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ABSTRACT 2. NONUNIFORM SAMPLING OF PERIODIC

. . . BANDLIMITED SIGNALS
This paper introduces a new reconstruction formula for re-

constructing a periodic bandlimited signal from its nonuniform |, this section, we consider the problem of reconstructing a pe-
samples, as well as filterbank interpretations of various sampling riodic bandlimited signal from its nonuniform samples. A peri-
strategies, which lead to efficient interpolation and reconstruction gic signalz(¢), with periodT’, has a Fourier series representation
methods. As an example of a potential application of these results,x(t) =% ¢, exp(j2nnt/T) and Fourier transform
we apply it to the problem of reconstructing a two-dimensional neTee
bandlimited signal from its recurrent nonuniform samples in polar 1 [o° ) oo 9mn
coordinates, and develop an efficient filterbank reconstruction with X (w) = 2—/ z(t)e 7dt = Z cnd (w - T) ,
bandlimited LTI filters. T/ —oo n=—oo W
whered(w) is the Dirac delta function. A'-periodic signale(¢)
1. INTRODUCTION is said to be bandlimited tarK/T if ¢, = 0 for [n| > K.
. . . . . Theorem 1 below asserts that such a signal can be perfectly recon-
Digital signal processing (DSP) and image processing theory rely structed from a finite numbeN of its arbitrary spaced samples
on sampling a continuous-time (CT) signal to obtain a discrete- |\ h o n > 95 ey ‘
time (DT) representation of the signal. The most common form of The p/roblem of reconstructing a periodic bandlimited signal
sampling used in the context of DSP is uniform sampling. How- ¢ N — o + 1 uniform samples was first considered by

ever, there are a variety of applications in which data is sampled Cauchy [2], and later by Stark [3], Brown [4] and Schanze [5].
in other ways, such as nonuniformly in time. The problem of re- oo nsiryction from any even numblrof uniform samples was
constructing a signal from its nonuniform samples arises in a vari- considered in [6] and [5]. As we show, these results are all special
ety of fields such as medical imaging, geophysics and speech pro.;qes of Theorem 1. Reconstructing a periodic bandlimited sig-

cessing. In particular, the problem of signal reconstruction from nal from nonuniform samples is considerably more complicated.
its nonuniform frequency domain samples arises in computerizedWhenN — 2K + 1, reconstruction can be obtained using the

tqmography .and magnetig resonance imaging (MRl)' Polar Sa,m'Lagrange interpolation formula for trigonometric polynomials [7].
pling _strategles, .SUCh as Ilne_ar splral_scan technlque:_‘, [1], which For N > 2K + 1, Lagrange interpolation for exponential poly-
are widely used in MR, provide practical advantages in the con- ,,iais results in a complex valued interpolation function [8]. In
text of medical imaging. To avoid artifacts in the reconstruction Theorem 1 below we show that interpolation can be obtained using

process, eff|C|_ent mterpolatlo_n methods from nonuniform samples real valued functions that are simpler than those derived in [8].
in polar coordinates are required.

In this paper, we consider the problem of reconstruction from Theorem 1 Letx(t) be aT-periodic signal bandlimited ter K /T'.

nonuniform samples, where the underlying signal is periodic in Thenz(t) can be perfectly reconstructed from it > 2K + 1
the one-dimensional (1-D) case, and periodic in one dimension in nonyniformly spaced samplest,) as

the two-dimensional (2-D) case. In practice, any signal with fi-

nite time (space) support can be represented as a periodic signal, N-1
an approach frequently encountered in image processing. In Sec- x(t) =Y a(tp)hp(t), (2)
tion 2, we develop a new sampling theorem for reconstruction of p=0

a periodic signal from its nonuniform samples. We then apply this h
theorem to reconstruction of a periodic bandlimited signal from ere

recurrent nonuniform samples, and in Section 3, we develop a fil- N-1 sin(r(t — t,)/T)

terbank (FB) interpretation of the reconstruction process. Since — N odd
any functionf(r, ) given in polar coordinates &r-periodic in o sin(m(tp — tq)/T)

