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ABSTRACT

We consider the problem of reconstructing a 2-D bandlimited
signal from its nonuniform samples taken in polar coordinates.
We introduce two nonuniform sampling strategies in polar coor-
dinates and develop algorithms for reconstructing the signal from
these samples. The proposed methods collect nonuniform sam-
ples along concentric circles or radial lines, where the circles or
lines are nonuniformly distributed. We then apply these methods
to the problem of reconstruction of tomographic images and show
through simulations that they result in a higher quality of recon-
struction with respect to the traditionally used algorithms.

1. INTRODUCTION

In most practical applications involving sampling of 2-D signals
the standard rectilinearCartesian coordinate systemis used to rep-
resent the signal and its samples. However, by introducingpolar
coordinatesone can simplify significantly the sampling and recon-
struction methods. In particular, polar sampling strategies and lin-
ear spiral scan techniques, which are widely used in CT and MRI,
provide practical advantages in the context of medical imaging [1].
While treatment with 2-D signals given in Cartesian coordinates is
well developed both in theory and applications, the polar coordi-
nate system is less understood and developed.

In this paper, we consider the problem of reconstruction of
2-D bandlimited signals from nonuniform samples given in polar
coordinates. This problem was considered by Marvasti in [2], in
which a reconstruction method was developed involving complex-
valued functions. In this paper, we will show that reconstruction
can be obtained using real valued functions that are simpler than
those derived in [2].

In Section 2, we start with a brief introduction of the meth-
ods for reconstruction of 1-D periodic bandlimited signals from
nonuniform samples. Since any functionf(r, θ) given in polar
coordinates is2π-periodic in θ, in Section 3, we extend the 1-
D results to the reconstruction of 2-D signals from nonuniformly
spaced samples in polar coordinates. As an application of these re-
sults, we apply them in Section 4 to reconstruction of tomographic
images from their frequency domain samples, which are usually
taken in polar coordinates.

2. RECONSTRUCTION OF PERIODIC BANDLIMITED
SIGNALS FROM NONUNIFORM SAMPLES

In this section, we present methods for reconstruction of 1-D peri-
odic bandlimited signals from nonuniform, uniform, and recurrent

nonuniform samples, which are fully adapted from [3]. These re-
sults will be used in Section 3 to establish two new theorems for
reconstruction of 2-D functions nonuniformly sampled in polar co-
ordinates.

We first note that a periodic signalx(t), with periodT , has a
Fourier series representationx(t) =

∑∞
n=−∞ cn exp(j2πnt/T )

and Fourier transformX(ω) =
∑∞

n=−∞ cnδ(ω−2πn/T ), where
δ(ω) is the Dirac delta function. AT -periodic signalx(t) is said
to be bandlimited to2πK/T if cn = 0 for |n| > K. It was proved
in [3] that such a signal can be perfectly reconstructed from a finite
numberN > 2K + 1 of its arbitrary spaced samplesx(tp) as

x(t) =

N−1∑
p=0

x(tp)hp(t), (1)

where

hp(t) =


∏N−1

q=0
q 6=p

sin(π(t−tq)/T )

sin(π(tp−tq)/T )
, N odd;

cos
(

π(t−tp)

T

) ∏N−1
q=0
q 6=p

sin(π(t−tq)/T )

sin(π(tp−tq)/T )
, N even.

(2)
For the case of uniform samples the set of reconstruction func-

tion of (2) can be simplified to the form

hp(t) =


sin(Nπ(t−tp)/T )

N sin(π(t−tp)/T )
, N odd;

cos
(

π(t−tp)

T

)
sin(Nπ(t−tp)/T )

N sin(π(t−tp)/T )
, N even.

(3)

For the case of recurrent nonuniform samples, where a group of
Nr nonuniformly spaced points repeats itselfMr times with re-
current periodTr along theT -periodic signal,i.e., MrTr = T ,
the reconstruction functions reduce to

hp(t) =

 bp

∏Nr−1
q=0 sin(Mrπ(t−tq)/T )

sin(π(t−tp)/T )
, N odd;

bp cos
(

π(t−tp)

T

) ∏Nr−1
q=0 sin(Mrπ(t−tq)/T )

sin(π(t−tp)/T )
, N even,

(4)
where

bp =
1

Mr

∏Nr−1
q=0,q 6=p sin(Mrπ(tp − tq)/T )

. (5)

As shown in [4], the reconstruction in both these cases, uniform
and recurrent nonuniform, can be obtained using LTI filters. An
alternative reconstruction algorithm, which results in more stable
reconstruction of oversampled periodic signals in noisy environ-
ments, is developed in [5].



