power optimization problem of (6) and the
is in its interesting interpretation of the optimal solmiot SINR optimization problem of (7) are inverse problems:
provides a phys_ical interpre’Fation to the positiv_e dualaldes Y% = S(P()): (64)
A; > 0 as the virtual normalized power allocation. In order to P, = P(S(P)) (65)
visualize this duality, we provide block diagrams of the two ° e
dual systems in Figs. 2 and 3. In addition, the optimal objective value of each program
Moreover, previous attempts for solving tieproblem are is continuous, and strictly monotonic increasing in its ubp
based on this duality [41], [46]. As we have shown in th@&rgument:
reousseclon e prole ca e soed boUL bl 2% > POJPO) 6
we now present the duality based approach as well. This Po>Fo = S(Po) > S(Fy). 67)
approach confronts thé® problem by addressing th@ Proof. We begin by proving (64) by contradiction. Assume the
problem first and then adjusting the solution based on Theorgontrary, i.e.” and T are the optimal value and argument of
2. Fortunately, there is an intuitive iterative solutiorprogram P(7), andy # v andT are the optimal value and argument of
P. The problem can be solved by iteratively solving for eacfi(P). If 7 < 7, then this is a contradiction for the optimality
of the parameters, while keeping the others fixed (see [57] fof T for S(P), since T is feasible for it, and provides a

more details): larger objective valuey. Otherwise, ify > ~, then this is a
— contradiction for the optimality ofl' for P(v), sincey > v,
P(%) and we can always fin¢ < 1 such thateT will still be

1 repeat

feasible, but will result in a smaller objective.

2 W —HG™ (\) P oo Next, we prove (66) by contradiction. Assume the contrary,
A (_%ZM | [wrEr] +||2HTXW | i.e., P and T are optimal fory, and P > P and T are
3 [wHRA], | optimal for 3 < ~. We can always multiplyT by ¢ < 1
i=1-,K so that it will still achieve the SINRs constraints ©f with
4 until convergence an effective power constrairf P < P < P. This contradicts

the assumption thdl’ was optimal fory. The continuity can
be verified using similar arguments to those in Lemma 2 of
Line 2 optimizes the receive matrW to maximize the SINRs [58]. The proofs of (65) and (67) are similar and are themfor
for fixed \;. Line 3 optimizes the power allocation weights omitted. O
for fixed W [56]. In [41] it was shown that the above algorithm
always converges to the optimal solution. It is similar to OL%O
simple fixed pon_‘nt iteration in (57),.except jonine fagt th.mt Due to the inversion property, i, = P(~,), then its solution
the above algorithnw; and \; are independently optimized ~. . . -

. - . o will be optimal also forS(P,). The strict monotonicity and
at each iteration, whereas in (57) both are optimized tageth oy . ) ) .

continuity guarantees that a simple one dimensional h@ect

Thus, our simple fixed point iteration is more appealing. search will efficiently find the requiregdl,. This procedure is
summarized in the following algorithm (see also [47]):
V. SINR OPTIMIZATION S(P,)

1 ~Ymax «— MaxSINR
2 Ymin — MinSINR

Using the properties in Theorem 3, we can sol§€P,)
r a givenP, by iteratively solvingP(~,) for different~,’s.

We now consider the problem of maximizing the worst
SINR subject to a power constraint, i.e., t8grogram of (7).

As before, we begin by examining its feasibility. Fortumgte 3 repeat
it is easy to verify that theS program is always feasible, as 4 Jo (Ymin + Ymax) /2
we can always scal so that it satisfies the power constraint. 5 P o= P (%)
In Section V-A, we discuss the connection between the power 6 if P, < P,
optimization and the SIR optimization and explain how this ‘ then yumin < 7,
connection can be used to solve the SIR optimization. Then, 8 ) _else Ymax — %
we follow the steps we took before in the context of the power 9 until P, = P,

