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ABSTRACT

This paper introduces two new algorithms for perfect recon-
struction of a periodic bandlimited signal from its nonuniform sam-
ples. We analyze the advantages and disadvantages of each method
and discuss their properties. Based on the theory of frames, we
also analyze the stability of the algorithms. Some special struc-
tures of the sampling points are investigated and we show that uni-
form sampling results in the most stable and simple reconstruction
algorithm. We also provide experimental evidence to support our
theoretical results.

1. INTRODUCTION

The most common sampling used in the context of DSP is uniform
sampling. However, the data can not always be sampled uniformly.
In [1], Yao and Thomas proposed a formula for reconstruction of
a non-periodic bandlimited signal from arbitrary spaced samples.
There are several extensions of this theorem for special distribu-
tions of sampling points, among which are jittered sampling, re-
current nonuniform sampling, etc. [2].

Numerical implementation of these reconstruction methods on
a digital computer is not possible due to the infinite dimension of
the problem, i.e., there is an infinite number of sampling points and
the reconstruction functions typically have infinite length. More-
over, in most practical applications we are given only a finite num-
ber of samples, which makes a perfect reconstruction of the signal
impossible. Any finite length signal can be periodically extended
across the boundaries. Assumption that the reconstructed signal is
periodic and bandlimited provides a simple and appropriate way to
handle the problem of reconstruction of finite dimensional signals.

In this paper, we consider the problem of reconstructing a pe-
riodic bandlimited signal from nonuniform samples. We provide
two reconstruction algorithms. The first, presented in Section 3, is
using a set of reconstruction functions which forms a basis. The
second, presented in Section 4, is using a set of overcomplete func-
tions that span the appropriate space. For both algorithms we an-
alyze the stability in two important cases: Uniform and recurrent
nonuniform. We discuss advantages and disadvantages of each
method, in particular the facts that the second is more stable and
the first is consistent. Finally, the theoretical results are confirmed
by simulations, which we present in Section 5.

2. PRELIMINARY NOTIONS

In this work, we consider the problem of reconstructing a periodic
bandlimited signal x(t) from its nonuniform samples. A real peri-

odic signal x(t), with period T , has a Fourier series representation
x(t) =

∑∞
n=−∞ cn exp{j2πnt/T} and Fourier transform

X(ω) =

∞∑
k=−∞

ckδ

(
ω − 2πk

T

)
, (1)

where δ(ω) is the Dirac delta function. A T -periodic signal x(t) is
said to be bandlimited to 2πK/T if ck = 0 for |k| > K. Such sig-
nals are also known as trigonometric polynomials of degree K. We
will denote the space of T -periodic signals bandlimited to 2πK/T
by VK and we will say that such signals are K-bandlimited. The
dimension of the space VK is M = 2K + 1.

Our approach to reconstructing a periodic K-bandlimited sig-
nal x(t) from its N nonuniform samples x(ti) is to represent it as a
linear combination of functions ϕi(t), i.e., x(t) =

∑N−1
i=0 x(ti)ϕi(t).

These functions ϕi(t) can either be linearly independent, in which
case they form a basis for their span, or they can be linearly de-
pendent, in which case they form a frame for their span. The set
{ϕi(t)}N

i=1 constitutes a frame for the space VK if there exist con-
stants A > 0 and B < ∞ such that for all x(t) ∈ VK [3]

A‖x(t)‖2 ≤
N∑

i=1

|〈x(t), ϕi(t)〉|2 ≤ B‖x(t)‖2, (2)

where 〈x(t), y(t)〉 = 1
T

∫ T

0
x(t)y∗(t)dt, ‖x(t)‖2 = 〈x(t), x(t)〉,

and y∗(t) is a complex conjugate of y(t). The constants A and B
are called the frame bounds and r = N/M is the redundancy. If
N = M , then the set {ϕi(t)} is a basis. If the two frame bounds
are equal, A = B, then the frame is called a tight frame. If in
addition N = M , then the set is an orthogonal basis. The tight-
est possible bounds A and B in (2) can be found as the smallest
and largest nonzero eigenvalues of the frame correlation matrix R,
whose entries are given as