Fig. 1. Sampling strategies in polar coordinates.

3. SAMPLING IN POLAR COORDINATES

Butzer and Hinsen [6] considered reconstruction from nonuniform
samples in 2-D cartesian coordinates, in which the nonuniform
sampling points all lie on straight lines parallel to they axis, and
the average sampling density in both coordinates is greater than the
Nyquist rate. As we show, Butzer’s interpolation theorem can be
extended to nonuniform sampling in polar coordinates, in which
nonuniform samples lie either on concentric circles or on radial
lines, where these circles or lines are nonuniformly distributed.
Theorems 1 and 2 below exploit the 1-D results of Section 2 for
reconstruction from nonuniform samples in the2π-periodic az-
imuthal coordinateθ and Butzer’s 1-D method for reconstruction
from nonuniform samples in the non-periodic radial coordinater.

3.1. First Sampling Strategy

In the first sampling method, we consider the signalf(r, θ), which
is nonuniformly sampled along nonuniformly spaced circles. The-
orem 1 below describes how and under which conditions the signal
f(r, θ) can be perfectly reconstructed from this set of samples.

We first extend the functionf(r, θ), which is given in polar
coordinates0 6 θ < 2π, r > 0 to the functionf̃(r, θ), given by

f̃(r, θ) =

{
f(r, θ), r > 0;
f(−r, θ + π), r < 0.

(6)

The reason for this extension is the fact that for the interpolation
process in the radial direction we need−∞ < r < ∞.

Theorem 1. Let {rn; n = 0, 1, 2 . . .} be a sampling sequence
of real numbers with average density greater thanR/π, where
each number corresponds to a circle with radiusrn centered at
the origin. Let{θnm; n = 0, 1, 2, . . . , m = 0, 1, . . . N − 1} be
a set of real numbers, which defines nonuniform samples on the
circle rn, whereN ≥ 2K + 1. If {rn} satisfies

|rn − n π
R
| < L < ∞,

|rn − rk| > δ > 0, n 6= k,
(7)

then any functionf(r, θ) bandlimited to the circular disc of radius
R and angularly bandlimited toK can be perfectly reconstructed
from this set of nonuniform samples by

f(r, θ) =

∞∑
n=−∞

N−1∑
m=0

f̃(rn, θnk)Φnm(θ)
G(r)

G′(rn)(r − rn)
, (8)

where

G(r) = (r − r0)

∞∏
n=−∞

n6=0

(
1− r

rn

)
(9)

and{Φnm(θ)}N−1
m=0 are defined in (2) witht = θ, T = 2π, and

p = m. Indexn in Φnm(θ) attributes the set of reconstruction
functions to the azimuthal samples on a circle with radiusrn.

As an example of Theorem 1, any functionf(r, θ) sampled
with the pattern depicted in Fig. 1 (left) can be perfectly recon-
structed from its samples, if its Fourier transform is radially ban-
dlimited to a disc of radiusR = π and the highest harmonic of its
Fourier series representation with respect toθ is K = 5.

3.2. Second Sampling Strategy

In the second sampling strategy, the nonuniform samples all lie on
nonuniformly spaced radial lines. We observe that the azimuthal
samples form a set of recurrent nonuniform samples, where the set
of N/2 nonuniform samples is repeated twice with periodπ. This
fact simplifies the reconstruction in theθ coordinate.

Theorem 2. Let {θn; n = 0, 1, . . . N/2 − 1} be a sequence
of N/2 real numbers in the range[0, π], whereN > 2K + 1.
Let {rnm; m ∈ Z} be a set of real numbers with average den-
sity greater thanR/π, where each set defines nonuniform samples
along the radial lineθn. If {rnm} satisfies (7), then any func-
tion f(r, θ) bandlimited to the circular disc of radiusR and angu-
larly bandlimited toK can be perfectly reconstructed from these
nonuniform samples and the reconstruction is given by

f(r, θ) =

N−1∑
n=0

∞∑
m=−∞

f̃(rnm, θn)
Gn(r)

G′
n(rnm)(r − rnm)

Φn(θ),

(10)
where

Gn(r) = (r − rn0)

∞∏
m=−∞

m6=0

(
1− r

rnm

)
, (11)

and {Φn(θ)}N−1
n=0 are given in (4) witht = θ, T = 2π, Nr =

N/2, Mr = 2, andp = n.

