
1

Linear precoding via conic optimization for fixed
MIMO receivers

Ami Wiesel, Yonina C. Eldar, and Shlomo Shamai (Shitz)

Abstract— We consider the problem of designing linear pre-
coders for fixed multiple input multiple output (MIMO) receivers.
Two different design criteria are considered. In the first, we
minimize the transmitted power subject to signal-to-interference-
plus-noise-ratio (SINR) constraints. In the second, we maximize
the worst case SINR subject to a power constraint. We show that
both problems can be solved using standard conic optimization
packages. In addition, we develop conditions for the optimal
precoder for both of these problems, and propose two simple
fixed point iterations to find the solutions which satisfy these
conditions. The relation to the well known uplink-downlink
duality in the context of joint transmit beamforming and power
control is also explored. Our precoder design is general, and
as a special case it solves the transmit rank one beamforming
problem. Simulation results in a multiuser system show that the
resulting precoders can significantly outperform existing linear
precoders.

I. INTRODUCTION

Multiple input multiple output (MIMO) systems arise in
many modern communication channels, such as multiple user
communication [3], and multiple antennas channels [4]. It
is well known that the use of multiple antennas promises
substantial capacity gains when compared to traditional single
antenna systems. In order to exploit these gains, the system
must deal with the distortion caused by the channel and the
interference. The conventional way to deal with these distor-
tions is receiver optimization. Recently, the quest for better
performance with lower complexity led researchers to also
optimize the transmitter [5]–[11], and even to jointly optimize
the transmitter and receiver [12]–[18]. This, as well as new
results and algorithms in convex optimization theory [19],have
significantly improved state of the art communication systems.

In this paper, we explore the design of a centralized precoder
given fixed linear MIMO transmitter, channel and receiver (See
Fig. I). We define a precoder as a linear transformation on the
transmitted symbols. If the precoded symbols are sent as is to
the channel, then the precoder is the transmitter itself. How-
ever, in general, the precoded symbols may be transformed
again before the channel. We refer to this transformation asthe
transmitter, and we assume that it is a fixed design parameter.
The output of the transmitter is then sent over a fixed MIMO
channel (or channels), and is received using a fixed linear
receiver (or receivers).
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Fig. 1. Block diagram of a precoder for a fixed MIMO receiver.

There are many applications in which the transmitter and the
receivers are fixed and the designer must resort to precoding.
For example, consider the downlink channel of a multiuser
system. In code division multiplex access (CDMA) systems
the transmitter is constrained to spreading using standardized
signatures which cannot be altered. In addition, the receivers
on the mobile hand sets are usually restricted to simple
low computational complexity algorithms, e.g., matched filters
(MF) which are not necessarily optimal. Another example with
growing interest is when the base station transmits using mul-
tiple antennas to multiple users using single receive antennas.
Each user has access only to its received signal and cannot
cooperate with the other users. Thus, receive processing is
practically impossible and the system must resort to precoding.

One of the first results on optimizing a precoder for a fixed
linear MIMO model is due to [5] in the context of CDMA
systems. Specifically, a precoder that applied a linear transfor-
mation on the transmitted symbols prior to the spreading was
derived. This precoder inverted the channel at the transmitter
side, and is usually referred to as the transmit zero forcing(ZF)
precoder. The main drawback of the transmit ZF precoder is its
degraded performance in low signal-to-noise-ratio (SNR) since
inverting the channel increases the noise power. This motivated
the design of transmit MF precoders [7] and transmit rakes
[20]–[22] which perform better in low SNR. Recently, transmit
minimum mean-squared error1 (MMSE) precoders that tried to
compensate for the performance in the different SNR regions
were derived in [7]–[11].

Other precoders using different kinds of optimization cri-

1The name transmit MMSE is borrowed from the terminology of receiver
design. These receivers do not minimize the mean-squared-error (MSE)
between the received vector and the symbol vector. On the contrary, the
transmit ZF minimizes it [5].
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teria were also derived. Variants of the previous precoders
were discussed in [23]–[28]. Linear precoders based on an
approximate maximum likelihood approach and maximum
asymptotic multiuser efficiency with different power con-
straints were derived in [29]. A linear precoding technique
based on a decomposition approach was proposed in [30], and
a linear precoder design for non linear maximum likelihood
(ML) receivers was discussed in [31]. Among the non linear
precoders are the Tomlinson Harashima MIMO precoder [6]–
[10], [32], the well known “Dirty Paper” precoder [33], and the
vector perturbation precoder [11]. Another non linear precoder
which optimizes the transmitted symbol’s vector itself was
derived in [34].

The problem of precoder design is highly related to other
problems in the literature. In our work, we consider the design
of linear precoders for fixed linear receivers. A related problem
is the problem of jointly optimizing the precoder/transmitter
and the receiver, which has been treated, e.g., in [9], [12]–[18],
[35], [36]. The design of the optimal signatures (which can be
considered as a linear precoding scheme) for matched MMSE
receivers was discussed in [37], [38], whereas signature design
for matched decision feedback receivers was explored in
[39]. One of the interesting properties of these joint designs
is that maximizing the signal-to-interference-plus-noise-ratios
(SINR) is related to minimizing the MSE [16]. Thus, although
different criteria have been explored, most of the researchwas
dedicated to variants of the MMSE criterion.

Another related problem is the joint design of rank one
transmit beamforming design and optimal power control [40]–
[42]. This problem is equivalent to precoding when there
is no transmitter, i.e., the precoder itself is the transmitter.
At first glance it seems that the precoding problem can be
solved by addressing the transmit beamforming problem and
then compensating for the fixed transmitter. Unfortunately,
this is not possible when the transmitter is rank deficient
and cannot be inverted. In this aspect2, our problem is more
general. Unlike the previous references regarding precoding
which usually dealt with the MSE criterion and its variants,
the beamforming community has successfully managed to
optimize SINR based criteria, which are more related to
practical performance measures, such as bit error rate (BER)
and capacity. This problem is mathematically more difficult
than MSE optimization. It was solved using an interesting
duality between downlink and uplink beamforming [43]–[45].
The uplink beamforming problem has been solved before in
[46], [47]. Using the duality, the downlink SINR problem can
be handled as well [41], [48], [49]. Recently, a non linear
Tomlinson Harashima version of these papers was presented
in [50].

In this paper, we integrate the ideas above in the context of
MIMO precoding for fixed receivers. The design of most of
the previous precoders is based on minimizing variants of the
common MSE criterion. This criterion is usually computation-
ally attractive and performs quite well. However, as far as the
applications are concerned, the interesting and relevant criteria

2On the other hand, the above references deal with beamforming for rank
r > 1 and are therefore more general than precoding.

are BER and capacity, which are intimately associated with
maximizing SINR [3]. Unlike joint optimization, optimizing
the precoder to minimize MSE does not necessarily maximize
SINR when the receiver is fixed. Thus, following the transmit
beamforming approach, we focus on SINR based criteria, and,
in particular, try to optimize the worst SINR. We consider
two design strategies. The first maximizes the worst SINR
subject to an average power constraint. The second minimizes
the required average power subject to a constraint on the worst
SINR. We prove that the proposed precoders have the attractive
property of equal performance among all the sub channels.

Our precoder design is based on the powerful framework
of convex optimization theory [19], which allows for efficient
numerical solutions using standard optimization packages[51].
A brief review of such programs and their standard forms is
provided in Section III. We then cast the precoder design prob-
lems as standard conic optimization packages. Specifically, we
show that the power optimization problem can be formulated
as a Second Order Cone Program (SOCP) [52], or a semi
definite program (SDP) [53] (otherwise known as a linear
matrix inequalities (LMI) program). The SINR optimization
can also by formulated as a standard conic program known as
the generalized eigenvalue problem (GEVP) [54].

Next, we derive optimality conditions for both of the
design problems by analyzing the Karush-Kuhn-Tucker (KKT)
conditions for conic programs. We derive a simple expression
for the structure of the optimal precoder as a function of the
dual variables. The conditions can be used to verify whether
a proposed solution is optimal. For example, using these
conditions it is easy to show that the MMSE precoder proposed
in [7]–[9] does not necessarily maximize the worst SINR,
except in the case of a symmetric channel. Another use for
these conditions is as a stopping criteria in previous iterative
optimization algorithms.

Probably the most important use of the optimality conditions
is in deriving new design algorithms. Using the conditions,
we provide a simple fixed point iteration which is guaranteed
to converge to the solution of the power optimization. As a
special case, this simple iteration can solve the well known
rank one beamforming problem. This allows a simple solution
to the problem without the need for special optimization
packages. A similar fixed point iteration is derived for the
SINR optimization problem without a convergence proof. In
comparison to the downlink-uplink duality based solutions,
our simple fixed point iterations are considerably more ap-
pealing. In addition, following [42], we derive an alternative
approach for satisfying the optimality conditions in the power
optimization through a dual SDP/LMI program.

