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ABSTRACT

We consider the problem of designing a multiuser detector
for synchronous code-division multiple-access (CDMA) systems,
where the signature matrix is subject to structured uncertainties.
We seek the robust multiuser detector that minimizes the worst-
case bit error probability (BER) over all possible values of the un-
known signature matrix. We first develop the exact robust mul-
tiuser detector. Then, based on the framework of robust semidefi-
nite programming (SDP), we suggest an approximation to the ro-
bust multiuser detector that can be obtained as a solution to an SDP,
which can be solved efficiently using standard software packages.
We then demonstrate through an example that by taking the struc-
ture of the uncertainty into account we can increase the detector
performance over standard detection methods that do not consider
the signature uncertainty.

1. INTODUCTION

Multiuser receivers for detection of code-division multiple-access
(CDMA) signals try to mitigate the effect of the multiple-access
interference (MAI) and the background noise. These include the
optimal maximum likelihood (ML) detector and the linear mean-
squared error (MMSE) detector [1]. The ML detector is optimal in
the sense that it provides the minimum bit error probability (BER)
in jointly detecting the data symbols of all users. Unfortunately,
to implement the ML detector, it is necessary to solve a difficult
combinatorial optimization problem. The ML detection problem
can be solved by an exhaustive search in which the log likelihood
function is evaluated for all possible combinations of the data sym-
bols. However, the exhaustive search method is prohibitive for
large numbers of users because of its exponential computational
complexity.

Due to the intrinsic difficulty in solving the ML detection opti-
mization problem, there has been much interest in the development
of suboptimal but computationally efficient ML detectors [2]. Re-
cently, an approximation based on semi-definite relaxation (SDR)
was suggested [3],which does not suffer from local maxima, and
was shown to have BER performance close to the BER perfor-
mance of the true ML detector. Both the ML detector and the SDR
approximation require the precise knowledge of the channel pa-
rameters, namely, the received amplitudes of the user’s signals and
the signature matrix. There are many scenarios, in practice, where
these parameters may not be known or may be changing over time
[4]. In these cases the ML and the SDR detectors may not achieve
the designated optimality.
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Recently, robust multiuser techniques, that take into design
consideration the effect of signature mismatch at the receiver, have
attracted a great interest. These methods include the robust min-
imum output energy (MOE) linear detector [5], and a worst case
performance optimization of the MOE multiuser detector [6, 7].
The robust MOE is a linear receiver, which requires multiple sig-
nal interval observations, and aims to optimize an energy based
criterion while ensuring that the desired user response is distor-
tionless.

In this paper we propose a new robust nonlinear multiuser de-
tector which minimizes the worst-case (WC) BER across all pos-
sible channel parameters in the region of uncertainty, and which
is based on a single observation signal interval. The suggested
nonlinear WC ML detector is based on the ML criterion, i.e., this
detector is superior, in the sense of BER, to any linear robust de-
tector. The uncertainty model, which is in the base of WC ML
detector design, is quite general, and includes a wide variety of
practical cases. Similarly to the standard ML detector, the compu-
tational complexity of the WC ML detector grows exponentially
with the number of users and the number of uncertain parameters.
Therefore, we also suggest an efficient approximation to the WC
ML detector, which is based on the SDR method. We then demon-
strate, through simulation, that in the presence of uncertainty, the
proposed robust multiuser detector outperforms the ML multiuser
detector that does not take the uncertainty into account.

The paper is organized as follows. In Section 2, we formulate
the robust ML detection problem. The exact robust ML multiuser
detector is developed in Section 3. In Section 4, we suggest an
efficient approximation of the robust ML multiuser detector. In
Section 5, we demonstrate its advantages over the ML detector.

2. PROBLEM FORMULATION

Before proceeding to the detailed development of the WC ML
multiuser detector, in this section we provide a formulation and
overview of our problem.

