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ABSTRACT

In this paper, we consider the optimization of the compound ca-
pacity in a rank one Ricean multiple input multiple output chan-
nels using partial channel state information at the transmitter side.
We model the channel as a deterministic matrix within a known el-
lipsoid, and maximize the compound capacity defined as the worst
case capacity within this set. We find that the optimal transmit
strategy is always beamforming, and can be found using a simple
one dimensional search. These results motivate the growing use of
systems using simple beamforming transmit strategies.

1. INTRODUCTION

The use of multiple transmit and receive antennas is known to
improve the capacity and reliability of wireless communication
links. The two common techniques for exploiting this multiple
input multiple output (MIMO) channel are space time coding, and
MIMO precoding. Space time coding is a technique that allows
for spatial diversity without any channel state information (CSI) in
the transmitter. On the other hand, when perfect CSI is available,
the standard technique is to use MIMO precoding algorithms, such
as beamforming. These two strategies are based on two extreme
assumptions on the availability of CSI at the transmitter side. In
many practical applications only partial CSI is available, in which
case it is not clear what the optimal transmit strategy is.

The capacity achieving transmit technique in MIMO channels
with additive Gaussian noise is signaling using random Gaussian
vectors. The strategy is therefore defined by the covariance matrix
of these vectors. The eigenvectors of this matrix can be visualized
as the directions in which the transmitter signals. Due to its im-
portance, the optimization of the covariance has been extensively
studied. Different optimization criteria were considered, as well
as different models for the CSI. Most of the research in this area
is devoted to stochastic models of the CSI, i.e., scenarios in which
the transmitter has access to the statistics of the channel. Typically,
the channel is modelled as a complex normal random vector with
known mean and covariance. In this stochastic CSI model, the
mutual information is also a random quantity and must be treated
appropriately, either by considering its ensemble average known
as the ergodic capacity, or by considering its cumulative distribu-
tion function (CDF) via the outage mutual information. One of the
first papers in this field is [1] where a multiple input single output
(MISO) channel was considered. In this work, the structure of the
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optimal transmit strategy in the sense of maximizing the ergodic
capacity was derived. The basic result was that if a non zero mean
is available then the optimal strategy is to transmit in its direction
and uniformly in all other directions. If a non trivial covariance
matrix is available, then the optimal strategy is to transmit along
its eigenvectors. An extension of this work was presented in [2]
where conditions for the optimality of beamforming (BF) in rank
one Ricean MIMO systems were found in closed form. In [3, 4]
the ergodic capacity and the outage mutual information were de-
rived analytically and the optimal transmit strategies were found
numerically. One of the interesting results was that a system which
switches between BF and uniformly transmitting in all directions
is close to optimal. The impact of correlation between the anten-
nas and more details on the optimal power allocation strategies for
maximizing the ergodic capacity were discussed in [5]. Recently,
in [6], the outage capacity with no available CSI was analyzed. A
competing stochastic CSI model was introduced in [7] where the
channel was modelled using the probability distribution function
of the phase shifts between the antennas. Similarly to the previous
references, here too the ergodic capacity was optimized.

A different approach for describing partial CSI is using a de-
terministic model for the channel, i.e., assuming that the channel
is a deterministic variable within a known set of possible values.
When the set is a singleton, the CSI is complete and perfect. The
bigger the set is, the more uncertainty there is on the actual realiza-
tion of the channel. The use of deterministic CSI models is com-
mon in the signal processing community for designing algorithms
which are robust to the uncertainty [8, 9]. In the context of infor-
mation theory, the maximal achievable rate of reliable communi-
cation over such channels is the compound capacity and is defined
as the capacity of the worst case realization within the set [10] (See
also [11] for a tutorial on the topic). A possible application is in
communication through a slow fading channel. In such channels,
the system cannot average over the realizations of the channel, and
must cope with the specific realization. Assuming a strict con-
straint on the quality of service, the system must be designed for
the worst case scenario. In this sense, compound capacity is re-
lated to outage mutual information which also aims at designing
communication systems over slow fading channels. More details
on the compound capacity and its relation to the outage capacity
and other information theoretic notions can be found in [12]. For-
tunately, the compound capacity is much easier to handle than the
cumbersome outage capacity. For completeness, we mention that
the compound capacity is also related to the problem of optimizing
the capacity of the worst case noise covariance [13].