One of the advantages of our proposed algorithms is their
robustness to the rank of the effective channels. Most of the
previous precoders assume a full rank effective channel. For
example, one cannot decorrelate the channel in [5] if the
channel is rank deficient, as is the case when the number
of users is greater than the spreading factor (or the number
of transmit antennas). Our design algorithms, both the conic
solutions and the fixed point iterations, are indifferent tothe
rank of the channel, and are therefore applicable to such
scenarios as well. In addition, following [37], [38] which
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addressed this problem in the context of optimal sequences
design for MMSE receivers, we provide an upper bound for
the maximal feasible SINRs in these cases.

An interesting result of our precoders is their performancein
symmetric systems. In this case, our precoders admits simple
closed form expressions that has already been derived in [7]–
[11] through different considerations and for general channels.
Using our optimality conditions, it is easy to show that these
precoders maximize the worst SINR in symmetric channels. A
realistic example of such systems is a CDMA scheme, using
pseudonoise (PN) sequences as signatures. We analytically
show that the achievable SINRs using these precoders with
MF receivers is identical to those obtained by using MMSE
receivers with no precoders. This result is interesting, asit
allows for each user to use a simple receiver that does not
require neither the knowledge of all the other signatures nor a
matrix inversion. It is important to note that this feature does
not extend to non symmetric channels.

The paper is organized as follows. We begin in Section
II by introducing the problem formulation. A brief review
of conic optimization is provided in Section III. The power
optimization problem is explored in Section IV, in which we
discuss its feasibility, and provide standard conic optimization
solutions. In order to improve our design algorithms and
in order to gain more insight into the problem, we then
provide optimality conditions, and suggest a simple fixed point
iteration for finding the variables that satisfy them. Next,in
Section V we follow the same steps for the SINR optimization
problem. A few special cases for which a closed form solution
exists are explored in Section VI. In Section VII, we illustrate
the use of the aforementioned precoders in the context of
multiple user communication systems.

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column
vectors, and standard lower case letters denote scalars. The
superscripts(·)T , (·)∗, (·)H , (·)−1 and (·)† denote the trans-
pose, the complex conjugate, the Hermitian, the matrix inverse
operators, and the Moore Penrose pseudoinverse, respectively.
[X]i,j denotes the (ith,jth) element of the matrixX. By
diag {xi} we denote a diagonal matrix withxi being the
(ith,ith) element, byvec (X) we denote stacking the elements
of X in one long column vector, byei we denote a zeros vector
with a one at thei’th element, by1 we denote an all ones
vector, and byI we denote the identity matrix of appropriate
size.Tr {·},<{·}, |·|, ‖·‖ and|||·|||∞ denote the trace operator,
the real part, the absolute value, the standard Euclidean norm,
and the induced row sum matrix norm, respectively. Finally,
X � 0 denotes that the matrixX is a Hermitian positive semi
definite matrix, andN {·} denotes the Null space operator.

II. PROBLEM FORMULATION

Consider a general, block oriented, MIMO communication
system with a centralized transmitter. At each time instant, a
block of symbols is modulated and transmitted over a channel.
The possibly distorted output is then processed at the receiver
in a linear fashion, as depicted in Fig. I. Denoting byyi the
length L output of thei’th receiver, for i = 1, · · · ,M , we

have that:



y1

...
yM


=




HRx,1HCh,1

...
HRx,MHCh,M


HTxb +




HRx,1w1

...
HRx,MwM


 , (1)

where the matricesHRx,i andHCh,i denote the receiver and
channel associated with thei’th user, the matrixHTx is the
centralized transmitter,b is the lengthK = M · L vector of
independent, and unit variance transmitted symbols, andwi

are the noise vectors. The noise vectors may be correlated or
even identical to each other, and the channels are completely
arbitrary. The only restriction is that the transmitter is central-
ized and has access to all of theK transmit components.

Three specific examples for which the following problem
formulation holds are given below:

• Point to point multiple antenna system- A single user,
point to point communication system usingL multiple
receive andL transmit antennas is a special case of (1)
with M = 1.

• CDMA system - The downlink channel of a CDMA
system withL users is a special case of (1) withL = 1,
whereHTx is a signature matrix whose columns are the
signatures of each of the users,HCh,i = I andHRx,i are
row vectors representing the linear receive filters of each
of the users..

• Transmit beamforming - A multiuser system in which
L transmit antennas signal toL users each using a single
receive antenna is a special case of (1) withL = 1.
HereHTx is a beamforming matrix whose columns are
the antenna weights of each of theL users,HCh,i are
row vectors which represent the paths from the transmit
antennas to thei’th receive antenna, andHRx,i are
arbitrary scalars.

In the sequel, we will assume that the transmitterHTx,
the channelsHCh,i and the receiversHRx,i are fixed, and
cannot be altered due to budget restrictions, standardization,
or physical problems. Given this fixed structure, we will try
to improve the performance by introducing a linear precoder.
The precoder, denoted byT, linearly transforms the original
symbol vector prior to the transmission, so that the outputsof
the receiver are now given by



y1

...
yM




︸ ︷︷ ︸
y

=




HRx,1HCh,1

...
HRx,MHCh,M




︸ ︷︷ ︸
HRxCh

HTxTb +




HRx,1w1

...
HRx,MwM




︸ ︷︷ ︸
w

. (2)

For ease of representation, we will use the following notation:

y = HTb + w, (3)

where H = HRxChHTx and the rest of the variables are
defined in (2).

Our goal is to improve the system performance by optimally
designing the precoder. The system performance is usually
quantified by its quality of service (QoS) and the resources it
uses. The most common QoS metrics are BER and capacity,
both of which are highly related to the output SINRs, and in



4

particular to the worst SINR. In our model, the output SINR
of the i’th sub channel is defined as:

SINRi =

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2

+ σ2
i

, (4)

for i = 1, · · · ,K whereσ2
i = E{|wi|2} > 0. Another range

of criteria deal with the use of system resources, e.g., peak
to average ratio, or maximal transmitted power. The most
common resource measure is average transmitted power, which
is defined as:

P = E
{
‖ HTxTb ‖2

}
= Tr

{
THHH

TxHTxT
}

. (5)

It is easy to see that the SINR metric and average power metric
conflict. One cannot maximize the SINRs while also minimiz-
ing the power, and vice versa. Depending on the application,
the designer must decide which criteria is stricter. We therefore
consider one of the following two complementary strategies.
The first optimization strategy seeks to minimize the average
transmitted power subject to QoS constraints. This criterion is
interesting from a system level perspective. Given the required
QoS, the system tries to satisfy it with minimum transmitted
power [17], [41]:

P(γo) =





minT Tr
{
THHH

TxHTxT
}

s.t. mini
|[HT]

i,i|2∑
i6=j|[HT]

i,j|2+σ2

i

≥ γo,
(6)

whereγo > 0 is the given worst SINR constraint.
The second strategy is maximizing the minimal SINR sub-

ject to a power constraint [48], [16]. This problem formulation
is interesting when the power constraint is a strict system
restriction which cannot be relaxed. In this case, the problem
can be formulated as

S(Po) =





maxT mini
|[HT]

i,i|2∑
i6=j|[HT]

i,j|2+σ2

i

s.t. Tr
{
THHH

TxHTxT
}
≤ Po,

(7)

wherePo > 0 is the given power constraint.
Note that although we are optimizing the minimum SINR in

both problems, it is easy to see that at the optimal solution of
both problems all users will attain equal SINRs (see also [41]).
In other words, the above design criteria both promise fairness
among all the sub streams. This is an important property
in MIMO communication systems. In systems where some
streams demand different QoS, e.g., systems with voice and
data streams, the designer can replace eachSINRi in the
optimizations withSINRi/ρi whereρi are constant weights
that denote the importance of the sub streams. This will ensure
weighted fairness among the streams.

One of the main observations of our work is that both
optimization problems (6) and (7) can be solved using standard
conic optimization algorithms. Therefore, in the next section
we review these algorithms.

III. REVIEW OF CONIC OPTIMIZATION

In recent years, there has been considerable progress and
development of efficient algorithms for solving a variety of

optimization problems. In order to use these algorithms, one
must reformulate the problem into a standard form which the
algorithms are capable of dealing with. In this section, we
will briefly review the three formulations which we use in the
paper: SOCP, SDP and GEVP programming.

The most widely researched field in optimization is convex
optimization. A convex program is a program with a convex
objective function and convex constraints. It is well known
that in such programs a local minimum is also a global
minimum. Thus, the global minimum can be found by any
“Hill Climbing” or “Gradient Descent” algorithm. The most
common convex program is probably the Linear Program (LP)
[19], i.e., an optimization with a linear objection function
and linear (affine) constraints. Recent advances in convex
optimization generalize the results and algorithms of LPs to
more complicated convex programs. Special attention is given
to conic programs, i.e., LPs with generalized inequalities. The
two standard conic programs are SOCP and SDP optimization.
The standard form of an SOCP is [52]:

SOCP :





minx <{fHx}
s.t.