10 return ~,

optimization, and repeat them in the context of the SINR
optimization. In Section V-B, we formulate the SIR probles a

a standard GEVP conic program, in Section V-C we providevehere MinSINR and MaxSINR define a range of relevant

fixed point iteration, and in Section V-D we discuss its ulplin SINRs for a specific application, and where we have used
downlink duality. the convention thato = P(v,) if it is infeasible.
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Theoretically, this means that the SINR optimization prolzase,y, is an optimization variable and not a parameter and
lem can be solved through the previous results concernimg thas to be found as well. This can be overcome by adjusting
power optimization. Nonetheless, due to its importance attik fixed point iteration in (57):

in order to obtain more efficient numerical solution, we now 1
provide direct solutions for the SINR optimization through Ai = o , 1=1--- K, (72)
conic optimization, via the optimality conditions, anddbgh [HGT ()‘i ) HHLi

the uplink-downlink duality.
P Y and then normalizing the result so that it will satisfy (39):

B. CONIC OPTIMIZATION SOLUTION \(n+D) P\ 1K (73)
; - — -~ 1 = 3 A .
The SINR optimization can be cast as a standard GEVP ! Zj gj2.>\j
program. Using a real valued slack variablg the problem
can be rewritten as If this iteration converges to a fixed poimg") > 0 then it
max ~ will satisfy (35) and (39). Numerous numerical simulations
e ey, with arbitrary initial points and parameters show a rapid
S(P,): s.t. W 2 Yo (68) convergence rate.
1= ]-7 IR )
Tr {T"H{ H1 T} < P,. D. INTERPRETATION VIA UPLINK-DOWNLINK DUALITY

At first glance, (68) seems similar to (26). However, it turns Following the success of the uplink-downlink duality in the
out to be considerably more complicated. This is because fh&ver optimization, the duality was recently used to comfro
SINR matrix inequalities in (33) are linear i = /1 + % the SINR optimization [48], [49]. The uplink-downlink dut

or in T, but not in both simultaneously. Thus, whénis an in the case of the SINR optimization can be stated as follows:

optimization variable and not a parameter, these Conwai'?heorem 4. Consider the followingiplink program:
are no longer LMis. In fact, the sets which they define are

not conveX. Nonetheless, we can still express them using MaxXw,;>0,v, Yo t

generalized matrix inequalities as in (32) and (33). If we N [wHH] ]

rewrite theA;(T)’s in (33) and separate out the terms whickS(P, )= S't'zm Aj\[WHH]M|2+[WH5XHTXWHL 12 Tor (74)
are linear, we have i=1,- K:

A (T) = BAL(T) — A2(T), (69) 2 0iAi < Po.

)Program S(P,) is the dual of the progran8(P,) of (7) in

where A} (T) and A? (T) are matrices that depend affinel _ : ) O
the sense that if the optimal arguments and objective value o

onT: hall
HT S are W, \;, and~,, then the optimal objective value &fis
Al(T) = [ [HT],,; 0 } : (70) also~,, and its optimal argument iT' = WHAz2diag {6:},
0 [HT]MI whered; are non negative weights.
0 — [ efHT o, | L o
A2(T) = THHH e, Proof. The proof is similar to the other proofs in this paper,
’ — { o ! ] 0 " and therefore we only provide a sketch of it. As before, the

problemsP and S are inverse problems. But in Theorem 2
Using (69) we can expresS in the standard GEVP form:  we have shown thaP and P are equivalent. Therefore§
andS must be equivalent too. A more detailed proof on this

min I) o .

S St T BANT) = A2(T), i=1,-- ’K;(71) duality in the case oHry = I can be found in [49]. O

o AlT) =0, i=1,,K; The downlink beamforming SINR optimization problem

C(T) = 0, was solved using duality in [48], [49]. The algorithm iter-
which can be solved using appropriate software, e.g., tAvely optimizes each of the optimization variables while
GEVP command in the LMI toolbox [59]. keeping the others fixed (see [57] for more details):
S(P,)

C. A FIXED POINT ITERATION FOR FINDING; 1 repeat

The SINR optimization problem can also be solved using 2 W —HG™' (\)

the conditions in Theorem 1. As explained in Theorens3, . 1 o 1
and P are inverse problems. Thus, the optimal solution of 3 { 1 ] T C18max 7V Q pva
the SINR optimization is also optimal for an inverse power
optimization problem, and therefore must satisfy its optity
conditions as well. Thus, to optimize the SINRs we need to
find \; > 0 that satisfy (35) and (39). Unfortunately, in thisvhere Q is a K x K matrix with elements[Q]. . =