Rij = 〈ϕi(t), ϕj(t)〉. (3)

One of the most important criteria of the reconstruction algo-
rithm is its stability, namely the affect of a small perturbation of
the samples on the reconstructed signal. As described in [4], the
condition number of the reconstruction algorithm, which is given
by the ratio

κ = B/A, (4)

provides an indicator of the stability and overall robustness of the
reconstruction algorithm. The optimal situation is obviously κ =
1, which holds in the case of an orthogonal basis and a tight frame.

We now present a reconstructing algorithm, where set of re-
construction functions constitutes a basis. Then using that results,
in Section 4 we develop a reconstruction based on frames.
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3. RECONSTRUCTION WITH BASES

The problem of reconstructing a periodic K-bandlimited signal
from uniform samples was considered in [5]. Reconstructing a
periodic bandlimited signal from nonuniform samples is consid-
erably more complicated. When the number of sampling points
N is odd and it satisfies N ≥ 2K + 1, the reconstruction can be
obtained using the Lagrange interpolation formula for trigonomet-
ric polynomials. For any even N greater than 2K + 1, Lagrange
interpolation for exponential polynomials results in a complex val-
ued interpolation function [6]. In Theorem 1 below we show that
reconstruction can be obtained using real valued functions that are
simpler than those derived in [6].

Theorem 1. Let x(t) be a T -periodic signal bandlimited to 2πK/T .
Then x(t) can be perfectly reconstructed from its N � 2K + 1
nonuniformly spaced samples x(tp) as

x(t) =

N−1∑
p=0

x(tp)hp(t), (5)

where

hp(t) =

⎧⎪⎨
⎪⎩

∏N−1
q=0
q �=p

sin(π(t−tq)/T )

sin(π(tp−tq)/T )
, N odd;

cos
(

π(t−tp)

T

) ∏N−1
q=0
q �=p

sin(π(t−tq)/T )

sin(π(tp−tq)/T )
, N even.

(6)

The proof of Theorem 1 follows from Yen’s formula [2] for
signal reconstruction from recurrent nonuniform samples, and from
the fact that x(nT + tp) = x(tp).

We can show that the functions {hp(t)}N−1
p=0 are linearly in-

dependent, i.e., they form a basis. For N odd they constitute a
basis for the space V(N−1)/2. In the case of N even, we can show
that {hp(t)}N−1

p=0 is a basis for the space V(N−2)/2

⋃
sin(π(Nt −

σt)/T ), where σt =
∑N−1

p=0 tp.
We can immediately verify that the reconstruction functions

{hp(t)}N−1
p=0 of Theorem 1 have the interpolation property, namely

hp(tk) =

{
1, k = p,
0, k �= p,

k, p = 0, 1, . . . , N − 1. (7)

If x(t) is not bandlimited, then the reconstruction x̂(t) given
by Theorem 1 is not equal to x(t). Nonetheless, the interpolation
property (7) guaranties consistent reconstruction of the signal x(t),
i.e., x̂(tp) = x(tp). Consistency of the reconstruction algorithm is
an important property for many signal processing applications [4].

We now consider two special cases of Theorem 1: Uniform
sampling and recurrent nonuniform sampling.

3.1. Uniform Sampling

The most popular form of sampling used in the context of DSP is
uniform sampling. In this case the set of reconstruction functions
is given by [7]

hp(t) =

⎧⎨
⎩

sin(Nπ(t−tp)/T )

N sin(π(t−tp)/T )
, N odd;

cos
(

π(t−tp)

T

)
sin(Nπ(t−tp)/T )

N sin(π(t−tp)/T )
, N even.

(8)

For N odd we can show that correlation matrix R of the set
{hp(t)} is equal to 1/N IN×N . Therefore, for N odd the set

{hp(t)} constitutes an orthogonal basis, and its condition num-
ber is κ = 1, which is the lowest possible value for κ. Due to
the low condition number, the set {hp(t)} of (8) provides stable
reconstruction in the presence of noise.