Consider an m-user white Gaussian synchronous CDMA sys-
tem, where each user transmits information by modulating a signa-
ture sequence. The received signal over one symbol duration can
be modelled as:

r (t) =
K

∑
k=1

Akbksk (t)+w(t), t ∈ τ, (1)

where bk is the information symbol transmitted by the kth user,
sk(t) is the kth user spreading-code waveform, Ak ≥ 0 is the re-
ceived amplitude of the kth user’s signal, w(t) is a zero-mean addi-

185



tive white Gaussian noise, K is the number of users, and τ is the ob-
servation interval. For concreteness, we assume that bk ∈ {1,−1}.
At the receiver, the received signal r(t) is first filtered by a chip-
matched filter and then sampled at the chip rate. In general, when
the chip shaping is unknown, the filtering is done using suboptimal
filters. The output is sampled at chip rate and digitally whitened.
The equivalent discrete time white noise model [8] can be ex-
pressed in vector form as

r = SAb+w, (2)

where S is the n×m matrix of columns sk, where the vector sk
contains the corresponding samples, at the chip rate, of the kth
user’s signature waveform sk(t) filtered by the chip-matched filter,
A is the diagonal matrix with diagonal elements Ak > 0, b is the
data vector with components bk, and the vector w contains the
corresponding samples of the noise process.

The purpose of multiuser detection is to detect the symbols
{bk} given the observed signal r. The ML detector is optimal in
the sense that the probability of incorrectly detecting {bk} is mini-
mized, under the standard assumptions that the diagonal matrix A
and the signature matrix S are known precisely at the receiver.

In practice, the signature vectors sk and the diagonal matrix
A may not be known exactly, for example, because of channel
distortion [4]. Since the distorted A can be directly translated to an
appropriate signature distortion, without lost of generality, we will
focus on the case of signature mismatch. To model the uncertainty
in the signature matrix S, we assume that

S = S0 +
`

∑
i=1

δiSi, (3)

where the matrices Si, 0 ≤ i ≤ ` are known, and δi are perturba-
tions that are only known to lie in some perturbation set D . Here,
we consider the case in which D consists of block vectors, where
each block satisfies a norm constraint. Denoting by d the vector
with components δi, it follows that we can express d as a concate-
nation of N vectors dk, where each subvector dk has length nk, and
satisfies a constraint of the form ‖dk‖ ≤ ρk,1≤ k≤ N, for a set of
nonnegative numbers ρk, that determine the size of the uncertainty
and can be estimated from the received signal. Thus,

D =





d =




δ1
...

δ`




∣∣∣∣∣∣∣
d =




d1
...

dN


 ,dk ∈ Rnk , ‖dk‖ ≤ ρk





,

(4)
where ∑N

k=1 nk = `, and νk = ∑k
s=1 ns. The uncertainty set D is

quite general, and includes several cases of practical interest. For
example, D includes the cases, considered in [7, 5], in which each
of the signature vectors is of the form of

sk = s0
k +ak, (5)

where s0
k is the nominal signature vector and ak is the mismatch

error vector satisfying ‖ak‖ ≤ ρk.

In the case of uncertainty of the form of (3), the received signal

can be written as,

r =

[
S0 +

`

∑
i=1

δiSi

]
Ab+w =

[
H0 +

`

∑
i=1

δiHi

]
b+w, (6)

where Hi = SiA. Since δi are not known precisely, we cannot
directly minimize the error probability. Instead, we seek the ML
detector that minimizes the worst-case error probability over all
possible values of δi. Thus, we seek the symbols that are the solu-
tion to the problem

b̂WCML = arg min
b∈{1,−1}N

max
δ∈D

∆(H(δ ),b), (7)

where
∆(H(δ ),b) = ‖r−H(δ )b‖2. (8)

We note that previously suggested robust detectors [5, 6, 7],
are limited by their inherent linearity, require few symbol periods
observation time and aim to minimize the WC BER indirectly. The
suggested robust detector requires only one symbol period obser-
vation time, and directly minimizes the WC BER.