4]

4 until convergence

2
, q is a length K vector with

2
H H
3The exact definition of such sets is quasi convex [19]. ‘ [WH ]”’ / ' [WH ]”



12

20

2
elementsq; = HHTXWHeZ—H2/’[WHH]”’ ,andv is a ——F
length K vector with elements?. Line 2 optimizes the matrix o] | e o T SINR precoder
W for fixed \;. Line 3 optimizes the weigh; for fixed W ~® ZF + SINR precoder g "
. . . . —8— MMSE R
based on [60]. Clearly, this solution is much less appealing | o MWSE +SINR precoder| . ol 1

than the fixed point iteration in (72)-(73).

V1. SPECIAL CASES

In this section, we examine a few interesting cases in which
the problemsP and S have simple closed form solutions.

output SINR [dB]

A. DIAGONAL CASE

The first case is when the matricElsandH . are diagonal.
In this case, it is trivial to satisfy the optimality conditis in -15 0 5 2 P 20
Theorem 1. The resulting precoders are diagonal and can bc SNR [dB]
considered as simple power allocation strategies.

Fig. 4. SINR of a symmetric system with equal cross correlati@ue to
the symmetry, all users have equal output SINRs.

B. SYMMETRIC CASE

ThiadgecondI c?se istwhe(rj] the Ta;friggsand IHTIX har\]/me',s « ZF receiverHp, — (SHS)_l gH .
equal diagonal elements and equal off diagonal elements, an receiver:Hy, — S (SS¥ + UQI)_1_

the variances are equaf = o2. Due to the symmetry it is _ ,
clear that choosing; = P, /(K ?) will satisfy the conditions We now discuss the performance of these systems with and
without precoding.

in Theorem 1. Therefore, the solution for the SIR optimizati

problem is:
1 A. EQUAL POWER AND EQUAL CROSS CORRELATIONS
Yo = 1 — 1? (75) The first interesting result of our precoder is its perforoean
{H(HHH+ so ngﬂTX)’lﬂH} N in an equal power and equal cross correlations multiuser
, . system, i.ep; ; = p for all i # j ando? = o2. As explained
T — ¢ {HHH + Ko H%{HTX} HY, (76) ?n Sgction VI-B, our precoder and its SINRs have closed forms
P, in this case.

where c is a constant that scales the matrix to satisfy theroposition 2. Consider the multiuser system in (77)SIF'S
power constraint. This particular precoder has been pusljfo s invertible andp; ; = p for all i # j, then the output SINRs
derived in [7]-{11] through scaled MMSE considerations;sing theS precoder along with an MF receiver are identical

However, it is easy to verify that in general, i.e., in nonsyMmy those resulting by using an MMSE receiver without any
metric channels, it does not necessarily satisfy the clamdit precoder, and are equal to

in Theorem 1, and is therefore suboptimal in this sense. For 1

example, if the channels are symmetric but the noise vagmnc Yo = — -1 (78)
are not equal, then, in order to ensure equal SINRs among all [(I + 5SHS) } N

the streams, the precoder in (76) must be diagonally scaled ) o . )
using (37). Proof. The SINRs in (78) are obtained by applying the matrix

inversion lemma on (75). In [3], it is shown that the output
VIl. APPLICATIONS IN MULTIUSER SYSTEMS SINRs using MMSE receivers are also equivalent to (78).