Due to its importance, the compound MIMO capacity recently
gained a considerable attention. In [14, 15] it was shown that un-
der different uncertainty sets the optimal transmit strategy is uni-



form power allocation. However, the uncertainty sets used in these
papers are very different from the structure of the stochastic CSI
models used in [1–3]. Therefore, the results are different and it
is difficult to compare these two classes of works. In another
work [16], the compound capacity was analyzed and bounded un-
der a rank one Ricean MIMO model when the specular component
was unknown. It was shown that if this component is random with
an isotropic distribution then the compound capacity is equal to
the average capacity.

In our work, we follow the deterministic approach, but use an
uncertainty set with a structure which is very similar to the CSI
model used in [1–3]. We model the rank one Ricean MIMO chan-
nel as a matrix within a known ellipsoid defined using the deter-
ministic analogs of the channel’s mean and covariance. We find
that the optimal transmit strategy for maximizing the compound
capacity in such CSI models is always BF. If the ellipsoid is sym-
metric with respect to its center (mean), then the optimal direction
is the right singular vector of the center (mean) matrix. In more
general scenarios, we provide a simple strategy for finding the op-
timal direction based on a one dimensional search. These results
motivate the growing use of simple BF transmit strategies.

The paper is organized as follows. We begin in Section 2 by
defining our channel model and introducing the compound opti-
mization problem. In Section 3, we provide our main result in
Theorem 1 and discuss its consequences. The connection between
our work and previous works based on stochastic CSI models is
addressed in Section 4. In particular, we discuss the relation be-
tween the compound capacity and the outage mutual information.
In Section 5, we illustrate our results using a simple numerical ex-
ample.

The following notation is used. Boldface upper case letters de-
note matrices, boldface lower case letters denote column vectors,
and standard lower case letters denote scalars. The superscripts
(·)T and (·)−1 denote the transpose and the matrix inverse oper-
ators, respectively. [x]i denotes the i’th element of the vector x.
By Tr {·} we denote the trace operator, by vec (·) we denote the
operator that stacks the elements of a matrix into a single column
vector, and by I we denote the identity matrix of appropriate size.
⊗ denotes the Kronecker product, |·| denotes the determinant, ‖ · ‖
denotes the standard Euclidean norm. Finally, X � 0 means that
X is a Hermitian positive semidefinite matrix.

2. PROBLEM FORMULATION

Consider the following MIMO channel model:

y = Hs + w, (1)

where y is a received vector of length N , H is a size N × K
channel matrix, s is a length K transmitted random vector of co-
variance E{ssT } = Q satisfying Tr {Q} ≤ P , and w is a length
N Gaussian noise vector of covariance σ2I. We model the rank
one Ricean MIMO channel H as an unknown deterministic matrix
within the following set

H = axT + D; Tr
{
DWDT

}
≤ 1, (2)

where a is a length N vector, x is a length K vector, and W � 0 is
a weight matrix. In our terminology, axT is the rank one specular
component of the channel, and D is the scattering component. We
assume that the transmitter knows axT and W, but does not have
access to the specific realization of H within the set. In Section

4, we will show that this CSI model is the deterministic analog of
the stochastic CSI model used in [1–3], where axT is the rank one
mean channel and W is related to its covariance.

A classical result in information theory states that the follow-
ing compound capacity is the maximal achievable rate of reliable
communication over the above channel [10, 11, 16]:

C
(
axT ,W

)
= max

Q � 0
Tr {Q} ≤ P

min
Tr{DWDT}≤1

I(Q,D), (3)

where

I(Q,D) = log

∣∣∣∣I +
1

σ2

(
axT + D

)
Q

(
axT + D

)T
∣∣∣∣ , (4)

is the mutual information between y and s. It can be achieved by
signaling with Gaussian vectors s of covariance E{ssT } = Q �
0. BF is defined as the transmit strategy when Q = qqT is rank
one, i.e., s = sq where s is a Gaussian random variable.

3. OPTIMIZATION OF THE COMPOUND CAPACITY

In this section, we provide our main results in the following theo-
rem:

Theorem 1. Consider the optimization of the rank one Ricean
MIMO compound capacity of C

(
axT ,W

)
in (3). If xT Wx ≤

1
‖a‖2 then C

(
axT ,W

)
= 0 and any feasible Q will attain it.