For the case of N even, the correlation matrix R of the set
{hp(t)} is a circulant matrix of the form

R =

⎛
⎜⎝

a b −b b · · · b
b a b −b · · · −b
...

...
. . .

⎞
⎟⎠ , (9)

where b = 1/(2N2) and a = 1/N − b. Calculating the N eigen-
values {λm}N−1

m=0 of the circulant matrix as the discrete Fourier
transform of its first row, we show that

κ =
max(λm)

min(λm)
=

a + b

a − (N − 1)b
= 2. (10)

From (10) we conclude that the set of functions {hp(t)} is not
an orthogonal basis, for which κ = 1. We also observe that κ
does not depend on N and T , thus the set never converges to an
orthogonal basis. As a result, reconstruction from an even number
N of uniform samples is less stable compared to N odd, in which
case the set {hp(t)} is orthogonal.

3.2. Recurrent Nonuniform Sampling

In this section, we consider the case of recurrent nonuniform sam-
pling. In this form of sampling, the sampling points are divided
into groups of Nr nonuniformly spaced points. The groups have
a recurrent period, which is denoted by Tr . One group of nonuni-
form samples repeats itself Mr times along the T -periodic signal
x(t), where MrTr = T . Denoting the points in the first recurrent
group by tr, r = 0, 1, . . . Nr − 1, the complete set {tp}N−1

p=0 of
sampling points in one period T is

tp = tp mod Nr
+

⌊
p

Nr

⌋
Tr, p = 0, 1, . . . N − 1, (11)

where 	·
 denotes the floor operator, which rounds down to the
nearest integer. Substituting (11) into (6), we have

hp(t) =

⎧⎨
⎩ bp

∏Nr−1
q=0 sin(Mrπ(t−tq)/T )

sin(π(t−tp)/T )
, N odd;

bp cos(π(t − tp)/T )
∏Nr−1

q=0 sin(Mrπ(t−tq)/T )

sin(π(t−tp)/T )
, N even,

(12)
where

bp =
1

Mr

∏Nr−1
q=0,q �=p sin(Mrπ(tp − tq)/T )

. (13)

An efficient implementation of (12) using a bank of continuous-
time LTI filters was developed in [7]. The correlation matrix R of
(12) can be shown to be a block circulant matrix of the form

R =

⎛
⎜⎝

A0 A1 A2 · · · AMr−1

AMr−1 A0 A1 · · · AMr−2

...
...

. . .

⎞
⎟⎠ , (14)

where the submatrices Ar , r = 0, . . . , Mr−1 are square Nr×Nr

matrices. To compute the eigenvalues of R we define the discrete
Fourier components of R as

Âk =

Mr−1∑
r=0

W krAr, k = 0, . . . , Mr − 1, (15)
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where W = e
−j 2π

Mr . Let {λk,i}Nr−1
i=0 be the Nr eigenvalues of

Âk for every k = 0, . . . , Mr − 1. It was shown in [8] that the
eigenvalues of an Hermitian block circulant matrix are the eigen-
values of the discrete Fourier components. Therefore, the eigen-
values of the matrix R of (14) are given by

λ(R) = λk,i, i = 0, . . . , Nr −1, k = 0, . . . , Mr −1. (16)

The last result (16), significantly simplifies the calculation of
the condition number κ of the reconstruction algorithm in the case
of recurrent nonuniform samples. Instead of computing N eigen-
values of an N × N matrix R, which may be very large, we com-
pute Nr eigenvalues of the Mr matrices Âk defined by (15), where
typically Nr << N . In Section 4.2, we will see an example of the
value of κ for a case of recurrent nonuniform sampling.

In the next section, using the results of this section we present
a reconstruction method based on frames.