In this section, we present possible applications of the Proposition 2is interesting as it allows for each user @matt
proposed precoders to multiuser systems. Consider a mtiuthe MMSE performance without the use of an MMSE receiver
precoded downlink system. At each symbol’s period the ba#ich requires the knowledge of all the other signatures and
station transmits using al¥ x K non orthogonal signatures@ matrix inversion. Moreover, when th& precoder is used
matrix Hr, = S. The maximal average transmitted power |W|th ZF or MMSE receivers the performance improves even

P, = K, and the cross correlations between the signatur@®re. In Fig. 4 we plot the output SINRs given by (75) for the
are denoted by; ; = [SS] . with p;; = 1 for all i. For three linear receivers. For comparison, we also plot thpuut

simplicity, we assume ideali’]channels, i.Blo,; = I, and SINRs that result from similar systems without a precodgr [3
equal noise variances, i.e:2 = o2. Denoting byy the output AS expected, using the precoder always improves the output
vector of the multiple user receiver, we have that SINR.

y = HpxSTb+Hp,w, (77)  B. NON SYMMETRIC CHANNEL

whereHg, is one of the standard filters: As a second example, we consider an equal power system
o MF receiver:Hg, = S¥. with unequal cross correlations between the users sigemtur
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put SINR.
~
T

BER

min. out]
=
o
T

+ ZF + no precoder, user 1 .0 - B
o ZF + no precoder, user 2 < L’ ‘it no precoder
" ® ZF + no precoder, user 3 i e SIR precoder
- MF + precoder of [5], all users : o R = = = = precoder of [7]
—— MF + SINR precoder, all users P
’
.
o b
10° I I I I I I I I 0.5 L L - .
0 2 4 6 8 10 12 14 16 18 0 5 10 15 20 25
SNR [dB] SNR [dB]

Fig. 5. SINR of a non symmetric 3 users system with cross cdivete F9- 6. Worst output SINR in a system withi = 4 and N = 3.
p12 = 0.8,p13 = 0.9, p23 = 0.7.

VIIl. CONCLUSIONS

In SfUCh systemlj, tr;ere is no closed form exprless_lor;t;(t)_r e, this paper, we addressed the problem of designing linear
performance. Therefore, we resort to Monte Carlo simutatio precoders for fixed MIMO receivers. We considered two com-

Following [S], we consider cross correlatiopg, = 0.8, P13 = plementary design criteria, and proposed several aligenat
0.9, andps3 = 0.7, where each user uses an MF receiver. F§

. id its of the d | rIgorithmic solutions for these optimization problems.
comparison, we provide results of the decorrelator precode It is first observed that in precoder design, maximizing the

[5f],hanorl] our SIR prec?der 0:;.%7)' Dule tohthe asymrrr:etry, e_aw)rst SINR is advantageous to minimizing MSE. Most of the
of the three users performs differently when using the e o, 6,5 work regarding precoders is based on optimizimig va

precoders. On the other hand, our precoder has the atgac Wts of the MMSE criterion. These ad hoc criteria are usually

property of equal BERs for all the users. Naturally, th,gomputationally attractive and perform quite well. Howgve
performance of the best user degrades compared to previ ever increasing demand for better performance, as well

methc:jds. ": I_:ig. 5, we provige tr;]e BERs usir:jg each Off tl’é% the considerable progress in optimization theory, sitgge
precoders. It is easy to see that the our precoder outpestor,, upcoming research should focus on design criteriatwhic

that of [5]. are more related to practical performance measures, such as
maximizing the worst SINR.
C. RANK DEEICIENT CHANNELS Qur sepond important observation is that by usirjg conic
optimization theory and algorithms, the precoder desigipr
One of the main advantages of our precoder is its pdems can be solved in a straight forward manner without
formance in rank deficient systems. We now illustrate thigsing uplink-downlink duality. This duality is remarkabknd
property in a multiuser system with' = 4 users and length has enabled solutions to problems which were unsolvable
N = 3 sequences. The transmitter uses the optimal sequenigefore. Nonetheless, we believe that understanding the pre
of [37], and the receiver uses conventional matched filteksoder design using first principles, and not as a byproduct
However, we use a distorting channel for the first user, i.@f the uplink problem, is also important. For example, in
Hcy, is a toeplitz matrix with the first rowj1.0,0.8,0.0]. future work, the simple optimality conditions may help in
Due to this channel the sequences are no longer optimal anghalyzing the performance of these systems, or in improving
precoder should be used. The common decorrelating precotigr design criteria, without the need to resort to the virtua
of [5] cannot be derived in this case & < K. Therefore, uplink problem.
we compare our results to the precoder of [7]. The worst There are many interesting extensions to this work which
output SINRs with and without the precoders are presentgee worth pursuing. The first concerns the extension of our
in Fig. 6. Using ourS precoder significantly increases theesults to the case of partial CSI. In many practical systems
SINR compared to a system with no precoder. Using thee transmitter does not have access to perfect CSI, and need
precoder, the SINRs asymptotically converge to the boundti resort to noisy channel estimates, and/or delayed fe#dba
(17), i.e.y; = w45 = 3 for i = 1,--- ,4. Interestingly, the In this case, robust optimization algorithms should be iagipl
performance us3ing the precoder of [7] is even worse than ras in [61]. Another possible direction is to consider fixedh no
using a precoder at all. For fairness, we must note that tleear receivers, such as the successive cancelling ercéiis
SINR of the best user using this precoder are much highesmll known that such receivers outperform the linear ressiv
But from a system’s prespective, the interesting metrihés texplored in our paper. Therefore, by designing the precoder
performance of the worst user and in this sense our precotteroptimally work with such receivers, the performance can
is more appealing. significantly improve.