Otherwise, its optimal value is

C
(
axT ,W

)
= log

(
1 +

‖a‖2

σ2
c

)
, (5)

where

c = PxT

[
I −

(
I +

λ

P
W

)−1
]2

x, (6)

and λ > 0 is the unique root of the following non linear equation

xT

(
I +

λ

P
W

)−1

W

(
I +

λ

P
W

)−1

x =
1

‖a‖2
. (7)

In this case, the optimal Q is

Q = P
q (λ)qT (λ)

‖q (λ) ‖2
, (8)

where

q (λ) =

[
I −

(
I +

λ

P
W

)−1
]
x. (9)

Proof. We begin the proof by showing that the optimal argument
D of the inner minimization in (3) has the structure D = adT for
some d. This will allow us to optimize over the vector d instead
of the matrix D. In particular, we prove that if D is optimal then

D̃ = adT with dT = aT

‖a‖2 D is also optimal. Now, assume that

D is feasible, then D̃ is also feasible since

Tr
{
D̃WD̃T

}
= Tr

{
a

aT

‖a‖2
DWDT a

‖a‖2
aT

}
=

aT DWDT a

aT a
≤ max

v �=0

vT DWDv

vT v

= λmax

(
DWDT

)
≤ Tr

{
DWDT

}
≤ 1, (10)



where λmax(A) is the maximal eigenvalue of A, and we used the

identity λmax(A) = maxv �=0
vT Av
vT v

. In addition, D̃ results in an
equal or better objective value than that of D since∣∣∣∣I +

1

σ2

(
axT + D

)
Q

(
axT + D

)T
∣∣∣∣

=
N∏

i=1

[
1 +

1

σ2
λi

((
axT + D

)
Q

(
axT + D

)T
)]

≥ 1 +
1

σ2
λmax

((
axT + D

)
Q

(
axT + D

)T
)

= 1 +
1

σ2
max
v �=0

vT
(
axT + D

)
Q

(
axT + D

)T
v

vT v

≥ 1 +
1

σ2

aT
(
axT + D

)
Q

(
axT + D

)T
a

aT a

= 1 +
aT a

σ2

(
xT +

aT

‖a‖2
D

)
Q

(
x + DT a

‖a‖2

)
=

∣∣∣∣∣I +
1

σ2

(
axT + a

aT

‖a‖2
D

)
Q

(
axT + a

aT

‖a‖2
D

)T
∣∣∣∣∣

=

∣∣∣∣I +
1

σ2

(
axT + D̃

)
Q

(
axT + D̃

)T
∣∣∣∣ , (11)

where λi(A) are the eigenvalues of A, and we used the identities

|A| =
∏

i λi (A), λmax(A) = maxv �=0
vT Av
vT v

and |I + AB| =
|I + BA|.

Therefore, solving (3) reduces to the following program

max
Q � 0

Tr {Q} ≤ P

min
Tr{adT WdaT}≤1

(12)

log

∣∣∣∣I +
1

σ2

(
axT + adT

)
Q

(
axT + adT

)T
∣∣∣∣ ,

or using |I + AB| = |I + BA| to

max
Q � 0

Tr {Q} ≤ P

min
dT Wd≤ 1

‖a‖2

log

(
1 +

‖a‖2

σ2
(x + d)T Q (x + d)

)
. (13)

If xT Wx ≤ 1
‖a‖2 then d = −x, C

(
axT ,W

)
= 0 and any fea-

sible Q will attain it. We now consider the case when xT Wx >
1

‖a‖2 . Due to the monotonicity of the objective function in the

quadratic form (x + d)T Q (x + d), we can optimize it instead:

max
Q � 0

Tr {Q} ≤ P

min
dT Wd≤ 1

‖a‖2

(x + d)T Q (x + d) . (14)

It is easy to see that the objective is convex in d and concave (lin-
ear) in Q. Moreover, the constraint set of the minimization is con-
vex, and the constraint set of the maximization is convex and com-
pact. Therefore, minimax theory [17] states that there is a saddle
point, i.e., a point {d,Q} such that Q solves the problem

max
Q � 0

Tr {Q} ≤ P

(
x + d

)T
Q

(
x + d

)
, (15)

and d solves the problem

min
dT Wd≤ 1

‖a‖2

(x + d)T Q (x + d). (16)