[
cH

i x + di

AH
i x + bi

]
�K 0, i = 1, · · · , N,

(8)

where the optimization variable is the vectorx of lengthn and
f , Ai, bi, ci anddi for i = 1, · · · , N are the data parameters
of appropriate sizes. The notation�K denotes the following
generalized inequality:

[
z
z

]
�K 0 ⇔ ‖z‖ ≤ z. (9)

The standard form of an SDP is [53]:

SDP :

{
minx <{fHx}
s.t. A(x) � 0,

(10)

whereA(x) = A0 +
∑n

i=1 xiAi is an Hermitian matrix that
depends affinely onx. The data parameters are the Hermitian
matricesAi for i = 0, · · · , n. The notation� denotes the
positive semi definite generalized inequality. A simple case of
an SDP is an SOCP. For example, each of SOC constraints in
(8) can be written as an LMI [19]:

[
cH

i x + di xHAi + bH
i

AH
i x + bi

(
cH

i x + di

)
I

]
� 0. (11)

A common optimization package designed to solve SOCP and
SDP isSEDUMI [51].

Although most of the research in the field of optimization
concerns convex programs, due to their importance, some
cases of non convex problems have also been investigated.
Among them is the GEVP [54], which is not convex but can
still be efficiently solved. Its standard form is

GEVP :





minβ,x β
s.t. βB(x)−A(x) � 0;

B(x) � 0;
C(x) � 0,

(12)

whereβ is a real valued optimization variable andA(x) =
A0 +

∑n
i=1 xiAi, B(x) = B0 +

∑n
i=1 xiBi and C(x) =

C0 +
∑n

i=1 xiCi are Hermitian matrices that depend affinely
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on x. The data parameters are the Hermitian matricesAi,
Bi and Ci for i = 0, · · · , n. The name of the GEVP arises
from its resemblance to the well known problem of minimizing
the maximal generalized eigenvalue of the pencil[A,B], i.e.,
minimizing the largestβ such thatAv = βBv. It is easy to
show that this problem can be expressed as

{
minβ β
s.t. βB−A � 0,

(13)

which is of course a simple SDP. The GEVP generalizes this
program to the case whereA and B also depend on the
optimization variables.

IV. POWER OPTIMIZATION

In this section, we consider the power optimization subject
to SINR constraints, i.e., theP problem of (6). We begin in
Section IV-A by discussing its feasibility, and then provide
a few alternative approaches for its solution. In particular,
in Section IV-B, we derive a solution to the problem which
is based on standard SOCP or SDP optimization packages.
Next, in Section IV-C, we develop optimality conditions for
this problem, and use them to derive two alternative solutions.
For completeness, in Section IV-D, we discuss the uplink-
downlink duality in the context of the power optimization.

A. FEASIBILITY

The first important property of any optimization problem is
its feasibility (admissibility), i.e., whether a solutionexists. In
other words, we need to verify whether for a givenγo there
exists aT such that

min
i

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2

+ σ2
i

≥ γo. (14)

Since we have assumed that the noise variances are positive,
the SINRs are strictly lower than the signal-to-interference-
ratios (SIR):

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2

+ σ2
i

<

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2 , (15)

for i = 1, · · · ,K. By scaling T to aT for large enough
a > 0, the difference between the SIRs and the SINRs can be
made insignificant. Therefore, for the sake of examining the
feasibility, the interesting metrics are the SIRs. A condition
for feasibility is provided in the following proposition.

Proposition 1. There exists aT such that

min
i

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2 ≥ γo (16)

only if

γo ≤
1

K
rank(H) − 1

. (17)

Proof. In order to prove the proposition we must upper bound
the minimal SIR:

min
i

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2 = min

i

1
1
ξi
− 1

=
1

1
mini ξi

− 1
, (18)

whereξi =
|[HT]

i,i|2
[HTTHHH ]

i,i

, and we have used the monotonicity

of f(a) = 1
1

a
−1

in a < 1. Due to monotonicity, we can
boundf(a) by bounding its argument. Thus, we now develop
a bound on the minimumξi. Let HT have a singular value
decomposition (SVD)HT = UΛVH , whereU and V are
semi unitaryK × r matrices,Λ is an r × r diagonal matrix,
andr = rank (HT). Then,

ξi =

∣∣uH
i Λvi

∣∣2

uH
i Λ2ui

, i = 1, · · · ,K, (19)

where ui and vi are the i’th columns of UH and VH ,
respectively. For everyi = 1, · · · ,K, we can bound (19) by
applying the Cauchy-Schwarz inequality to the vectorsΛui

andvi

∣∣uH
i Λvi

∣∣2 ≤
(
vH

i vi

) (
uH

i Λ2ui

)
, i = 1, · · · ,K.(20)

SincevH
i vi =

[
(HT)

†
HT

]

i,i
, we conclude that

ξi ≤
[
(HT)

†
HT

]

i,i
, i = 1, · · · ,K. (21)

Thus, the minimumξi is bounded by

min
i

ξi ≤ 1

K

K∑

i=1

ξi ≤
1

K

K∑

i=1

[
(HT)

†
HT

]

i,i
(22)

=
1

K
Tr

{
(HT)

†
HT

}
=

rank (HT)

K
≤ rank (H)

K
.

Substituting (22) into (18) yields the required condition on
γo.

If the effective channelH is full rank, then the condition
results inγo ≤ ∞, i.e., any SIR is feasible. This is easily
verified as the condition in (14) can be satisfied by choosing
T = aH−1 for large enougha > 0. This choice of precoder
inverts the channel and eliminates all interference.

Unfortunately, when the effective channel is rank deficient,
the interference cannot be eliminated, and there is an upper
bound on the maximal SIRs. Similar conditions were provided
in [37] in the context of optimal signature design using MMSE
receivers (which is a special case of a MIMO system), and in
[17] in the context of joint transmit and receive processing. In
these works it was shown that the condition of Proposition 1 is
necessary and sufficient for feasibility using MMSE receivers.
In our case, the receivers are fixed, and therefore the condition
is only necessary. In general, we cannot always attain the
bound when the receiver is fixed. Two simple examples for
channels in which the bound cannot be achieved are a diagonal
H with K − rank (H) diagonal zeros, or a channelH with
two identical rows. In both of these examples, it is easy to
see that, no matter what the precoder is, we will not attain the
bound.
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Nonetheless, experimenting with arbitrary channels shows
that in almost all practical channels the bound can be achieved
even for a fixed sub optimal receiver. For example, consider
a rank K − 1 channelH, with the normalized null vector
u ∈ N

{
HH

}
. Except for the case in whichui = 0 for some

i = 1, · · · ,K, the bound can always be attained by choosing

T = H†diag {1/u∗
i }Q, (23)

whereQ is a matrix with unit diagonal elements and[Q]i,j =
−1/(K − 1) for the non diagonali 6= j elements. This is
easily shown by considering the following chain:

HT = HH†diag {1/u∗
i }Q = diag {1/u∗

i }Q, (24)

where we have usedHH† = I − uuH and the fact that1 ∈
N {Q}. Substituting the aboveHT into the SIRs yields the
maximal SIRs in rankK − 1 channels:

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2 =

1
K

K−1 − 1
, i = 1, · · · ,K. (25)

B. CONIC OPTIMIZATION SOLUTION

We now show that theP problem of (6) can be represented
as a standard conic optimization program. Thus, using off
the shelf optimization packages, we can numerically verify
its feasibility, and find its optimal solution. In order to use
the standard forms of the conic programs, we must cast our
problem constraints using the standard notations described in
Section III.

Using a real valued slack variablePo, the program can be
rewritten as

P(γo) :





minT,Po
Po

s.t.
|[HT]

i,i|2∑
i6=j|[HT]

i,j|2+σ2

i

≥ γo,

i = 1, · · · ,K;
Tr

{
THHH

TxHTxT
}
≤ Po.

(26)

The argumentT of the P program is defined up to a
diagonal phase scaling on the right, i.e., ifT is optimal,
then Tdiag

{
ejφi

}
, whereφi for i = 1, · · · ,K are arbitrary

phases, is also optimal. This is easy to verify, as the phases
do not change the objective nor the constraints. Therefore,we
can restrict ourselves to precoders in which[HT]i,i ≥ 0 for
i = 1, · · · ,K, i.e., each has a non negative real part, and a zero
imaginary part. Taking this into account, we now recast the
SINR constraints in standard form. Rearranging the constraints
and using matrix notations, the constraints yield
(

1 +
1

γo

) ∣∣∣[HT]i,i

∣∣∣
2

≥
∥∥∥∥

THHHei

σi

∥∥∥∥
2

, i = 1, · · · ,K. (27)

Since [HT]i,i ≥ 0 for i = 1, · · · ,K, we can take the square

root of
∣∣∣[HT]i,i

∣∣∣
2

resulting in

√
1 +

1

γo

[HT]i,i ≥
∥∥∥∥

THHHei

σi

∥∥∥∥ , i = 1, · · · ,K, (28)

which can be written as the SOCs



√
1 + 1

γo
[HT]i,i

THHHei

σi


 �K 0, i = 1, · · · ,K. (29)

Similarly, the power constraint in (26) can be reformulated
using thevec(·) operator as‖vec(HTxT)‖ ≤ √Po, which is
equivalent to the SOC

[ √
Po

vec(HTxT)

]
�K 0. (30)

Using (29) and (30), and denotingp =
√

Po, the program (6)
can be cast in the standard SOCP form [52]:

P(γo) :





minT,p p

s.t.