14

ACKNOWLEDGMENT 2) Complementary Slackness:

The first author would like to thank Prof. Nemirovski for
introducing him to the GEVP, and to acknowledge Dr. Palo-
mar, Dr. Dor and the anonymous referees for their insightful

comments and suggestions that helped improve this paper. 3) Zero derivative: The derivative of the Lagrangiarof
(83) with respect tX is zero

[ wi wf}[zg”:o, i=1,--,K. (85)

APPENDIX I 9 ai(X)
OPTIMALITY CONDITIONS FOR PROGRAMS WITH 5+ ¢ f(X) - ([ wi w ] { a:(X) D = 0. (86)
SOC CONSTRAINTS '
mization programs with SOC constraints. The conditions af‘ér satisfying the conditions in (84)-(86). Let us choose:

i

summarized in the following lemma. ws ai(X)
Proposition 3. Consider a non convex program of the struc- Wi —a;(X)
ture Plugging the dual variables from (87) into the conic KKT
ming  f(X) conditions reveals that conditions (84)-(85) hold due 1@){8
st a2 = aX)P <0, i=1,--.,N. 9 (81). Similarly, using (87), the conditions in (82) and (&8}
identical:
where f(X) is convex inX, and a;(X) and a;(X) for
=1,---, K, are affine functions oX. Let us associate the T a;(X) D
) b ) _ X _ A 1
dual variables); for i = 1,---, K with this program. If the 0X {f( ) Z ([ e wi ] { a;(X)
program is strictly feasible, then the following KKT comaiits 9f(X 9a: (X da
are necessary and sufficient conditions for optimalitXoAnd = % — Z (2)\iai(X) 5; ) _ 2)\;al (X) %)
A i
1) Feasibility - the variableX is feasible 2 2
2 e = o { )+ 3N (Ilas (%) 12 = Jas(X)| )}. (88)
|CL1(X)‘ > ||al(X)” ’ 7/:17"' 7K7 (80)
and the dual variables are dual feasible > 0 for .
i=1,--,K.
2) Complementary Slackness - for eack 1,--- , K, one APPENDIXII
of the following conditions hold PROPERTIES Off;(A)
Consider the functions:
Ai=0 or |a;(X)] = [a(X)|* (81) )
To Z':17"'7K7 (89)

3) Zero derivative - the derivative of the the Lagrangian of fi(A) = 1+ [HGT (\) HH]M’

(79) with respect taX is zero ) ) . )
In this appendix, we will prove some properties §fA).