0, these results can be applied to the reconstruction of 2-D sig- 4, (t) = arp No1

nals from nonuniformly spaced samples in polar coordinates. As m(t —tp) sin(r(t —tq)/T)

an example, in Section 4, we develop a FB interpretation of re- o8 T H sin(w(tp — tq)/T)’ even
construction of a bandlimited signals from recurrent nonuniform Zig

samples in polar coordinates. 3)



The proof of Theorem 1 follows from Yen’s formula [10] for

signal reconstruction from nonuniform recurrent samples, and the

fact thatz(nT + tp) = z(tp).
The interpolation functiork, (¢) of Theorem 1 is periodic in
T and has the interpolation property, namely
k=p

hy (tr) ={ k£p

which is very important in approximation theory. Specifically,
if z(t) is not precisely bandlimited, then the reconstructigin)
given by Theorem 1 may not be equalt¢t). Nonetheless, the
interpolation property (4) guaranties thét,) = x(¢,).

We now consider two special cases of Theorem 1: Uniform
sampling and recurrent nonuniform sampling.

L

0 0,1,...

kvp: 7N_17 (4)

Uniform Sampling:

Suppose that the sampling points gge= pT'/N, p=0,1,... N—
1, i.e., uniformly spaced over one peridd To developh,(t) for
this case we first note that

T sin(n(t —tg)/T) 2
[T Satetey 7y ~ w2t O

a#p

where Dy (t) is theDirichlet kernel[7], which can equivalently

be expressed as
N h nl(t—t)/T) _ sin(Nat/T) o
2 o sin(mty/T) ~ 2sin(nt/T)
Substituting (5) and (6) into (3), we have
sin(N7(t—tp)/T) .
hp(t) = Nsm(ﬁ((titz;/T)’ (N ( )/T) ' odd: ()
- w(t—t sin(N7(t—tp
COS( 7 ) Nsin(r(i—t)/7) 1V even,

which is equal to the interpolation function derived in [3], [2], [5]
and [4].

Recurrent Nonuniform Sampling:
We now consider the case in which the sampling points are de-
fined by a group ofV; nonuniformly spaced points, which repeats
itself M, times with recurrent period}; along theT-periodic sig-
nal, whereM;T; = T. Denoting the points in one group by
ty, p = 0,1,... Ny — 1, the complete set of sampling points in
one periodl” is

tp+nTy, p=0,1,...Ny—1, n=0,1,..

M, —1. (8)

Recurrent nonuniform samples can be regarded as a combi-

nation of N; sequences of uniform samples witlf, points each,
taken with intervall;. An example of a sampling distribution for
the caseV: = 3 andM; = 2 is depicted in Fig. 1.

T =2T;

L — . 1
Titi+Ty to+Ty T

0t 1 to

Fig. 1. Sampling distribution fofV; = 3 andM; = 2.

From (8) and (3), the interpolation function in this case is

10ty sin(Mym(t—tg)/T)

hy(t) = by = = St/ , N odd;
v 10y " sin(Mym(t—tq)/T)
blﬂ COS(TF(t - tp)/T) sin(m(t—tp)/T) , N even,
9)
where
1
by = (10)

M, Hq 0 q#p sin(Mm(t, — tg)/T)

Direct reconstruction using (9) is computationally difficult. In
the next section we develop an efficient implementation of (9) us-
ing a bank of CT LTl filters.

3. RECONSTRUCTION USING LTI FILTERS

In this section, we develop a CTFB interpretation of the recon-
struction from uniform samples (7), and the reconstruction from
nonuniform samples (9).

Uniform Sampling:
In this case the reconstruction (2) can be expressed as

a(t) = s(t) * h(t), (12)
where
sin(_Nﬂt/T) N odd:
h(t) = NS]n(Wt/T);in(Nwt/T) ' (12)
COS(ﬂ't/T)m, N even,
ands(t) is an impulse train of samples,
N-1
T
s =D wlt)slt—t,), t="To (13

0

From (11) it follows thate(¢) is obtained by filtering(¢) with
an LTI filter with impulse responsg(t) given by (12), and fre-
quency responsH (w) given by

1 [ sin(Nwt/T) _jut
AW =52 | Nem@eym©
(N—1)/2
1 2mn
- _om 14
> o(w-2). e

n=—(N-1)/2
for N odd, and

(N—-2)/2

1 2mn
n=—(N—-2)/2
1 N N7r
for N even.
Evidently, H (w) = 0 for |w| > 7(N — 1)/7 whenN is odd,

andH (w) = 0 for |w| > #N/T whenN is evenj.e.,the filters in
both cases are bandlimited. The frequency respongé(af) for
the caseV = 10 andT" = 2 is shown in Fig. 2.