√
1 + 1

γo
[HT]i,i

THHHei

σi


 �K 0,

i = 1, · · · ,K;[
p

vec(HTxT)

]
�K 0.

(31)

Thus it can be efficiently solved using any standard SOCP
package [51]. Such a solver can also numerically determine
the feasibility of the optimization problem. A similar approach
was taken in [42] in the context of transmit beamforming.

As explained in Section III, each SOC constraint can be
replaced with an SDP constraint using (11). Thus the problem
can also be expressed as a standard SDP:

P(γo) :





minT,p p
s.t. Ai(T) � 0, i = 1, · · · ,K;

C (T) � 0,
(32)

where

Ai(T) =




√
1 + 1

γo
[HT]i,i

[
eH

i HT σi

]
[

THHHei

σi

] √
1 + 1

γo
[HT]i,i I


 , (33)

for i = 1, · · · ,K, and

C (T) =

[
p vecH(HTxT)

vec(HTxT) pI

]
. (34)

However, solving SOCPs via SDP is not very efficient. Interior
point methods that solve SOCP directly have a much better
worst case complexity than their SDP counterparts [52].

It is important to note that the above formulations are
general and do not depend on the rank of the channel. Thus,
these solutions are also appropriate for rank deficient channels.

C. OPTIMALITY CONDITIONS

In this section, we will derive the KKT optimality conditions
for the power optimization. These conditions provide more
insight into the solution. In particular, we derive a simple
structure for the optimal solution based on the Lagrange dual
variables. Given this structure, we propose two alternative
methods for finding the dual variables. In Section IV-C.1, we
derive a simple fixed point iteration which converges to these
variables. The computational complexity of this approach is
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lower than that of the conic solution. Moreover, this solution
does not require any external conic package which is not al-
ways available. Alternatively, in Section IV-C.2, we propose a
dual SDP program, whose optimal arguments are the necessary
variables. The main results are summarized in the following
theorem:

Theorem 1. Consider the power optimization programP(γo)
of (6). Define the dual variablesλi > 0 for i = 1 · · ·K, and
denoteΛ = diag {λi} and G (λi) = HHΛH + HH

TxHTx. If
there existλi > 0 such that

γo =
1

1[
Λ

1

2 HG†(λi)HHΛ
1

2

]

i,i

− 1
, i = 1, · · · ,K, (35)

holds, then the program is strictly feasible. Moreover, if the
condition in (35) holds, then the optimalT is of the form

T = G† (λi)H
HΛ

1

2 diag {δi} , (36)

where δi are the positive weights that allocate the power
between the users:

δi =

√√√√∑

j

[(
γo

1 + γo

I− F

)−1
]

i,j

λjσ2
j ; (37)

[F]i,j =
[
Λ

1

2 HG† (λi)H
HΛ

1

2

]2

i,j
, (38)

for i, j = 1, · · · ,K. This structure ofT is unique within the
range ofHH

Tx. At this optimal solution, all the constraints are
active, i.e., there are equal SINRs for all the subchannels.The
optimal objective value is

Po =
∑

i

λiσ
2
i . (39)

Proof. The proof consists of two parts. First, we show that
if (35) holds then the problem is strictly feasible. Next,
assuming it is strictly feasible, we will use the KKT optimality
conditions to show that the proposed solution is necessary and
sufficient.

We begin by proving that if (35) holds, then the proposed
solution in (36)-(38) is feasible. First, let us prove that this
solution exists, i.e., that the matrix

[
γo

1+γo
I− F

]
in (37) is

invertible and that the argument of the squared root is non
negative. The matrix is invertible because that the maximal

eigenvalue ofF is less than γo

1+γo
:

eigmax(F) ≤ |||F|||∞ (40)

= max
i

∑

j

∣∣∣∣
[
Λ

1

2 HG (λi)
†
HHΛ

1

2

]2

i,j

∣∣∣∣ (41)

= max
i

[
Λ

1

2 HG (λi)
†
HHΛHG (λi)

†
HHΛ

1

2

]

i,i
(42)

= max
i

{[
Λ

1

2 HG (λi)
†
HHΛ

1

2

]

i,i
(43)

−
[
Λ

1

2 HG (λi)
†
HH

TxHTxG (λi)
†
HHΛ

1

2

]

i,i

}

≤ max
i

{[
Λ

1

2 HG (λi)
†
HHΛ

1

2

]

i,i

}
(44)

=
[
HG (λi)H

HΛ
]
i,i

(45)

=
γo

1 + γo

, (46)

where the inequality in (40) stems from the fact that any
induced matrix norm upper bounds the maximal eigenvalue
of the matrix. The equality in (41) is the definition of the row
sum induced matrix norm. The inequality in (44) stems from
neglecting the non positive terms in (44), and the equality in
(45) is due to (35). We still need to prove that the inequality
is strict, but this can be proven as follows. Assume that the
inequality is not strict, i.e., there exists ani such that the
second element in (44) is zero, i.e.,HTxG (λi)

†
HHΛ

1

2 ei =

0, and therefore
[
Λ

1

2 HRxChHTxG (λi)
†
HHΛ

1

2

]

i,i
= 0. But,

sinceγo > 0, this a contradiction to (35), and therefore the
inequality in (44) must be strict.

We now show that the arguments of the squared roots in
(37) are non negative. Using a series expansion for the matrix
inversion yields [55]




δ2
1
...

δ2
K


 =

[
γo

1 + γo

I− F

]−1




λ1σ
2
1

...
λKσ2

K




=
1 + γo

γo

∞∑

j=1

[
γo

1 + γo

F

]j




λ1σ
2
1

...
λKσ2

K


 .(47)

The elements of γo

1+γo
F are nonnegative. Therefore, the ele-

ments of the sum will also be non negative, and we can take the
element wise squared roots and solve forδi for i = 1, · · · ,K.

Thus, we have shown that the solution in (36)-(38) exists.
Plugging this solution into the SINR constraints satisfies all the
constraints with equality. Therefore, the problem is feasible.
Moreover, sinceσ2

i > 0 for i = 1, · · · ,K, we can always
scale the solutionT by c > 1, and satisfy the constraints with
strict inequalities, i.e., the problem is strictly feasible.

In the next part of the proof, we will show that if (35) holds,
then the solution in (36)-(38) is necessary and sufficient for
optimality. The power optimization problem can be written as
follows:

P(γo) :





minT Tr
{
THHH

TxHTxT
}

s.t.

∥∥∥∥
[
THHHei

σi

]∥∥∥∥
2

−
(
1 + 1

γo

)
| [HT]i,i |2

≤ 0, i = 1, · · · ,K.

(48)
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The above program is not written in convex form (in order to
write it in convex form, conic inequalities must be used). In
general, the KKT conditions are not sufficient for optimality
in non convex programs. However, in Appendix I, we show
that in this special case, if the program is strictly feasible, then
its KKT conditions are necessary and sufficient for optimality.
The Lagrangian associated with program (48) is

L = Tr
{
THHH

TxHTxT
}

+
∑

i

λi

[∥∥∥∥
[

THHHei

σi

]∥∥∥∥
2

−
(

1 +
1

γo

) ∣∣∣[HT]i,i

∣∣∣
2
]

(49)

whereλi ≥ 0 are the Lagrange dual variables. As we have
shown in the first part of the proof, if (35) holds, then the
problem is strictly feasible. Therefore, its primal and dual
variables are optimal if and only if the following conditions
are satisfied:

1) Feasibility: The variableT is feasible
(

1 +
1

γo

) ∣∣∣[HT]i,i

∣∣∣
2

≥
∥∥∥∥
[

THHHei

σi

]∥∥∥∥
2

, (50)

for i = 1, · · · ,K, and the dual variables are dual
feasible, i.e.,λi ≥ 0 for i = 1, · · · ,K.

2) Complementary Slackness: For eachi = 1, · · · ,K,
eitherλi = 0 or

(
1 +

1

γo

) ∣∣∣[HT]i,i

∣∣∣
2

=

∥∥∥∥
[

THHHei

σi

]∥∥∥∥
2

. (51)

3) Zero derivative: The derivative ofL with respect toT
is zero, resulting in

G (λi)T−HHΛ
1

2 diag

{(
1 +

1

γo

)[
Λ

1

2 HT
]

i,i

}
= 0. (52)

At the optimal solution all the constraints are active, i.e.,
(51) holds with equality fori = 1, · · · ,K. As proof, note that
if one constraint does not hold with an equality, then we can
always scale the row inT associated with it, and arrive with a
feasible solution that results in a lower objective value, which
is a contradiction.

