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ABSTRACT

This paper introduces a new reconstruction formula for re-
constructing a periodic bandlimited signal from its nonuniform
samples, as well as filterbank interpretations of various sampling
strategies, which lead to efficient interpolation and reconstruction
methods. As an example of a potential application of these results,
we apply it to the problem of reconstructing a two-dimensional
bandlimited signal from its recurrent nonuniform samples in polar
coordinates, and develop an efficient filterbank reconstruction with
bandlimited LTI filters.

1. INTRODUCTION

Digital signal processing (DSP) and image processing theory rely
on sampling a continuous-time (CT) signal to obtain a discrete-
time (DT) representation of the signal. The most common form of
sampling used in the context of DSP is uniform sampling. How-
ever, there are a variety of applications in which data is sampled
in other ways, such as nonuniformly in time. The problem of re-
constructing a signal from its nonuniform samples arises in a vari-
ety of fields such as medical imaging, geophysics and speech pro-
cessing. In particular, the problem of signal reconstruction from
its nonuniform frequency domain samples arises in computerized
tomography and magnetic resonance imaging (MRI). Polar sam-
pling strategies, such as linear spiral scan techniques [1], which
are widely used in MRI, provide practical advantages in the con-
text of medical imaging. To avoid artifacts in the reconstruction
process, efficient interpolation methods from nonuniform samples
in polar coordinates are required.

In this paper, we consider the problem of reconstruction from
nonuniform samples, where the underlying signal is periodic in
the one-dimensional (1-D) case, and periodic in one dimension in
the two-dimensional (2-D) case. In practice, any signal with fi-
nite time (space) support can be represented as a periodic signal,
an approach frequently encountered in image processing. In Sec-
tion 2, we develop a new sampling theorem for reconstruction of
a periodic signal from its nonuniform samples. We then apply this
theorem to reconstruction of a periodic bandlimited signal from
recurrent nonuniform samples, and in Section 3, we develop a fil-
terbank (FB) interpretation of the reconstruction process. Since
any functionf(r, θ) given in polar coordinates is2π-periodic in
θ, these results can be applied to the reconstruction of 2-D sig-
nals from nonuniformly spaced samples in polar coordinates. As
an example, in Section 4, we develop a FB interpretation of re-
construction of a bandlimited signals from recurrent nonuniform
samples in polar coordinates.

2. NONUNIFORM SAMPLING OF PERIODIC
BANDLIMITED SIGNALS

In this section, we consider the problem of reconstructing a pe-
riodic bandlimited signal from its nonuniform samples. A peri-
odic signalx(t), with periodT , has a Fourier series representation
x(t) =

P∞
n=−∞ cn exp(j2πnt/T ) and Fourier transform

X(ω) =
1

2π

Z ∞

−∞
x(t)e−jωtdt =

∞X
n=−∞

cnδ

�
ω − 2πn

T

�
,

(1)
whereδ(ω) is the Dirac delta function. AT -periodic signalx(t)
is said to be bandlimited to2πK/T if cn = 0 for |n| > K.
Theorem 1 below asserts that such a signal can be perfectly recon-
structed from a finite numberN of its arbitrary spaced samples,
whereN > 2K + 1.

The problem of reconstructing a periodic bandlimited signal
from N = 2K + 1 uniform samples was first considered by
Cauchy [2], and later by Stark [3], Brown [4] and Schanze [5].
Reconstruction from any even numberN of uniform samples was
considered in [6] and [5]. As we show, these results are all special
cases of Theorem 1. Reconstructing a periodic bandlimited sig-
nal from nonuniform samples is considerably more complicated.
When N = 2K + 1, reconstruction can be obtained using the
Lagrange interpolation formula for trigonometric polynomials [7].
For N > 2K + 1, Lagrange interpolation for exponential poly-
nomials results in a complex valued interpolation function [8]. In
Theorem 1 below we show that interpolation can be obtained using
real valued functions that are simpler than those derived in [8].

Theorem 1 Letx(t) be aT -periodic signal bandlimited to2πK/T .
Thenx(t) can be perfectly reconstructed from itsN > 2K + 1
nonuniformly spaced samplesx(tp) as

x(t) =

N−1X
p=0

x(tp)hp(t), (2)

where

hp(t) =

8>>>>>>><>>>>>>>:

N−1Y
q=0
q 6=p

sin(π(t− tq)/T )

sin(π(tp − tq)/T )
, N odd;

cos

�
π(t− tp)

T

�N−1Y
q=0
q 6=p

sin(π(t− tq)/T )

sin(π(tp − tq)/T )
, N even.