Note, that the filter with frequency response depicted in Fig. 2,
is used to reconstruct signals bandlimitecRteX’ /T = 4. The



(17). Summing the outputs of th¥; filters results in the recon-
T structed signat:(t).
4

ARENCH

—5-4-3-2-1 | 1

To determine the frequency resporég(w) of the filterh, (t)
of (17b) for an even number of samples, we note that) of
(17b) can be expressed as

I
5

Fig. 2. Frequency response of the reconstruction filf&fw) sin(Mwt/T) 2=t _
of (14b) for N' = 10 (even) andl’ = 2. hp(t) = by cos(ﬂt/T)ﬁ S e

k=—N¢+1
(19)
where the complex coefficients are the result of expanding the
filter includes an unnecessaith harmonic, which does not con- ~ Product of sines in (17b) into complex exponentials. As shown

tribute to the reconstruction process, whef) is truly bandlim- N (14b), the first term in (19) is a filter bandlimited oVl /T.
ited to 4. In this case, if we replace this last harmonidpyhen 1 he effect of the summation and multiplexing by the exponent is
the impulse response of the resulting filter is to create shifted and scaled versions of this bandlimited filter, so

that the filter respons#,, (w) is bandlimited tor M N; /T

Applying the interpolation identity derived in [12], the CTFB,
derived in this section, can be converted to a DTFB, which results
in interpolation of the nonuniform samples to uniformly spaced
which was derived in [6]. We may then use the interpolation func- samples.
tionsh,(t) = h(t — t,) defined by (15) to reconstruct a periodic In Fig. 3 we depictH»(w) for the case in whici" = 2,
bandlimited signal from an arbitrary numh&rof samples, where  and the nonuniform samples are givenfgy= 0, t; = 0.087,
N > 2K + 1. The functions{h,(t)} constitute a tight frame [11]  t2 = 0.227 repeated with period; = /6 so thatN; = 3 and
for the space ofl-periodic signals bandlimited tor K /T with M; = 12. As we expect, the filter is bandlimited ta\/; N; /T =

sin(w(2K + 1)t/T)

M) = —Nentri/T)

(15)

redundancy ratidV/(2K + 1). 12 - 3/2 = 18, since H2(w) is created by three;) shifted and
In the case in whichz(¢) is bandlimited to2r K /T, the in- scaled versions of a filter bandlimited 4d; /2 = 6.
terpolation functions (15) and (12) lead to the same reconstruc-
tion. However, when:(t) is not truly bandlimited, the interpola- |Ha(w)]
tion functions will lead to different reconstructions. The interpola-
tion function (12) has the desirable interpolation property, so that [ [ [ [ [ [ [ [ [ [
the reconstructioft(t) satisfiesz(¢,) = z(t,). This property no T T
e con (1) satefes atttttsttstt T Tpaassst,
—18 —6 6 18
Recurrent Nonuniform Sampling: Fig 3 F &
We now show that the reconstruction formula (9) from recurrent ig. 3. Frequency response &f (w).
nonuniform samples can be implemented using a CTFB. Combin-
ing (9) and (2), the reconstruction can be expressed as a sivn of
convolutions,
Ni—1 4. RECONSTRUCTION IN POLAR COORDINATES
w(t) = Y sp(t) x hy(t), (16)
p=0 We now consider an application of Theorem 1 and the FB interpre-
where tation of Section 3, to the problem of reconstruction of 2-D signals
from nonuniform samples in polar coordinates.
sin(Mymt/T) et Butzeret al.[13] considered reconstruction from nonuniform
hp(t) = by “sin(rt/T) H sin(Mym(t+t, —1t4)/T) (173) samples in 2-D cartesian coordinates, in which the nonuniform
s q=0 sampling points all lie on straight lines parallel to thexis, and
P the average sampling density in both coordinates is greater than the
for odd NV, Nyquist rate. As we show, Butzer’s interpolation theorem can be
extended to nonuniform sampling in polar coordinates, in which
. Ne—1 nonuniform samples lie either on concentric circles or on radial
sin(Mymt/T)

hp(t) = bp cos(mt/T)