The Lagrangian associated with program (15) is

L1 = −
(
x + d

)T
Q

(
x + d

)
− Tr {YQ} + ν [Tr {Q} − P ] , (17)

where Y � 0 and ν ≥ 0 are the dual variables. The matrix Q is
optimal if and only if it satisfies:

−
(
x + d

) (
x + d

)T − Y + νI = 0;

Tr
{
YQ

}
= 0;

ν
[
Tr

{
Q

}
− P

]
= 0. (18)

It is easy to check that

Q = P

(
x + d

) (
x + d

)T

‖x + d‖2
, (19)

along with

Y = ‖x + d‖2I −
(
x + d

) (
x + d

)T
;

ν = ‖x + d‖2, (20)

satisfy these exact conditions. In addition, the saddle point must
satisfy the optimality conditions associated with program (16). The
Lagrangian of this problem is

L2 = (x + d)T Q (x + d) + λ

[
dT Wd − 1

‖a‖2

]
, (21)

where λ ≥ 0 is a Lagrange multiplier. The necessary and sufficient
optimality conditions are(

Q + λW
)
d = −Qx; (22)

λ

[
d

T
Wd − 1

‖a‖2

]
= 0. (23)

Plugging Q from (19) into (22) results in:

P
(
x + d

)
+ λWd = 0. (24)

Solving for d yields

d = −
(
I +

λ

P
W

)−1

x. (25)

Due to xT Wx > 1
‖a‖2 , the optimal multiplier λ > 0 is strictly

positive. Therefore, d must satisfy the complementary slackness
condition:

xT

(
I +

λ

P
W

)−1

W

(
I +

λ

P
W

)−1

x =
1

‖a‖2
. (26)

It is easy to see that the left hand side of (26) is monotonically
decreasing in λ from xT Wx > 1

‖a‖2 when λ = 0 to 0 when
λ → ∞. Therefore, a unique solution for λ in (26) always exists.
Finally, plugging the optimal d and Q into (14) and (19) yields (6)
and (8), respectively. This concludes the proof.

The main result of Theorem 1 is that the optimal transmit strat-
egy for maximizing the compound capacity in our model is always
BF in the direction of q (λ) in (9). This direction is defined by
the λ which satisfies (7). Finding this λ is very easy. Using the



eigenvalue decomposition of W = Udiag {δi}UT we rewrite
the condition as∑

i

P 2δi

(P + λδi)
2

([
UT x

]
i

)2

=
1

‖a‖2
. (27)

As explained in the proof, the left hand side of (27) is monoton-
ically decreasing in λ ≥ 0. Therefore, any simple bisection can
efficiently solve for λ. Moreover, (27) belongs to a well known
family of non linear equations called secular equations for which
there are highly efficient root finding algorithms [18].

An important practical case is when the optimal BF is in the
direction of x. This is probably the standard technique in many ap-
plications due to its simplicity. Theorem 1 shows that this strategy
is optimal if W has x

‖x‖ as an eigenvector, since in this case q (λ)

is a scaled version of x for all λs. A common example where this
condition holds is W = αI for some α ≥ 0.

One of the interesting properties of Theorem 1 is that the addi-
tion of antennas in the receiver does not change the basic structure
of the compound capacity and that the capacity depends on a only
through its norm. This result resembles a previous result of [16]
where it was shown that under a simplified model the compound
capacity is invariant to multiplying the channel by a unitary matrix.

4. RELATION TO STOCHASTIC CSI MODELS

Most of the previous references regarding the optimality of BF
examined the use of stochastic CSI models. As explained in the
introduction there is an intimate relation between this model and
our deterministic CSI model. The most common stochastic CSI
model is the Gaussian model [2]:

Hs = asx
T
s + Ds; E

{
DsWsD

T
s

}
= I, (28)

where as is a length N vector, xs is a length K vector, Ws � 0 is
a K × K matrix, and the elements of Ds are zero mean Gaussian
random variables1. For simplicity, we restrict Ws to be invertible.
It is easy to see the resemblance between the deterministic model
in (2) and the stochastic model in (28). The only difference is
that in the deterministic model D is a deterministic matrix within
an ellipsoid defined by W, and in the stochastic model Ds is a
random matrix whose covariance is defined by Ws.