Another important property of the optimal solution, is that
all the dual variables are strictly positive. As proof, assume
the contrary, i.e., there exists ani such thatλi = 0. Then,
multiplying (52) by TH on the left and examining thei’th
diagonal element, we haveeH

i THG (λi)Tei = 0, which
holds if and only if Λ

1

2 HTei = 0 and HTxTei = 0, in
which case thei’th SINR is clearly zero. But, sinceγo > 0,
this contradicts the SINR constraints.

In general, theT that satisfies (52) is not unique. Nonethe-
less, expressingT as T = T‖ + T⊥ where T‖ = PT,
T⊥ = (I−P)T, andP = H

†
TxHTx, we can findT‖ which

is unique within the range ofHH
Tx. Using HT = HT‖, we

arrive with the following necessary and sufficient conditions:

T‖ = G† (λi)H
HΛ

1

2 diag {δi} ; (53)

(
1 +

1

γo

) ∣∣∣
[
HT‖

]
i,i

∣∣∣
2

=

∥∥∥∥
[

TH
‖ HHei

σi

]∥∥∥∥
2

, (54)

where δi =
(
1 + 1

γo

) [
Λ

1

2 HT‖

]

i,i
for i = 1, · · · ,K. As

already explained, if (35) holds then the solution in (36)-
(38) satisfies (54). In addition, it has the structure of (53)and
is therefore sufficient. Moreover, it is easy to show that this
structure is also necessary (within the range ofHH

Tx). Plugging
T‖ from (53) into (54) yields

(
1 +

1

γo

)
1

λi

[F]i,i δ2
i =

∑

j

1

λi

[F]i,j δ2
j + σ2

i , (55)

for i = 1, · · ·K, where F is the matrix defined by (38).
Rewriting in matrix form, we have

[
γo

1 + γo

I− F

]



δ2
1
...

δ2
K


 =




λ1σ
2
1

...
λKσ2

K


 . (56)

Since [HT]i,i ≥ 0 for i = 1, · · · ,K, the unique solution to
this set of equations in given by (37)-(38). Finally, the optimal
objective value in (39) can be easily found using (5) and (52).

For completeness, it should be noted that when the problem
is solvable there always existλi for i = 1, · · · ,K such that
(35) holds. This can be shown since if we left multiply both
sides of (53) byH and examine the diagonal elements, then
(35) is a direct consequence of (53) (which is a necessary
condition for optimality).

Theorem 1 provides a simple strategy for designing the
precoder. Given a feasibleγo, all one has to do is find
λi > 0 which satisfy (35). Once these are found,T can be
derived through (36)-(38). As we will show in Section VI, in
some special cases, these variables can be derived in closed
form. Otherwise, we now propose two alternative methods for
finding these variables. In Section IV-C.1, we present a simple
fixed point iteration, and in Section IV-C.2 we propose an SDP
dual program.

1) FIXED POINT ITERATION FOR FINDINGλi: The
structure of (35) motivates a fixed point iteration for finding
λi. By rearranging (35), we arrive at the following simple
iteration:

λ
(n+1)
i =

γo

1 + γo

1[
HG†

(
λ

(n)
i

)
HH

]

i,i

, i = 1, · · ·K. (57)

Clearly, the optimalλi satisfy this fixed point. As we now
show, if P(γo) is feasible, then the above iteration will
converge from anyλ(0)

i to a setλ(n)
i > 0 that satisfies (35).

The convergence proof is based on thestandard function
approach introduced in [56], which can be summarized as
follows. Consider the fixed point iteration

λ
(n+1)
i = fi(Λ

(n)), i = 1, · · ·K, (58)

whereΛ(n) = diag
{
λ(n)

}
. If the functionsfi(Λ) obey the

following properties:

• Positivity fi(Λ) > 0 for all i;
• Monotonicity If λi ≥ λ′

i for all i, thenfi(Λ) ≥ fi(Λ
′)

for all i;
• Scalability If α > 1, thenαfi(Λ) > fi(αΛ) for all i,
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Fig. 2. Block diagram of a downlink (broadcast) system. The matrices∆m

for m = 1, · · · , M , are diagonal matrices with theδis associated withbm.

then the iteration has a fixed point, it is unique, and for
any initial Λ(0) the iteration will converge to it. In Ap-
pendix II, we show that if the problem is feasible and[
H

(
HH

TxHTx

)†
HH

]

i,i
< ∞ for i = 1, · · · ,K, then the

functions in (57) satisfy these properties, and the iteration will
converge.

2) DUAL PROGRAM FOR FINDINGλi: Alternatively, the
dual variables can be found through a dual program. The
dual program is a concave program that optimizes the dual
variables. Due to space limitations, the details of its derivation
are omitted but can be found in [57]. The resulting program
is:

PD(γo) :





maxλi≥0

∑
i λiσ

2
i

s.t. γo

1+γo
G (λi)− λiH

Heie
H
i H � 0,

i = 1, · · · ,K.

(59)

This is a simple SDP/LMI program, which can be efficiently
solved by any standard SDP/LMI optimization package. More-
over, it has onlyK optimization variables, in comparison
to K2 optimization variables in the original program, and
therefore has a lower computational complexity. A similar
result was obtained in [42] in the context of beamforming.

D. INTERPRETATION VIA UPLINK-DOWNLINK DUALITY

In this section, we provide an alternative solution for the
power optimization problem based on the well known uplink-
downlink duality [43], [44]. As explained in the previous
sections, the problem can be solved efficiently without the
use of duality. However, previous attempts for solving the
downlink beamforming problem, which is a special case of
precoding (whereHTx = I), are based on this approach.
Therefore, for completeness, we now review this method and
generalize it to the case of precoding, i.e., arbitraryHTx.
Moreover, the duality is interesting from an engineering point
of view, as it provides an interesting physical interpretation of
the solution.

Recently, an interesting duality was found between down-
link beamforming and another problem called uplink beam-
forming. It is usually referred to as downlink (broadcast) -
uplink (multiple access) duality, since one problem typically

bM
- ΛM

-HH
Rx,M

-HH
Ch,M

b2
- Λ2

-HH
Rx,2

-HH
Ch,2

- -

w
6
- HH

Tx
- W - y2

b1
- Λ1

-HH
Rx,1

-HH
Ch,1

6

?

- y1

- yM

...
...

Fig. 3. Block diagram of a uplink (multiple access) system. Thematrices
Λm for m = 1, · · · , M , are diagonal matrices with theλis associated with
bm. The vectorw is the virtual uplink noise vector.

arises in the broadcast channel of a downlink system, and
the other arises in the multiple access channel of an uplink
system. Fortunately, the uplink beamforming problem is easier
to solve. Using the duality, the downlink solution can be
derived through the uplink solution. For simplicity, in the
sequel, we restrict ourselves to full rank channels (as did all
the works in this context). Mathematically, the duality canbe
stated as follows:

Theorem 2. Consider the followinguplink program:

P(γo)=





minλi>0,W

∑
i σ2

i λi

s.t.
λi

∣∣∣[WHH ]
i,i

∣∣∣
2

∑
j 6=i

λj|[WHH ]
i,j|2+[WHH

Tx
HTxWH ]

i,i

≥ γo,

i = 1, · · · ,K.

(60)

ProgramP(γo) is the dual of the programP(γo) of (6) in the
sense that if the optimal arguments and objective value ofP

are W, λi, and Po, then the optimal objective value ofP is
also Po, and its optimal argument isT = WHΛ

1

2 diag {δi},
whereδi are defined in Theorem 1.

Proof. It is easy to see that each constraint inP deals with
one row ofW and that the objective is not a function ofW at
all. Therefore, it is clear that each row ofW will be chosen to
maximize the SINR associated with it. Thus, for fixedλi, the
optimal receiverW is the well known scaled MMSE matrix
[3]:

W = HG−1 (λi) , (61)

which is unique up to a diagonal matrix multiplication on
the left. In addition, similarly to the downlink problem, all
the constraints of the uplink problem are active (otherwise,
one can always decrease theλi associated with the passive
constraint and decrease the objective). Thus, at the optimum:

λi

∣∣∣
[
WHH

]
i,i

∣∣∣
2

∑
j 6=i λj

∣∣∣[WHH ]i,j

∣∣∣
2

+
[
WHH

TxHTxWH
]
i,i

= γo, (62)

for i = 1, · · · ,K. Plugging in the optimalW and simplifying
the terms results in

λi

[
HG−1 (λi)H

H
]
i,i

=
γo

1 + γo

, i = 1, · · · ,K. (63)
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Thus, the optimalλi’s of P satisfy (35). Due to (61), the
precoderT = WHΛ

1

2 diag {δi} satisfies also (36). Therefore,
according to Theorem 1, this precoder is optimal forP .