(3)



The proof of Theorem 1 follows from Yen’s formula [10] for
signal reconstruction from nonuniform recurrent samples, and the
fact thatx(nT + tp) = x(tp).

The interpolation functionhp(t) of Theorem 1 is periodic in
T and has the interpolation property, namely

hp(tk) =

�
1, k = p
0, k 6= p

k, p = 0, 1, . . . , N − 1, (4)

which is very important in approximation theory. Specifically,
if x(t) is not precisely bandlimited, then the reconstructionbx(t)
given by Theorem 1 may not be equal tox(t). Nonetheless, the
interpolation property (4) guaranties thatbx(tp) = x(tp).

We now consider two special cases of Theorem 1: Uniform
sampling and recurrent nonuniform sampling.

Uniform Sampling:
Suppose that the sampling points aretp = pT/N, p = 0, 1, . . . N−
1, i.e., uniformly spaced over one periodT . To develophp(t) for
this case we first note that

N−1Y
q=0
q 6=p

sin(π(t− tq)/T )

sin(π(tp − tq)/T )
=

2

N
DN (t− tp), (5)

whereDN (t) is theDirichlet kernel [7], which can equivalently
be expressed as

DN (t) =
N

2

N−1Y
k=1

sin(π(t− tk)/T )

sin(πtk/T )
=

sin(Nπt/T )

2 sin(πt/T )
. (6)

Substituting (5) and (6) into (3), we have

hp(t) =

8<: sin(Nπ(t−tp)/T )

N sin(π(t−tp)/T )
, N odd;

cos
�

π(t−tp)

T

�
sin(Nπ(t−tp)/T )

N sin(π(t−tp)/T )
, N even,

(7)

which is equal to the interpolation function derived in [3], [2], [5]
and [4].

Recurrent Nonuniform Sampling:
We now consider the case in which the sampling points are de-
fined by a group ofNt nonuniformly spaced points, which repeats
itself Mt times with recurrent periodTt along theT -periodic sig-
nal, whereMtTt = T . Denoting the points in one group by
tp, p = 0, 1, . . . Nt − 1, the complete set of sampling points in
one periodT is

tp + nTt, p = 0, 1, . . . Nt − 1, n = 0, 1, . . . Mt − 1. (8)

Recurrent nonuniform samples can be regarded as a combi-
nation ofNt sequences of uniform samples withMt points each,
taken with intervalTt. An example of a sampling distribution for
the caseNt = 3 andMt = 2 is depicted in Fig. 1.
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Fig. 1. Sampling distribution forNt = 3 andMt = 2.

From (8) and (3), the interpolation function in this case is

hp(t) =

8<: bp

QNt−1
q=0 sin(Mtπ(t−tq)/T )

sin(π(t−tp)/T )
, N odd;

bp cos(π(t− tp)/T )
QNt−1

q=0 sin(Mtπ(t−tq)/T )

sin(π(t−tp)/T )
, N even,

(9)
where

bp =
1

Mt

QNt−1
q=0,q 6=p sin(Mtπ(tp − tq)/T )

. (10)

Direct reconstruction using (9) is computationally difficult. In
the next section we develop an efficient implementation of (9) us-
ing a bank of CT LTI filters.

3. RECONSTRUCTION USING LTI FILTERS

In this section, we develop a CTFB interpretation of the recon-
struction from uniform samples (7), and the reconstruction from
nonuniform samples (9).