4. FRAME BASED RECONSTRUCTION

Theorem 1 provides perfect reconstruction of periodic bandlimited
signals from nonuniform redundant (N > 2K +1) and nonredun-
dant (N = 2K + 1) samples. Given the set of N sampling points,
Theorem 1 generates the same set of N reconstruction functions
for any K-bandlimited signal, where K = 0, 1, . . . , 	(N −1)/2
.
The fact that for N > 2K + 1 the signal is oversampled is not
taken into account in the reconstruction process.

In the oversampled case, if the samples are corrupted by noise,
applying a low pass filter of support [−2πK/T, 2πK/T ] on the
reconstructed signal can reduce the average power of the noise.
We denote this low pass filtering as an operator PK , which zeros
all harmonics higher than K of the periodic signal x(t). We can
immediately verify that the operator PK is an orthogonal projector
onto the space VK , namely it satisfies

PKx(t) = x(t), x(t) ∈ VK ;
PKx(t) = 0, x(t) ∈ V ⊥

K ,
(17)

where V ⊥
K is the space of functions orthogonal to VK , i.e., the

space of T -periodic functions with ck = 0 for |k| ≤ K. Applying
PK to the reconstructed signal of (5) results in

x(t) = PK

N−1∑
p=0

x(tp)hp(t) =

N−1∑
p=0

x(tp)PKhp(t), (18)

which is equivalent to a reconstruction with the set of functions
{PKhp(t)}. To determine the properties of this set, we rely on the
following proposition.

Proposition 1. Let {ϕi(t)}N
i=1 be a basis for a space W with

frame bounds AW and BW , and let P denote the orthogonal pro-
jection of W onto a closed subspace V . Then {Pϕi(t)}N

i=1 is a
frame for V with frame bounds AV ≥ AW and BV ≤ BW .

Proposition 1 leads directly to the conclusion that the set of
functions {PKhp(t)} constitutes a frame for the space VK with
redundancy ratio r = N/(2K + 1). Computing the functions
{PKhp(t)} in (18) leads to a new reconstruction theorem.

Theorem 2. The problem of reconstructing a T -periodic K- ban-
dlimited signal from arbitrary spaced samples, considered in The-
orem 1, can be solved by (5), with

hp(t) =
αp0

2
+

K∑
k=1

(αpk cos(2πkt/T ) − βpk sin(2πkt/T )).

(19)
For N odd

αpk =
ap(−1)k

2N−2

∑
ϕ∈Gpk

cos(πϕ/T ),

βpk =
ap(−1)k

2N−2

∑
ϕ∈Gpk

sin(πϕ/T ), (20)

where Gpk is the set of all possible sums of values {tq}N−1
q=0,q �=p,

when (N − 1)/2 + k of them chosen with negative sign and (N −
1)/2 − k are positive.

For N even

αpk =
ap(−1)k

2N−1

⎛
⎜⎝ ∑

ϕ∈G+
pk

sin(πϕ/T ) −
∑

ϕ∈G−
pk

sin(πϕ/T )

⎞
⎟⎠ ,

βpk =
ap(−1)k

2N−1

⎛
⎜⎝ ∑

ϕ∈G−
pk

cos(πϕ/T ) −
∑

ϕ∈G+
pk

cos(πϕ/T )

⎞
⎟⎠ ,(21)

where the set {G+
pk ⊕G−

pk} consists of all possible sums of values

{tq}N−1
q=0 , when N/2 + k of them chosen with negative sign and

N/2 − k are positive. The value of tp appears with positive and
negative signs in G+

pk and G−
pk, respectively.

In the ideal case, where x(t) ∈ VK and its samples are not
corrupted ny noise, the reconstruction functions (6) and (19) both,
lead to the perfect reconstruction of the signal. However, when
x(t) is not truly bandlimited or its samples {x(tp)} are corrupted
by noise, these two methods lead to different reconstructions. It
follows from Proposition 1 that the frame bounds A, B of the set
(19) are tighter than the bounds of the set (6). As a result, the
condition number κ of the frame (19) is smaller than κ of (6). This
fact makes the frame based method of Theorem 2 more robust than
the algorithm of Theorem 1. However, interpolation property (7)
no longer holds when using (19), i.e., the reconstructed signal x̂(t)
does not necessarily satisfy x̂(tp) = x(tp).