This uplink-downlink duality was developed in [43] for
the special case ofHTx = I. In Theorem 2 we generalize
this result to arbitraryHTx. The importance of this theorem
is in its interesting interpretation of the optimal solution. It
provides a physical interpretation to the positive dual variables
λi > 0 as the virtual normalized power allocation. In order to
visualize this duality, we provide block diagrams of the two
dual systems in Figs. 2 and 3.

Moreover, previous attempts for solving theP problem are
based on this duality [41], [46]. As we have shown in the
previous section, the problem can be solved without the duality
using the optimality conditions. However, for completeness,
we now present the duality based approach as well. This
approach confronts theP problem by addressing theP
problem first and then adjusting the solution based on Theorem
2. Fortunately, there is an intuitive iterative solution toprogram
P . The problem can be solved by iteratively solving for each
of the parameters, while keeping the others fixed (see [57] for
more details):

P(γo)
1 repeat
2 W← HG−1 (λi)

3
λi ← γo

∑
j 6=i

λj

∣∣∣[WHHH ]
i,j

∣∣∣
2

+‖HTxW
Hei‖2

|[WHHH ]
i,i|2

i = 1, · · · ,K.

4 until convergence

Line 2 optimizes the receive matrixW to maximize the SINRs
for fixed λi. Line 3 optimizes the power allocation weightsλi

for fixedW [56]. In [41] it was shown that the above algorithm
always converges to the optimal solution. It is similar to our
simple fixed point iteration in (57), except for the fact thatin
the above algorithmwi and λi are independently optimized
at each iteration, whereas in (57) both are optimized together.
Thus, our simple fixed point iteration is more appealing.

V. SINR OPTIMIZATION

We now consider the problem of maximizing the worst
SINR subject to a power constraint, i.e., theS program of (7).
As before, we begin by examining its feasibility. Fortunately,
it is easy to verify that theS program is always feasible, as
we can always scaleT so that it satisfies the power constraint.
In Section V-A, we discuss the connection between the power
optimization and the SIR optimization and explain how this
connection can be used to solve the SIR optimization. Then,
we follow the steps we took before in the context of the power
optimization, and repeat them in the context of the SINR
optimization. In Section V-B, we formulate the SIR problem as
a standard GEVP conic program, in Section V-C we provide a
fixed point iteration, and in Section V-D we discuss its uplink-
downlink duality.

A. CONNECTION WITH POWER OPTIMIZATION

The most interesting property of the SINR optimization
program is its relation to the power optimization program. In
order to mathematically define this relation, we introduce the
following theorem:

Theorem 3. The power optimization problem of (6) and the
SINR optimization problem of (7) are inverse problems:

γo = S(P(γo)); (64)

Po = P(S(Po)). (65)

In addition, the optimal objective value of each program
is continuous, and strictly monotonic increasing in its input
argument:

γo > γ̃o ⇒ P(γo) > P(γ̃o); (66)

Po > P̃o ⇒ S(Po) > S(P̃o). (67)

Proof. We begin by proving (64) by contradiction. Assume the
contrary, i.e.P andT are the optimal value and argument of
P(γ), andγ̃ 6= γ andT̃ are the optimal value and argument of
S(P ). If γ̃ < γ, then this is a contradiction for the optimality
of T̃ for S(P ), since T is feasible for it, and provides a
larger objective valueγ. Otherwise, ifγ̃ > γ, then this is a
contradiction for the optimality ofT for P(γ), sinceγ̃ > γ,
and we can always findc < 1 such thatcT̃ will still be
feasible, but will result in a smaller objective.

Next, we prove (66) by contradiction. Assume the contrary,
i.e., P and T are optimal forγ, and P̃ ≥ P and T̃ are
optimal for γ̃ < γ. We can always multiplyT by c < 1
so that it will still achieve the SINRs constraints ofγ̃, with
an effective power constraintc2P < P ≤ P̃ . This contradicts
the assumption that̃T was optimal forγ̃. The continuity can
be verified using similar arguments to those in Lemma 2 of
[58]. The proofs of (65) and (67) are similar and are therefore
omitted.

Using the properties in Theorem 3, we can solveS(Po)
for a givenPo by iteratively solvingP(γo) for different γo’s.
Due to the inversion property, ifPo = P(γo), then its solution
will be optimal also forS(Po). The strict monotonicity and
continuity guarantees that a simple one dimensional bisection
search will efficiently find the requiredγo. This procedure is
summarized in the following algorithm (see also [47]):

S(Po)
1 γmax ← MaxSINR
2 γmin ← MinSINR
3 repeat
4 γo ← (γmin + γmax) /2

5 P̂o ← P(γo)

6 if P̂o ≤ Po

7 then γmin ← γo

8 else γmax ← γo

9 until P̂o = Po

10 return γo

where MinSINR and MaxSINR define a range of relevant
SINRs for a specific application, and where we have used
the convention that∞ = P(γo) if it is infeasible.
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Theoretically, this means that the SINR optimization prob-
lem can be solved through the previous results concerning the
power optimization. Nonetheless, due to its importance and
in order to obtain more efficient numerical solution, we now
provide direct solutions for the SINR optimization through
conic optimization, via the optimality conditions, and through
the uplink-downlink duality.

B. CONIC OPTIMIZATION SOLUTION

The SINR optimization can be cast as a standard GEVP
program. Using a real valued slack variableγo, the problem
can be rewritten as

S(Po) :





maxT,γo
γo

s.t.
|[HT]

i,i|2∑
i6=j|[HT]

i,j|2+σ2

i

≥ γo,

i = 1, · · · ,K;
Tr

{
THHH

TxHTxT
}
≤ Po.

(68)

At first glance, (68) seems similar to (26). However, it turns
out to be considerably more complicated. This is because the
SINR matrix inequalities in (33) are linear inβ =

√
1 + 1

γo

or in T, but not in both simultaneously. Thus, whenβ is an
optimization variable and not a parameter, these constraints
are no longer LMIs. In fact, the sets which they define are
not convex3. Nonetheless, we can still express them using
generalized matrix inequalities as in (32) and (33). If we
rewrite theAi(T)’s in (33) and separate out the terms which
are linear, we have

Ai (T) = βA1
i (T)−A2

i (T) , (69)

whereA1
i (T) and A2

i (T) are matrices that depend affinely
on T:

A1
i (T) =

[
[HT]i,i 0

0 [HT]i,i I

]
; (70)

A2
i (T) =




0 −
[

eH
i HT σi

]

−
[

THHHei

σi

]
0


 .

Using (69) we can expressS in the standard GEVP form:

S(Po) :





minT,β β
s.t. βA1

i (T) � A2
i (T), i = 1, · · · ,K;

A1
i (T) � 0, i = 1, · · · ,K;

C(T) � 0,

(71)

which can be solved using appropriate software, e.g., the
GEVP command in the LMI toolbox [59].

C. A FIXED POINT ITERATION FOR FINDINGλi

The SINR optimization problem can also be solved using
the conditions in Theorem 1. As explained in Theorem 3,S

and P are inverse problems. Thus, the optimal solution of
the SINR optimization is also optimal for an inverse power
optimization problem, and therefore must satisfy its optimality
conditions as well. Thus, to optimize the SINRs we need to
find λi > 0 that satisfy (35) and (39). Unfortunately, in this

3The exact definition of such sets is quasi convex [19].

case,γo is an optimization variable and not a parameter and
has to be found as well. This can be overcome by adjusting
the fixed point iteration in (57):

λ̃i =
1[

HG†
(
λ

(n)
i

)
HH

]

i,i

, i = 1, · · · ,K, (72)

and then normalizing the result so that it will satisfy (39):

λ
(n+1)
i =

Poλ̃i∑
j σ2

j λ̃j

, i = 1, · · ·K. (73)

If this iteration converges to a fixed pointλ(n)
i > 0 then it

will satisfy (35) and (39). Numerous numerical simulations
with arbitrary initial points and parameters show a rapid
convergence rate.

D. INTERPRETATION VIA UPLINK-DOWNLINK DUALITY

Following the success of the uplink-downlink duality in the
power optimization, the duality was recently used to confront
the SINR optimization [48], [49]. The uplink-downlink duality
in the case of the SINR optimization can be stated as follows:

Theorem 4. Consider the followinguplink program:

S(Po)=





maxW,λi≥0,γo
γo

s.t.
λi

∣∣∣[WHH ]
i,i

∣∣∣
2

∑
j 6=i

λj|[WHH ]
i,j|2+[WHH

Tx
HTxWH ]

i,i

≥ γo,

i = 1, · · · ,K;∑
i σ2

i λi ≤ Po.

(74)

Program S(Po) is the dual of the programS(Po) of (7) in
the sense that if the optimal arguments and objective value of
S are W, λi, andγo, then the optimal objective value ofS is
also γo, and its optimal argument isT = WHΛ

1

2 diag {δi},
whereδi are non negative weights.