Uniform Sampling:
In this case the reconstruction (2) can be expressed as

x(t) = s(t) ∗ h(t), (11)

where

h(t) =

(
sin(Nπt/T )
N sin(πt/T )

, N odd;

cos(πt/T ) sin(Nπt/T )
N sin(πt/T )

, N even,
(12)

ands(t) is an impulse train of samples,

s(t) =

N−1X
p=0

x(tp)δ(t− tp), tp =
pT

N
. (13)

From (11) it follows thatx(t) is obtained by filterings(t) with
an LTI filter with impulse responseh(t) given by (12), and fre-
quency responseH(ω) given by

H(ω) =
1

2π

Z ∞

−∞

sin(Nπt/T )

N sin(πt/T )
e−jωtdt

=
1

N
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δ
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�
, (14a)

for N odd, and

H(ω) =
1
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T
)

+
1

2N

�
δ(ω − Nπ

T
) + δ(ω +

Nπ

T
)

�
, (14b)

for N even.
Evidently,H(ω) = 0 for |ω| > π(N − 1)/T whenN is odd,

andH(ω) = 0 for |ω| > πN/T whenN is even,i.e., the filters in
both cases are bandlimited. The frequency response ofH(ω) for
the caseN = 10 andT = 2π is shown in Fig. 2.

Note, that the filter with frequency response depicted in Fig. 2,
is used to reconstruct signals bandlimited to2πK/T = 4. The
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Fig. 2. Frequency response of the reconstruction filterH(ω)
of (14b) forN = 10 (even) andT = 2π.

filter includes an unnecessary5th harmonic, which does not con-
tribute to the reconstruction process, whenx(t) is truly bandlim-
ited to 4. In this case, if we replace this last harmonic by0, then
the impulse response of the resulting filter is

h(t) =
sin(π(2K + 1)t/T )

N sin(πt/T )
, (15)

which was derived in [6]. We may then use the interpolation func-
tionshp(t) = h(t − tp) defined by (15) to reconstruct a periodic
bandlimited signal from an arbitrary numberN of samples, where
N > 2K + 1. The functions{hp(t)} constitute a tight frame [11]
for the space ofT -periodic signals bandlimited to2πK/T with
redundancy ratioN/(2K + 1).

In the case in whichx(t) is bandlimited to2πK/T , the in-
terpolation functions (15) and (12) lead to the same reconstruc-
tion. However, whenx(t) is not truly bandlimited, the interpola-
tion functions will lead to different reconstructions. The interpola-
tion function (12) has the desirable interpolation property, so that
the reconstructionbx(t) satisfiesbx(tp) = x(tp). This property no
longer holds when using (15).

Recurrent Nonuniform Sampling:
We now show that the reconstruction formula (9) from recurrent
nonuniform samples can be implemented using a CTFB. Combin-
ing (9) and (2), the reconstruction can be expressed as a sum ofNt

convolutions,

x(t) =

Nt−1X
p=0

sp(t) ∗ hp(t), (16)

where

hp(t) = bp
sin(Mtπt/T )

sin(πt/T )

Nt−1Y
q=0
q 6=p

sin(Mtπ(t+tp−tq)/T ) (17a)

for oddN ,

hp(t) = bp cos(πt/T )
sin(Mtπt/T )

sin(πt/T )

Nt−1Y
q=0
q 6=p

sin(Mtπ(t+tp−tq)/T )

(17b)
for evenN , andsp(t) is an impulse train of samples,

sp(t) =

Mt−1X
n=0

x(nTt + tp)δ(x− nTt − tp). (18)

Equation (16) can be interpreted as a filterbank withNt filters.
Each uniform sequence of samplessp(t) formed according to (18)
is filtered by a CT filterHp(ω), with impulse response given by

(17). Summing the outputs of theNt filters results in the recon-
structed signalx(t).

To determine the frequency responseHp(ω) of the filterhp(t)
of (17b) for an even number of samples, we note thathp(t) of
(17b) can be expressed as

hp(t) = bp cos(πt/T )
sin(Mtπt/T )

sin(πt/T )

Nt−1X
k=−Nt+1

ckejkMtπt/T ,

(19)
where the complex coefficientsck are the result of expanding the
product of sines in (17b) into complex exponentials. As shown
in (14b), the first term in (19) is a filter bandlimited toπMt/T .
The effect of the summation and multiplexing by the exponent is
to create shifted and scaled versions of this bandlimited filter, so
that the filter responseHp(ω) is bandlimited toπMtNt/T .

Applying the interpolation identity derived in [12], the CTFB,
derived in this section, can be converted to a DTFB, which results
in interpolation of the nonuniform samples to uniformly spaced
samples.

In Fig. 3 we depictH2(ω) for the case in whichT = 2π,
and the nonuniform samples are given byt0 = 0, t1 = 0.087,
t2 = 0.227 repeated with periodTt = π/6 so thatNt = 3 and
Mt = 12. As we expect, the filter is bandlimited toπMtNt/T =
12 · 3/2 = 18, sinceH2(ω) is created by three (Nt) shifted and
scaled versions of a filter bandlimited toMt/2 = 6.
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Fig. 3. Frequency response ofH2(ω).