An example of the second sampling scheme is shown in Fig. 1
(middle), with five radial lines,i.e., N = 10, and the average



Fig. 2. Radon Transform and the Fourier Slice Theorem.

sampling density on each line is greater than one. Thus, any func-
tion f(r, θ) can be perfectly reconstructed from these nonuniform
samples, if its Fourier transform is bandlimited to a disc of radius
R = π and angularly bandlimited toK = 4.

We note that in [2] Marvasti also considered the problem of
reconstruction from nonuniform samples in polar coordinates. The
interpolation functions he developed involve complex-valued func-
tions, and are therefore more complicated to implement. Our meth-
ods, developed in this section, are more efficient but are still com-
putationally difficult. In [3], an efficient implementation of these
reconstruction methods with LTI filters is developed for uniform
and recurrent nonuniform sampling along both coordinates. Such
a sampling structure is presented in Fig. 1 (right), where we per-
form recurrent nonuniform sampling along each of the coordinates
r andθ.

In the next section, we present an application of the recon-
struction methods developed in this section, to CT.

4. TOMOGRAPHIC IMAGE RECONSTRUCTION

4.1. Principals of Computerized Tomography

Computerized tomography is a method for reconstructing a mul-
tidimensional signal from its projections, taken from different an-
gles in a lower dimensional space [7]. In parallel beam tomogra-
phy, a series of parallel rays of high-frequency radiation (usually in
the X-ray spectrum) traverse the objectf(x, y). These rays of ini-
tial energy are attenuated by the object as they traverse across until
they reach the detector on the other side (see Fig. 2 (left)). The re-
maining energy forms theprojection, which can be expressed as
line integral along a beam of parallel rays

Pθ(r) =

∫∫
R2

f(x, y)δ(x cos θ + y sin θ − r)dxdy, (12)

wheref(x, y) is a 2-D function, space-limited to the circular disc
of radiusA. The functionR(θ, r) = Pθ(r) is called theRadon
transformof the objectf(x, y) [8]. A fundamental tool of straight
ray tomography is theFourier Slice Theorem, which relates the 1-
D Fourier transform of the projections and the 2-D Fourier trans-
form of the object image:

Fourier Slice Theorem: The 1-D Fourier transform of the Radon

transformPθ(r) with respect tor gives a sliceSθ(ρ) of the 2-
D Fourier transformF (u, v) of the object, subtending an angleθ
with theu-axis. In other words, the Fourier transform of a projec-
tion in Fig. 2 (left) gives the values ofF (u, v) along the line BB
in Fig. 2 (right).

If an infinite number of projections are taken, thenF (u, v)
would be known at all points in theu − v plane and the function
f(x, y) can be recovered by using the inverse Fourier transform

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)ej2π(ux+vy)dudv. (13)

Using the fact thatf(x, y) is zero outside the regionQ = [−A, A]×
[−A, A], (13) can be written as

f(x, y) =
1

A2

∞∑
m=−∞

∞∑
n=−∞

F
(m

A
,
n

A

)
ej2π(mx+ny)/A (14)

for [x, y] ∈ Q. From (14) we conclude that if the functionF
(

m
A

, n
A

)
is known for alln andm, thenf(x, y) can be perfectly recon-
structed. However, this condition does not hold in practice.

In real applications, the number of projectionsPθ(r) is finite
and form a discrete version of the Radon transform of the object. In
that case the functionF (u, v) is only known along a finite number
of radial lines. Moreover, the fact that a detector can detect only
a finite number of parallel rays makes exact calculation of a slice
Sθ(ρ) of F (u, v) impossible. In the next section we discuss and
propose a solution to the practical limitation of the method.