In stochastic CSI models, the mutual information in (4) is a
random quantity since it is a function of Ds. One of the standard
measures for analyzing such systems is the outage mutual informa-
tion, i.e., the inverse function of the CDF of the mutual information

Iout = OUT (Pout), (29)

where

Pout = Pr (I(Q,Ds) ≤ Iout) . (30)

The inverse is unique due to the monotonicity of the CDF. The
meaning of (29) is that there is a probability of Pout that in any
realization of H from the ensemble, we will obtain a mutual in-
formation I less than Iout. Therefore, the system is designed to
maximize the outage mutual information [3].

In general, the calculation of the outage capacity is very diffi-
cult. In [3], it was derived for the MISO case using integrals over

1The complete characterization of the statistics of Ds is given by the
covariance E{vec (Ds) vec (Ds)

T } = W−1
s ⊗ I.

the complex plane. Using these integrals, the authors maximized
OUT (Pout) with respect to Q. In the special case of Ws = αI,
they found that the optimal Q has the structure Q = p1xsx

T
s +p2I

for some power allocation p1 ≥ 0 and p2 ≥ 0. To our knowledge,
there is no solution for the general case of arbitrary asx

T
s and Ws.

Fortunately, the following lemma shows that there is an intimate
relationship between the compound capacity and the outage mu-
tual information:

Lemma 1. Let Hs satisfy the stochastic model in (28). Then,

C
(
asx

T
s , αWs

)
≤ OUT

(
1 − CDFχ2

NK

(
1

α

))
, (31)

where CDFχ2
NK

(·) is the cumulative distribution function of a
Chi Squared random variable with NK degrees of freedom.

Proof. Let us define the event Aα as the event when the realization
of Hs falls within the ellipsoid set defined in (2) with a = as,
x = xs and W = αWs. The probability of this event is

Pr (Aα) = Pr

(
Tr

{
DsWsD

T
s

}
≤ 1

α

)
= CDFχ2

NK

(
1

α

)
. (32)

By conditioning on Aα, we have

Pr (I(Q,Ds) ≤ C (Xs, αWs))

≤ 0 · Pr (Aα) + 1 · (1 − Pr (Aα))

= 1 − CDFχ2
NK

(
1

α

)
. (33)

Applying OUT (·) on both sides and noting the monotonicity of
OUT (·) yields the required inequality.

In other words, the compound capacity provides a lower bound
on the outage capacity, and instead of maximizing the outage ca-
pacity we can maximize the bound. Given a target probability
P ∗

out, one can solve for α∗ in

P ∗
out = 1 − CDFχ2

NK

(
1

α∗

)
, (34)

and then the optimal Q of C
(
asx

T
s , α∗Ws

)
will promise a lower

bound on the outage mutual information of probability P ∗
out. This

is a very simple ad hoc approach to the outage capacity problem.
Due to Theorem 1, it will allow a BF based solution for this im-
portant problem.

5. SIMULATIONS

In this section, we provide a simple numerical example that il-
lustrates our results. We consider a system with K = 4 trans-
mit antennas and N = 1 receive antennas. The transmitter has
the following stochastic CSI: The channel is modelled as a ran-
dom Gaussian vector with mean [1, 0, 0, 0]T and covariance W
where [W]i,i = 1 for all i and [W]i,j = 0.5 for i 	= j. Our
objective is to maximize the outage capacity for an outage prob-
ability of Pout = 0.05. To our knowledge, there is no known
technique for this optimization. Therefore, we propose to maxi-
mize the lower bound presented in the previous section using the
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Fig. 1. Outage capacity as a function of the outage probability.

compound capacity. For comparison, we also simulate two other
strategies: uniform power allocation, and beamforming along the
mean (center). We numerically estimate the outage capacity us-
ing 100000 Monte Carlo simulations. The results are presented in
Fig. 1. It is easy to see that at around the target outage probability
our approach provides the highest outage capacity among the three
transmit strategies.

6. CONCLUSION

We derived the compound capacity in a rank one Ricean MIMO
channel using a deterministic CSI model. We showed that the op-
timal transmit strategy in this case is always beamforming, and
can be found using a simple one dimensional search. These results
strengthen previous results on the optimality of BF and motivate
the growing use of systems using this practical transmit strategy.
Due to its simplicity, we find that the compound capacity is an at-
tractive alternative to the outage capacity as a design criterion in
slow fading MIMO channels.

An interesting extension to this work is to use a more general
deterministic CSI model and relax the rank one constraint on the
center matrix. In such models, we conjecture that BF will not
necessarily be optimal and therefore optimality conditions should
be derived and analyzed.
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