4. RECONSTRUCTION IN POLAR COORDINATES

We now consider an application of Theorem 1 and the FB interpre-
tation of Section 3, to the problem of reconstruction of 2-D signals
from nonuniform samples in polar coordinates.

Butzeret al. [13] considered reconstruction from nonuniform
samples in 2-D cartesian coordinates, in which the nonuniform
sampling points all lie on straight lines parallel to they axis, and
the average sampling density in both coordinates is greater than the
Nyquist rate. As we show, Butzer’s interpolation theorem can be
extended to nonuniform sampling in polar coordinates, in which
nonuniform samples lie either on concentric circles or on radial
lines, where these circles or lines are nonuniformly distributed [9].

We now consider the case of recurrent nonuniform sampling
in polar coordinates, where we perform recurrent nonuniform sam-
pling along each one of coordinatesr andθ. In the radial direction
we define a group ofNr samples repeated with periodTr, and
in the azimuthal direction we define a group ofNθ samples with
periodTθ. A sampling grid for recurrent nonuniform samples in
polar coordinates withMθ = 12, Nθ = 3 andNr = 3 is de-
picted in Fig. 4. In this sampling scheme, samples on radial lines
are always symmetric aboutr = 0 to provide radial symmetry of
the grid. As can be seen from the figure, the nonuniform group
of Nθ samples in theθ coordinate always has an even number of



repetitions,i.e., Mθ is even, so that the total number of samples
N = NθMθ is also even.
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Fig. 4. Recurrent sampling in polar coordinates(r, θ) with Mθ =
12, Nθ = 3 andNr = 3.

Extending Butzer’s theorem to polar coordinates, it can be
shown that any functionf(r, θ) bandlimited to a circular disc of
radiusπNr/Tr and angularly bandlimited to(NθMθ − 2)/2 can
be perfectly reconstructed from the recurrent nonuniform samples
defined above.

Since, any functionf(r, θ) in polar coordinates is2π-periodic
in θ, interpolation from the azimuthal coordinate can be obtained
using Theorem 1, withT = 2π. Reconstruction from the radial
coordinate can be obtained using the known results on reconstruc-
tion from recurrent nonuniform samples in 1-D [12]. Using this
approach, we can show that the reconstruction can be expressed as
a sum ofNrNθ convolutions,

f(r, θ) =

Nr−1X
p=0

Nθ−1X
q=0

spq(r, θ) ∗ hpq(r, θ), (20)

wherespq(r, θ) is a 2-D impulse train of samples,

spq(r, θ) =

∞X
n=−∞

Mθ−1X
m=0

ef(nTr + rp, mTθ + θq)

·δ(r − nTr − rp, θ −mTθ − θq). (21)

Here ef(r, θ) is an extension off(r, θ) to new coordinates [14],
with −∞ < r < ∞ and0 6 θ < 2π,ef(r, θ) =

�
f(r, θ), r > 0;
f(−r, θ + π), r < 0,

(22)

andhpq(r, θ) = hr
p(r)hθ

q(θ) is a separable 2-D filter, wherehθ
q(θ)

is given by (17b) withMt = Mθ, Tt = Tθ andT = 2π, andhr
p(r)

follows from the results in [12]. From the discussion in Section 3,
the filterhθ

q(θ) is bandlimited toMθNθ/2, and from [12], the filter
hr

p(r) is bandlimited toπNr/Tr.

We note that in [9] Marvasti also considered the problem of
reconstruction from nonuniform samples in polar coordinates. The
interpolation function he developed involves complex-valued func-
tions, and is therefore more complicated to implement. Further-
more, he does not develop an efficient interpolation method using
LTI filters, as we do here.

5. CONCLUSION

We presented a formula for reconstruction ofT -periodic signals
bandlimited to2πK/T from nonuniform samples, and developed
an efficient FB interpretation of the reconstruction in the case of
recurrent nonuniform sampling. We then applied these result to
the reconstruction of 2-D signals from nonuniform samples in po-
lar coordinates, and provided a CTFB interpretation of the recon-
struction using bandlimited LTI filters.
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