3. ROBUST ML DETECTOR

To develop a solution to (7), we note that (8) is a square norm of
an affine function of δ , hence, (8) is a convex function of δ . We
may therefore solve (7) by relying on the following lemma:

Lemma 1 (Maxima of a convex function). Let f be a convex
function on Rn, and let X ∈ Rn be a convex set with M extreme
points x j ∈Xe, 1≤ j ≤M. Then

max
x∈X

f(x) = max
j

f(x j), x j ∈Xe. (9)

Equation (8) can be rewritten as

∆(H(δ ),b) = ‖r−H0b−
`

∑
i=1

δiHib‖2

=

∥∥∥∥∥r−H0b−
N

∑
k=1

Gkdk

∥∥∥∥∥
2

, (10)

where

Gk =
[
Hνk−1+1b,Hνk−1+2b, ...,Hνk−1+nkb

]
. (11)

By definition, a point d̂k ∈ D is an extreme point of D , if there
is no positive length segment in the set D for which d̂k ∈ D is an
interior point. Hence the set De of extreme points of D consists of

all the vectors d̂
j
k ∈ D , where the only nonzero element is the jth

element with the value of ±ρk , i.e., vectors of the form

d̂
j
k =




0
...

±ρk
...
0




, 1≤ j ≤ nk. (12)
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From Lemma 1 it therefore follows that the maximum of the con-
vex function (10) on the convex set D is attended at one of the
points (12), so that the optimization problem (7) can be reformu-
lated as

b̂WCML = arg min
b∈{1,−1}N

max
d∈De

∆(H(d),b). (13)

The size of the set D of extreme points is `. Hence the robust opti-
mization problem, (13), can be solved exactly using an exhaustive
search with a complexity of 2K+`.

4. AN APPROXIMATE ROBUST ML DETECTOR

We now develop a computationally efficient approximation of the
robust ML detector of (13). To this end, we express the robust
optimization problem (7) in an alternative form as

b̂WCML = arg min
b∈{1,−1}N

max
δ∈D

{
b̃∗R(δ )b̃

}
, (14)

where b̃ = [b,1] and R(δ ) is given by

R(δ ) =
[

Q(δ ) −F∗(δ )
−F(δ ) 0

]
. (15)

Here

Q(δ ) =

[
H0 +

`

∑
i=1

δiHi

]∗[
H0 +

`

∑
i=1

δiHi

]
, (16)

and

F(δ ) = F0 +
`

∑
i=1

δiFi = r∗H0 +
`

∑
i=1

δir
∗Hi. (17)

The above WC ML multiuser detection problem can be simplified
by assuming that δi ¿ 1 and neglecting the sum of the second
order terms in Q(δ ), i.e., from (16)

Q(δ )≈H∗
0H0 +

`

∑
i=1

δi [H∗
i H0 +H∗

0Hi]

= Q0 +
`

∑
i=1

δiQi, (18)

where Q0 = H∗
0H0 and Qi = H∗

i H0 +H∗
0Hi. Inserting (18) into

(15) yields

R =
[

Q0 −F∗0
F0 0

]
+

`

∑
i=1

δi

[
Qi −F∗i
Fi 0

]

, R0 +
`

∑
i=1

δiRi. (19)

Since b̃∗Rb̃ = Tr
{
b̃b̃∗R

}
, the problem (14) is equivalent to

min
B

max
δ∈D

Tr(BR(δ ))

s.t. B = b̃b̃∗, b̃ ∈ RK+1

Bii = 1, i = 1, ...,K +1. (20)

The constraint B = b̃b̃∗ implies that B is rank-1, symmetric
and positive semidefinite (PSD). Following [3], we will remove
the rank-1 constraint from (20), to obtain the following relaxed
optimization problem:

min
B

max
δ∈D

Tr(BR(δ ))

s.t. Bº 0,

Bii = 1, i = 1, ...,K +1. (21)