Proof. The proof is similar to the other proofs in this paper,
and therefore we only provide a sketch of it. As before, the
problemsP and S are inverse problems. But in Theorem 2
we have shown thatP and P are equivalent. Therefore,S
andS must be equivalent too. A more detailed proof on this
duality in the case ofHTx = I can be found in [49].

The downlink beamforming SINR optimization problem
was solved using duality in [48], [49]. The algorithm iter-
atively optimizes each of the optimization variables while
keeping the others fixed (see [57] for more details):

S(Po)
1 repeat
2 W← HG−1 (λi)

3

[
λ

1

]
← eigmax







Q q
1

Po
vT Q 1

Po
vT q







4 until convergence

where Q is a K × K matrix with elements[Q]i,j =∣∣∣
[
WHH

]
i,j

∣∣∣
2

/
∣∣∣
[
WHH

]
i,i

∣∣∣
2

, q is a lengthK vector with
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elementsqi =
∥∥HTxW

Hei

∥∥2
/
∣∣∣
[
WHH

]
i,i

∣∣∣
2

, and v is a

lengthK vector with elementsσ2
i . Line 2 optimizes the matrix

W for fixed λi. Line 3 optimizes the weighsλi for fixed W

based on [60]. Clearly, this solution is much less appealing
than the fixed point iteration in (72)-(73).

VI. SPECIAL CASES

In this section, we examine a few interesting cases in which
the problemsP andS have simple closed form solutions.

A. DIAGONAL CASE

The first case is when the matricesH andHTx are diagonal.
In this case, it is trivial to satisfy the optimality conditions in
Theorem 1. The resulting precoders are diagonal and can be
considered as simple power allocation strategies.

B. SYMMETRIC CASE

The second case is when the matricesH and HTx have
equal diagonal elements and equal off diagonal elements, and
the variances are equalσ2

i = σ2. Due to the symmetry it is
clear that choosingλi = Po/(Kσ2) will satisfy the conditions
in Theorem 1. Therefore, the solution for the SIR optimization
problem is:

γo =
1

1[
H

(
HHH+ Kσ2

Po
HH

Tx
HTx

)−1

HH

]

i,i

− 1
; (75)

T = c

[
HHH +

Kσ2

Po

HH
TxHTx

]†

HH , (76)

where c is a constant that scales the matrix to satisfy the
power constraint. This particular precoder has been previously
derived in [7]–[11] through scaled MMSE considerations.
However, it is easy to verify that in general, i.e., in nonsym-
metric channels, it does not necessarily satisfy the conditions
in Theorem 1, and is therefore suboptimal in this sense. For
example, if the channels are symmetric but the noise variances
are not equal, then, in order to ensure equal SINRs among all
the streams, the precoder in (76) must be diagonally scaled
using (37).

VII. APPLICATIONS IN MULTIUSER SYSTEMS

In this section, we present possible applications of the
proposed precoders to multiuser systems. Consider a multiuser
precoded downlink system. At each symbol’s period the base
station transmits using anN ×K non orthogonal signatures
matrix HTx = S. The maximal average transmitted power is
Po = K, and the cross correlations between the signatures
are denoted byρi,j =

[
SHS

]
i,j

with ρi,i = 1 for all i. For
simplicity, we assume ideal channels, i.e.,HCh,i = I, and
equal noise variances, i.e.,σ2

i = σ2. Denoting byy the output
vector of the multiple user receiver, we have that

y = HRxSTb + HRxw, (77)

whereHRx is one of the standard filters:

• MF receiver:HRx = SH .
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Fig. 4. SINR of a symmetric system with equal cross correlations. Due to
the symmetry, all users have equal output SINRs.

• ZF receiver:HRx =
(
SHS

)−1
SH .

• MMSE receiver:HRx = SH
(
SSH + σ2I

)−1
.

We now discuss the performance of these systems with and
without precoding.

A. EQUAL POWER AND EQUAL CROSS CORRELATIONS

The first interesting result of our precoder is its performance
in an equal power and equal cross correlations multiuser
system, i.e.ρi,j = ρ for all i 6= j andσ2

i = σ2. As explained
in Section VI-B, our precoder and its SINRs have closed forms
in this case.

Proposition 2. Consider the multiuser system in (77). IfSHS

is invertible andρi,j = ρ for all i 6= j, then the output SINRs
using theS precoder along with an MF receiver are identical
to those resulting by using an MMSE receiver without any
precoder, and are equal to

γo =
1[(

I + 1
σ2 SHS

)−1
]

i,i

− 1. (78)

Proof. The SINRs in (78) are obtained by applying the matrix
inversion lemma on (75). In [3], it is shown that the output
SINRs using MMSE receivers are also equivalent to (78).

Proposition 2 is interesting as it allows for each user to attain
the MMSE performance without the use of an MMSE receiver
which requires the knowledge of all the other signatures and
a matrix inversion. Moreover, when theS precoder is used
with ZF or MMSE receivers the performance improves even
more. In Fig. 4 we plot the output SINRs given by (75) for the
three linear receivers. For comparison, we also plot the output
SINRs that result from similar systems without a precoder [3].
As expected, using the precoder always improves the output
SINR.

B. NON SYMMETRIC CHANNEL

As a second example, we consider an equal power system
with unequal cross correlations between the users signatures.
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Fig. 5. SINR of a non symmetric 3 users system with cross correlations
ρ12 = 0.8, ρ13 = 0.9, ρ23 = 0.7.

In such systems, there is no closed form expression for the
performance. Therefore, we resort to Monte Carlo simulations.
Following [5], we consider cross correlationsρ12 = 0.8, ρ13 =
0.9, andρ23 = 0.7, where each user uses an MF receiver. For
comparison, we provide results of the decorrelator precoder
[5], and our SIR precoder of (7). Due to the asymmetry, each
of the three users performs differently when using the previous
precoders. On the other hand, our precoder has the attractive
property of equal BERs for all the users. Naturally, the
performance of the best user degrades compared to previous
methods. In Fig. 5, we provide the BERs using each of the
precoders. It is easy to see that the our precoder outperforms
that of [5].

C. RANK DEFICIENT CHANNELS

One of the main advantages of our precoder is its per-
formance in rank deficient systems. We now illustrate this
property in a multiuser system withK = 4 users and length
N = 3 sequences. The transmitter uses the optimal sequences
of [37], and the receiver uses conventional matched filters.
However, we use a distorting channel for the first user, i.e.,
HCh,1 is a toeplitz matrix with the first row[1.0, 0.8, 0.0].
Due to this channel the sequences are no longer optimal and a
precoder should be used. The common decorrelating precoder
of [5] cannot be derived in this case asN < K. Therefore,
we compare our results to the precoder of [7]. The worst
output SINRs with and without the precoders are presented
in Fig. 6. Using ourS precoder significantly increases the
SINR compared to a system with no precoder. Using the
precoder, the SINRs asymptotically converge to the bound in
(17), i.e. γi = 1

4

3
−1

= 3 for i = 1, · · · , 4. Interestingly, the
performance using the precoder of [7] is even worse than not
using a precoder at all. For fairness, we must note that the
SINR of the best user using this precoder are much higher.
But from a system’s prespective, the interesting metric is the
performance of the worst user and in this sense our precoder
is more appealing.
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Fig. 6. Worst output SINR in a system withK = 4 andN = 3.

VIII. CONCLUSIONS

In this paper, we addressed the problem of designing linear
precoders for fixed MIMO receivers. We considered two com-
plementary design criteria, and proposed several alternative
algorithmic solutions for these optimization problems.

It is first observed that in precoder design, maximizing the
worst SINR is advantageous to minimizing MSE. Most of the
previous work regarding precoders is based on optimizing vari-
ants of the MMSE criterion. These ad hoc criteria are usually
computationally attractive and perform quite well. However,
the ever increasing demand for better performance, as well
as the considerable progress in optimization theory, suggests
that upcoming research should focus on design criteria which
are more related to practical performance measures, such as
maximizing the worst SINR.

Our second important observation is that by using conic
optimization theory and algorithms, the precoder design prob-
lems can be solved in a straight forward manner without
using uplink-downlink duality. This duality is remarkable, and
has enabled solutions to problems which were unsolvable
before. Nonetheless, we believe that understanding the pre-
coder design using first principles, and not as a byproduct
of the uplink problem, is also important. For example, in
future work, the simple optimality conditions may help in
analyzing the performance of these systems, or in improving
the design criteria, without the need to resort to the virtual
uplink problem.