_ For simplicity and due to space limitations, we will only tea
{ )+ ZA [Ha’ H ~ lai(X)| }} =0.(82) with real valued variables and functions. The proofs rely on

the following lemma:
Proof. For simplicity, we will only deal with real valued

variables and functions. The extension to complex valuE$oposition 4. 1f A -0, B = 0 andc is in the range ofA,
is straight forward. The KKT conditions are necessary féhen

optimality of any optimization problem [19]. If the program 1 1

) ; - > ) (90)
in (79) was in convex form, then the conditions were also T (A+B) ¢ clAlc

sufficient for optimality. Unfortunately, the program is tno

expressed in convex form and therefore we must prove thith equality if and only ifB (A + B)"c = 0.

sufficiency. Let us begin by rewriting (79) in convex form: p.oo¢ First note that ifc is in the range ofA > 0 then

minx  f(X) 1 min xT Ax
{ s.t. |: Zlgig :| tK O, 7= ]_7 e ’N. (83) Q(A,C) = CTATC = { s.t. CTX -1 (91)
. . Z , i ) As proof, let us derive the Lagrangian of (91):
If (83) is strictly feasible, then the following conic KKT
conditions are necessary and sufficient for optimality {19] L=xTAx+ )\ (ch -1). (92)

1) Feasibility: The primal variabl& is feasible, and the

- - 4 L .
associated dual cones are dual feasible: The Lagrangian is formulated by subtracting the product efdhal cones

with the primal cones. The products are subtracted insteaatidéd (as in

ai(X) w; ) regular convex programming) because the SOC is defined geeatér than

>k 0, k0, i=1,--- K. (84) or equal generalized inequality and not as $s than or equélgeneralized
a;(X) Wi inequality [19].



Equating the derivative with respect oto zero yields
oL

— =2Ax+ Ac=0. (93)
ox
Clearly, the solution to this condition is = CTA—;:;C +y and
A= —ZCT—}MC, wherey is any vector in the null space .

Using (91), we need to prove that

Q(A+B,c) > Q(Ac). (94)

Let us denote the optimal argument 6f(A,c) by x4 and
the optimal argument o (A + B,c) by x445. In order
to prove the inequality, assume the contrary, i.e., thenugdti
value of Q (A + B, c¢) is less than that of (A, ¢). Then, this
is a contradiction to the optimality at 4, becausex s p is

feasible forQ (A, ¢) and results in a smaller objective value.

In order to prove the case of strict inequality, we examine

the case when
Q(A+B,c) = Q(A ).

Due to the optimality of x,, we have x{Ax, <
x% ., pAxaqp. But, due to (95), we havex’Ax, =

(99)

x4, pAxaip + x4 zBxayp. These conditions hold to-

gether if and only ifx£+BBxA+B = 0. Plugging in the
optimal x4, 5 yields ¢” (A +B)'B(A+B)'c = 0. Fi-
nally, due to semidefiniteness &, this is possible only if
B(A+B) c=o0. O

Using Lemma 4 withc = H”'e; (which is in the range of
H%XHTX), we prove the following properties:
o Positivity - if A; >0fori=1,---,K, thenf;(A) >0
forj=1,--- K.
Proof. Observe the following chain:
Y 1
147 HGT (\) HT]
> Yo 1
1% [H (B, Hr,) "HT |

fi(A)

i=1,

1,1

where we have used Lemma 4 with = HT Hr, and

(1]
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where we have used Lemma 4 with = G (\;) and
B = H diag {\; — X/} H. O

Scalability - if a > 1, thenaf;(A) > fi(aA) for j =
1,--- K.
Proof. Observe the following chain:

_ !
afi(A) = a7 + 7 [HGT (\;) HT]
Yo
1+ {H (G (a)\) + (a — DHE, Hry)' HT}

2,1

> Do 1
~ 14, [HGT () HT],
= fi(aA), i=1,--- K, (98)

where we have used Lemma 4 withA =
H”diag {a)\;} H+HL Hrt, andB = (o — 1)HL_Hr,.
The inequality is non strict, i.e., holds with equality if
and only if Hry (A—|—B)THTei = 0. Multiplying by
el Hgycn on the left, yieldse! H (A + B)T HTe; = 0.
Therefore H”e; ¢ N{(A+B)T}, and due to the

symmetry ofA + B, we also havéH’e; € N {A + B}.

In addition, due to the semi definiteness, this means
that H'e; € N {HTdiag{a);}H} and H”e, €

N {HL Hr}. Therefore HY Hr HL HE . e; =0,

and HY HY, ; e; = 0. Consequently, the problem is
infeasible. O
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