Denoting by v = vec(B) and r = r0 + ∑`
i=1 δiri =

vec
(
R0 +∑`

i=1 δiRi
)
, where m = vec(M) denotes the vector ob-

tained by stacking the columns of M, (21) can be reformulated as
an SDP with a linear constraint which has affine uncertainty,

min
α,B

α

s.t. v∗
[
r0 +

`

∑
i=1

δiri

]
≤ α, ∀δi ∈D

Bº 0,

Bii = 1, i = 1, ...,K +1. (22)

The linear constraint (22), can be reformulated as

v∗r0 +u∗δ ≤ α, ∀δ ∈D , (23)

where the ith component of ui is r∗i v. Now, for any δ ∈D ,

v∗r0 +u∗δ ≤ v∗r0 +‖u∗‖‖δ‖ ≤ v∗r0 +‖u∗‖
√√√√ N

∑
k=1

ρ2
k , (24)

where, clearly, the upper bound in (24) can be achieved with equal-
ity. Thus, the robust optimization problem (22) is equivalent to the
optimization problem

min
α,B

α

s.t. v∗r0 +

√√√√ N

∑
k=1

ρ2
k

√√√√ `

∑
i=1

∣∣r∗i v
∣∣2 ≤ α,

Bº 0,

Bii = 1, i = 1, ...,K +1. (25)

The problem of (25) is a semidefinite optimization problem
with second order cone (SOC) constraints, that can be solved ef-
ficiently using standard optimization packages [9]. A matrix B̂,
which is a solution to the above SDR (25), has to be converted to
the approximate symbol vector b̂. In [3, 10] the suggested conver-
sion is based on a randomization method which has a high com-
putational complexity. Here we seek a computationally efficient
method. Since, B = b̃b̃∗, we can extract b̂ from the optimal solu-
tion B̂

b̂ = sign(b̃K+1), (26)

where b̃K+1 is the vector consisting of the first K elements of the
(K +1)’th column of B̂.
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Fig. 1. BER versus SNR performance for 3 different detectors:
nominal ML, ML and WCML with mismatched knowledge for 8
user system, and ρ = 0.2.

5. SIMULATIONS

In this section, we provide simulation results which demonstrate
the performance of the WC ML multiuser detector. The simula-
tions are based on the model

r = (H0 +δH1)b+w, |δ |< ρ, (27)

where

H0 =




1 β β

β
. . . β

β β 1


 , H1 =




0 1 1

1
. . . 1

1 1 0


 . (28)

In the simulations, we measured the BER performance of the ML
detector compared to the BER performance of the WC ML detec-
tor as a function of the received signal to noise ratio (SNR) for
ρ = 0.2 and β = 0.3. The simulation compare the performance of
the ML detector for the case of perfect knowledge, i.e, given H0,
the performance of the ML detector with mismatched knowledge,
i.e., given H = H0 + δH1, and the performance of the WC ML
given the mismatched knowledge. The simulations are repeated
for two system sizes, 8 and 6. The results for the two system sizes
are shown in Figs. 1 and 2, respectively. Observing the perfor-
mance of the ML detector with inaccurate knowledge, it is ob-
vious that the performance degrades by about 6 dB at a BER of
10−2. Comparing the robust ML performance we can see that at
BER of 10−2 the WC ML detector gains about 4 dB compared to
the mismatched true ML detector. In Fig. 2, it can be seen that at
a BER of 10−3 the performance of the ML detector with inaccu-
rate knowledge degrades severely by about 8 dB. Comparing the
robust ML performance we can see that at a BER of 10−3 the WC
ML detector gains about 4.5 dB compared to the mismatched ML
detector.
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Fig. 2. BER versus SNR performance for 3 different detectors:
nominal ML, ML and WCML with mismatched knowledge for 6
user system, and ρ = 0.2.
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