4.1. Uniform Sampling

In the case of uniform samples, projecting the set (8) onto the space
VK , we obtain

hp(t) =
sin(π(2K + 1)(t − tp)/T )

N sin(π(t − tp)/T )
. (22)

We can show that the functions {hp(t)} of (22) constitute a tight
frame for VK , so that κ = 1. Comparing it to the set (8), we
notice an improvement in condition number in the case of an even
number of sampling points, where it reduces from κ = 2 to κ = 1.

4.2. Recurrent Nonuniform Sampling

For the case of recurrent nonuniform samples, we do not give an
explicit formula for the set of reconstruction functions due to com-
plexity of representation, but we do provide a countable example.
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Fig. 1. Comparison between the condition number κ of two recon-
struction methods, as a function of t1.

We now consider a set of N = 10 recurrent nonuniform sam-
ples, with Nr = 2, Mr = 5, and T = 10. We fix the value of
t0 = 0 and allow t1 to change in the range [0, 2]. The signal x(t)
lies in the space V2.

The behavior of the condition number as a function of t1 is
shown in Fig. 1, where the eigenvalues of the block circulant cor-
relation matrix R were calculated using the method presented in
Section 3.2. As predicted by Proposition 1, the condition num-
ber of the frame method is significantly lower than κ of the set
of reconstruction functions of Theorem 1. We observe, that in
the neighborhood of t1 = 1 the condition number of the frame
based method is very low and it achieves the minimal value for
t1 = 1, where the recurrent nonuniform sampling set becomes
uniform and the set of reconstruction functions constitutes a tight
frame. For the reconstruction method of Theorem 1, since N is
even the lowest value of κ for a uniform sampling set is 2 (10).

5. SIMULATION RESULTS

In this section, we present some numerical results and simulations.
We created a 10-periodic 4-bandlimited signal x(t), which belongs
to the 9-dimensional space V4. We then consider three sets of 18
sampling points {tp}: nonuniform, uniform, and recurrent nonuni-
form with Nr = 3, where the nonuniform points were randomly
chosen. Each set of samples {x(tp)} was perturbed by a randomly
generated Gausian sequence {wp} with zero mean and variance
0.01. In Fig. 2, we plot the signal x(t) and two reconstructions
obtained with Theorem 1 and 2. Noisy samples {x(tp) + wp} are
marked by dots.

We define the indicator of the quality of the reconstruction

as the signal to noise ratio (SNR), given by 10 log10
‖x(t)‖2

‖x(t)−x̂(t)‖2 .
For the examples of Fig. 2, the SNR values are given in the Table 1.

Table 1. SNR of the Reconstructed Signals of Fig. 2

Reconstruction SNR [dB]
Method Nonuniform Uniform Recurrent

Theorem 1 3.62 16.84 13.08
Theorem 2 6.35 19.87 19.82

We can clearly see from Fig. 2 and Table 1 that the frame
method of Theorem 2 results in a higher quality of reconstruction.

0 1 2 3 4 5 6 7 8 9 10
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−0.5

0

0.5

1

1.5
Nonuniform Sampling

Original Signal
Reconstruction with Theorem 1
Reconstruction with Theorem 2

0 1 2 3 4 5 6 7 8 9 10
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0
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Original Signal
Reconstruction with Theorem 1
Reconstruction with Theorem 2
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−1
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0
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1
Recurrent Nonuniform Sampling

Original Signal
Reconstruction with Theorem 1
Reconstruction with Theorem 2

Fig. 2. Comparison between the reconstruction methods.

We also observe that there is the same error for uniform and recur-
rent nonuniform sampling sets, when the method of Theorem 2 is
used for reconstruction. An important observation is that, owing to
(7), the method of Theorem 1 provides consistent reconstruction of
the signals. This property is very useful in many signal processing
applications [4], e.g., in interpolation theory.
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