4.2. Reconstruction Method and Simulations

We now approximate the discrete version ofSθ(ρ) from the fi-
nite number of samples of the projectionPθ(r). For practical pur-
poses, we may assume that each projection is bandlimited toW ,
i.e., Sθ(ρ) = 0 for |ρ| ≥ W . In this case, the projections can be
sampled at intervals of1/2W , i.e., W is determined by the dis-
tance between the sensors. Since the projections are also limited
to 2A, we have

Pθ

( m

2W

)
, m = −Nρ − 1

2
, · · · , 0, · · · ,

Nρ − 1

2
, (15)

whereNρ = b4WA + 1c. Hereb·c denotes the floor operator,
which rounds down to the nearest integer. We then approximate
the Sθ(ρ) at the finite number of points by the discrete Fourier
transform of the projection

Sθ

(
2Wm

Nρ

)
≈ 1

2W

(Nρ−1)/2∑
k=−(Nρ−1)/2

Pθ

(
k

2W

)
e−j2πmk/Nρ .

(16)
From (16) we conclude that we are given only a finite num-

ber of samples ofF (v, u) on the polar grid. In order to utilize
(14), an interpolation has to be carried out to fill the Cartesian
grid. This polar-cartesian interpolation is calledgridding. It is
common to determine the values on the square grid by some kind
of nearest-neighboror linear interpolationfrom the radial points
[7]. These simple polar-cartesian interpolations may introduce in-
accuracies to the reconstructed image. Therefore, accurate inter-
polation methods are required.

In our method, we propose using the reconstruction methods
developed in Section 3 for polar-cartesian interpolation ofF (u, v)
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Fig. 3. Reconstruction of a Shepp-Logan phantom.

from its samples (16) given on a polar grid. We first note that
the problem of reconstructing a 2-D signal bandlimited in the fre-
quency domain and the problem of reconstructing the 2-D Fourier
transform of a space-limited signal are mathematically equivalent.
We also observe that the frequency domain samples of the recon-
structed object in CT correspond to the second sampling strategy
presented in Section 3.2, where samples of the 2-D signal all lie
on radial lines passing through the origin. Therefore, relying on
Theorem 2 and assuming that the Fourier transformF (ρ, θ) of the
reconstructed image, which is given in polar coordinates, has a
limited number of harmonics with respect to theθ coordinate, we
have

F (ρ, θ) =

Nθ−1∑
n=0

Nρ−1∑
k=0

Sθn(ρk)Ψk(ρ)Φn(θ), (17)

whereΨk(ρ) andΦn(θ) are defined in (3) and (4), respectively.
Here the finite number of samples{Sθn(ρk)}Nρ−1

k=0 on each radial
line are periodically expanded with respect to theρ coordinate and
then the ideal sinc(ρ) interpolation is replaced byΨk(ρ) of (3).
Although the Fourier transform of most functions of CT will not
be angularly bandlimited, in practice the energy contained above a
certain frequency can be negligible. Given the fully reconstructed
Fourier transformF (ρ, θ) of an imagef(x, y) we resample it on
the uniform grid, which is required in (14) for the IFFT calculation.

We now compare the proposed reconstruction algorithm to
several methods, which are widely used for the reconstruction of
tomographic images. Specifically, we considernearest-neighbor
andlinear interpolationsandFessler’s NUFFT[9], which exploits

iterative algorithm for reconstruction off(x, y) from its frequency
domain samples (16). Computer simulations illustrating perfor-
mance of these methods are demonstrated for the well-known Shepp-
Logan head phantom, which is presented in Fig. 3 (top-left).

Example: We consider the problem of reconstructing a Shepp-
Logan head phantom from12 recurrent nonuniform projections
with Nρ = 91 samples each. This set of samples is presented in
Fig. 3. We note that uniform distribution in both coordinates is the
most common in the context of CT images. However, projections
can be nonuniformly distributed due to synchronization problems
in the scanner machine. For instance, the set of projections con-
sidired in this example was generated by throwing out every third
projection from the uniform set of 18 projections.

In Fig. 3, we present the original Shepp-Logan head phantom
and four reconstructions obtained with different methods. We can
clearly see that the reconstructed phantom is closer to the original
when the method (17) proposed in this section is used for polar-
cartesian gridding. From Fig. 3 we conclude that polar-cartesian
gridding is very sensitive to the method used for interpolation and
simple nearest-neighbor and linear techniques methods do not per-
form well and introduce artifacts in the reconstruction. We also
observe that Fessler’s NUFFT algorithm is not capable to recover
the sharp edges and small objects of a Shepp-Logan head phantom.
This iterative algorithm requires more frequency domain samples
to reach the same quality achieved by our method.
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