W 1_[0 sin(Mim(t+tp,—tq)/T)  lines, where these circles or lines are nonuniformly distributed [9].
q=

We now consider the case of recurrent nonuniform sampling
7P in polar coordinates, where we perform recurrent nonuniform sam-

for evenN, ands, (£) is an impulse train of samples (17b) pling along each one of coordinateandd. In the radial direction
! P ' we define a group ofV,. samples repeated with peridd, and
My—1 in the azimuthal direction we define a group 8§ samples with

sp(t) = Z a(nTy + t,)8(x — nT} — tp). (18) periodTy. A sampling grid for recurrent nonuniform samples in

polar coordinates witlV{y = 12, Ny = 3 and N, = 3 is de-
picted in Fig. 4. In this sampling scheme, samples on radial lines
Equation (16) can be interpreted as a filterbank \@Hilters. are always symmetric about= 0 to provide radial symmetry of
Each uniform sequence of samplgsgt) formed according to (18)  the grid. As can be seen from the figure, the nonuniform group
is filtered by a CT filterH, (w), with impulse response given by  of Ny samples in th@ coordinate always has an even number of

n=0



repetitions,i.e., My is even, so that the total number of samples
N = NyMjy is also even.

Fig. 4. Recurrent sampling in polar coordinaiesf) with My =
12, N9y = 3 andN,. = 3.

Extending Butzer's theorem to polar coordinates, it can be
shown that any functiorf (r, #) bandlimited to a circular disc of
radiust N, /T, and angularly bandlimited t@Vy My — 2)/2 can

be perfectly reconstructed from the recurrent nonuniform samples [5]

defined above.

Since, any functiorf (r, 6) in polar coordinates i8x-periodic
in 0, interpolation from the azimuthal coordinate can be obtained
using Theorem 1, with" = 27. Reconstruction from the radial

coordinate can be obtained using the known results on reconstruc-

tion from recurrent nonuniform samples in 1-D [12]. Using this

approach, we can show that the reconstruction can be expressed ag7]

a sum ofN,. Ny convolutions,

Np—1Ng—1

f(r0) = Z Z Spq(7,0) * hpqe(r, 0), (20)
p=0 ¢=0

wheresyq (1, 0) is a 2-D impulse train of samples,
0o Mg—1
spq(r,0) = Z Z J(T +rp, mTy + 6q)

n=—oco m=0

O(r—=nTy —rp, 0 —mTy —04). (21)

Here f(r, 6) is an extension off (r,0) to new coordinates [14],

with —co < r < coand0 < 0 < 2,
= _ [ f(r0), r > 0;
f(r’g)i{ f(=r,04+m), r<o, (@2)

andhy,(r, 0) = hj(r)hi(0) is a separable 2-D filter, wheté (6)

is given by (17b) with\f; = My, T; = Ty andT’ = 27, andh,,(r)
follows from the results in [12]. From the discussion in Section 3,
the filterhg (0) is bandlimited taVy Ny /2, and from [12], the filter
hy(r) is bandlimited tor N;. /T

We note that in [9] Marvasti also considered the problem of
reconstruction from nonuniform samples in polar coordinates. The
interpolation function he developed involves complex-valued func-
tions, and is therefore more complicated to implement. Further-
more, he does not develop an efficient interpolation method using
LTI filters, as we do here.

5. CONCLUSION

We presented a formula for reconstructionZofperiodic signals
bandlimited to2w K /T from nonuniform samples, and developed
an efficient FB interpretation of the reconstruction in the case of
recurrent nonuniform sampling. We then applied these result to
the reconstruction of 2-D signals from nonuniform samples in po-
lar coordinates, and provided a CTFB interpretation of the recon-
struction using bandlimited LTI filters.
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