There are many interesting extensions to this work which
are worth pursuing. The first concerns the extension of our
results to the case of partial CSI. In many practical systems,
the transmitter does not have access to perfect CSI, and needs
to resort to noisy channel estimates, and/or delayed feedback.
In this case, robust optimization algorithms should be applied
as in [61]. Another possible direction is to consider fixed non
linear receivers, such as the successive cancelling receiver. It is
well known that such receivers outperform the linear receivers
explored in our paper. Therefore, by designing the precoder
to optimally work with such receivers, the performance can
significantly improve.
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APPENDIX I
OPTIMALITY CONDITIONS FOR PROGRAMS WITH

SOC CONSTRAINTS

In this appendix, we derive optimality conditions for opti-
mization programs with SOC constraints. The conditions are
summarized in the following lemma.

Proposition 3. Consider a non convex program of the struc-
ture
{

minX f (X)

s.t. ‖ai(X)‖2 − |ai(X)|2 ≤ 0, i = 1, · · · , N.
(79)

where f(X) is convex inX, and ai(X) and ai(X) for
= 1, · · · ,K, are affine functions ofX. Let us associate the
dual variablesλi for i = 1, · · · ,K with this program. If the
program is strictly feasible, then the following KKT conditions
are necessary and sufficient conditions for optimality ofX and
λi:

1) Feasibility - the variableX is feasible

|ai(X)|2 ≥ ‖ai(X)‖2, i = 1, · · · ,K, (80)

and the dual variables are dual feasibleλi ≥ 0 for
i = 1, · · · ,K.

2) Complementary Slackness - for eachi = 1, · · · ,K, one
of the following conditions hold

λi = 0 or |ai(X)|2 = ‖ai(X)‖2. (81)

3) Zero derivative - the derivative of the the Lagrangian of
(79) with respect toX is zero

∂

∂X

{
f(X) +

∑

i

λi

[
‖ai (X)‖2 − |ai(X)|2

]}
= 0. (82)

Proof. For simplicity, we will only deal with real valued
variables and functions. The extension to complex values
is straight forward. The KKT conditions are necessary for
optimality of any optimization problem [19]. If the program
in (79) was in convex form, then the conditions were also
sufficient for optimality. Unfortunately, the program is not
expressed in convex form and therefore we must prove the
sufficiency. Let us begin by rewriting (79) in convex form:





minX f (X)

s.t.

[
ai(X)
ai(X)

]
�K 0, i = 1, · · · , N.

(83)

If (83) is strictly feasible, then the following conic KKT
conditions are necessary and sufficient for optimality [19]:

1) Feasibility: The primal variableX is feasible, and the
associated dual cones are dual feasible:
[

ai(X)
ai(X)

]
�K 0,

[
wi

wi

]
�K 0, i = 1, · · · ,K. (84)

2) Complementary Slackness:

[
wi wT

i

] [
ai(X)
ai(X)

]
= 0, i = 1, · · · ,K. (85)

3) Zero derivative: The derivative of the Lagrangian4 of
(83) with respect toX is zero

∂

∂X

{
f(X)−

∑

i

([
wi wT

i

] [
ai(X)
ai(X)

])}
= 0. (86)

We now show that the conditions in (80)-(82) are sufficient
for satisfying the conditions in (84)-(86). Let us choose:

[
wi

wi

]
= 2λi

[
ai(X)
−ai(X)

]
, i = 1, · · · ,K. (87)

Plugging the dual variables from (87) into the conic KKT
conditions reveals that conditions (84)-(85) hold due to (80)-
(81). Similarly, using (87), the conditions in (82) and (86)are
identical:

∂

∂X

{
f(X)−

∑

i

([
wi wT

i

] [
ai(X)
ai(X)

])}

=
∂f(X)

∂X
−

∑

i

(
2λiai(X)

∂ai(X)

∂X
− 2λia

T
i (X)

∂ai (X)

∂X

)

=
∂

∂X

{
f(X) +

∑

i

λi

(
‖ai (X) ‖2 − |ai(X)|2

)}
. (88)

APPENDIX II
PROPERTIES OFfi(Λ)

Consider the functions:

fi (Λ) =
γo

1 + γo

1

[HG† (λi)HH ]i,i
, i = 1, · · · ,K, (89)

In this appendix, we will prove some properties offi(Λ).
For simplicity and due to space limitations, we will only deal
with real valued variables and functions. The proofs rely on
the following lemma:

Proposition 4. If A � 0, B � 0 and c is in the range ofA,
then

1

cT (A + B)
†
c
≥ 1

cT A†c
, (90)

with equality if and only ifB (A + B)
†
c = 0.

Proof. First note that ifc is in the range ofA � 0 then

Q (A, c) =
1

cT A†c
=

{
minx xT Ax

s.t. cT x = 1
. (91)

As proof, let us derive the Lagrangian of (91):

L = xT Ax + λ
(
cT x− 1

)
. (92)

4The Lagrangian is formulated by subtracting the product of the dual cones
with the primal cones. The products are subtracted instead ofadded (as in
regular convex programming) because the SOC is defined as a “greater than
or equal” generalized inequality and not as a “less than or equal” generalized
inequality [19].
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Equating the derivative with respect tox to zero yields

∂L
∂x

= 2Ax + λc = 0. (93)

Clearly, the solution to this condition isx = A†c
cT A†c

+ y and
λ = −2 1

cT A†c
, wherey is any vector in the null space ofA.

Using (91), we need to prove that

Q (A + B, c) ≥ Q (A, c) . (94)

Let us denote the optimal argument ofQ (A, c) by xA and
the optimal argument ofQ (A + B, c) by xA+B . In order
to prove the inequality, assume the contrary, i.e., the optimal
value ofQ (A + B, c) is less than that ofQ (A, c). Then, this
is a contradiction to the optimality ofxA, becausexA+B is
feasible forQ (A, c) and results in a smaller objective value.

In order to prove the case of strict inequality, we examine
the case when

Q (A + B, c) = Q (A, c) . (95)

Due to the optimality of xA, we have xT
AAxA ≤

xT
A+BAxA+B . But, due to (95), we havexT

AAxA =
xT

A+BAxA+B + xT
A+BBxA+B. These conditions hold to-

gether if and only ifxT
A+BBxA+B = 0. Plugging in the

optimal xA+B yields cT (A + B)
†
B (A + B)

†
c = 0. Fi-

nally, due to semidefiniteness ofB, this is possible only if
B (A + B)

†
c = 0.

Using Lemma 4 withc = HT ei (which is in the range of
HT

TxHTx), we prove the following properties:

• Positivity - if λi ≥ 0 for i = 1, · · · ,K, thenfj(Λ) > 0
for j = 1, · · · ,K.

Proof. Observe the following chain:

fi(Λ) =
γo

1 + γo

1

[HG† (λi)HT ]i,i
(96)

≥ γo

1 + γo

1[
H

(
HT

TxHTx

)†
HT

]

i,i

, i = 1, · · · ,K,

where we have used Lemma 4 withA = HT
TxHTx and

B = HT ΛH. Due to the semi definiteness, the diag-
onal elements ofH

(
HT

TxHTx

)†
HT are non negative.

Therefore, if they are finite, then their inverses are strictly
positive, and the property holds.

• Monotonicity - if λi ≥ λ′
i for i = 1, · · · ,K, then

fj(Λ) ≥ fj(Λ
′) for j = 1, · · · ,K.

Proof. Observe the following chain:

fi(Λ) =
γo

1 + γo

1

[HG† (λi)HT ]i,i

=
γo

1 + γo

1[
H (G (λ′

i) + HT diag {λi − λ′
i}H)

†
HT

]

i,i

≥ γo

1 + γo

1

[HG† (λ′
i)H

T ]
i,i

= fi(Λ
′), i = 1, · · · ,K, (97)

where we have used Lemma 4 withA = G (λ′
i) and

B = HT diag {λi − λ′
i}H.

• Scalability - if α > 1, then αfi(Λ) > fi(αΛ) for j =
1, · · · ,K.

Proof. Observe the following chain:

αfi(Λ) = α
γo

1 + γo

1

[HG† (λi)HT ]i,i

=
γo

1 + γo

1[
H

(
G (αλi) + (α− 1)HT

TxHTx

)†
HT

]

i,i

≥ γo

1 + γo

1

[HG† (αλi)HT ]i,i
= fi(αΛ), i = 1, · · · ,K, (98)

where we have used Lemma 4 withA =
HT diag {αλi}H+HT

TxHTx andB = (α− 1)HT
TxHTx.

The inequality is non strict, i.e., holds with equality if
and only if HTx (A + B)

†
HT ei = 0. Multiplying by

eT
i HRxCh on the left, yieldseT

i H (A + B)
†
HT ei = 0.

Therefore HT ei ∈ N
{

(A + B)
†
}

, and due to the

symmetry ofA+B, we also haveHT ei ∈ N {A + B}.
In addition, due to the semi definiteness, this means
that HT ei ∈ N

{
HT diag {αλi}H

}
and HT ei ∈

N
{
HT

TxHTx

}
. Therefore,HT

TxHTxH
T
TxH

T
ChRxei = 0,

and HT
TxH

T
ChRxei = 0. Consequently, the problem is

infeasible.
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