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Finite-Memory Denoising in Impulsive Noise
Using Gaussian Mixture Models
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Abstract—We propose an efficiently structured nonlinear finite-
memory filter for denoising (filtering) a Gaussian signal contami-
nated by additive impulsive colored noise. The noise is modeled as a
zero-mean Gaussian mixture (ZMGM) process. We first derive the
optimal estimator for the static case, in which a Gaussian random
variable (RV) is contaminated by an impulsive ZMGM RV. We pro-
vide an analytical derivation of the resulting mean-squared error
(MSE), and compare the performance to that of the optimal linear
estimator, identifying cases of significant improvement. Building
upon these results, we develop a suboptimal finite-memory filter
for the dynamic case, which is nearly optimal in the minimum MSE
sense. The resulting filter is a nonlinearly weighted combination of
a fixed number of linear filters, for which a computationally effi-
cient architecture is proposed. Substantial improvement in perfor-
mance over the optimal linear filter is demonstrated using simula-
tion results.

I. INTRODUCTION

A COMMON approach to modeling background noise
in various applications is to use a Gaussian model for

the noise distribution. In estimating (filtering, denoising) a
stochastic process contaminated by additive noise, when both
the signal and noise distributions are modeled as Gaussian,
the optimal filter in the mean-squared error (MSE) sense
is a linear filter, e.g., taking the form of Wiener or Kalman
filters. However, in many physical environments, the noise
exhibits impulsive characteristics, which cannot be adequately
described by a Gaussian model.

Several approaches exist for accommodating impulsive noise
in the context of filtering. A rather naive but often efficient ap-
proach is to use preprocessing hard limiters, thus, practically
discarding the outliers. However, when either the signal or noise
involved have a substantial correlation length, such a hard-lim-
iting operation may be far from optimal.

Other, more elaborate approaches (e.g., [6], [4], [5], and [1]),
use explicit non-Gaussian statistical models to describe the im-
pulsive behavior of the noise. One such model, which gained in-
creasing popularity in the past decade, is the alpha-stable model,
used, e.g., in [5] and [1]. A drawback of this model is the rela-
tive complexity of both the analytical derivations and filter im-
plementations involved. Another possible model for describing
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impulsive noise is the Gaussian mixture (GM) model, used, e.g.,
in [6] and [4].

GM modeling is popular in the signal-processing commu-
nity mainly in the context of speech recognition. However, little
research effort has been directed at GM modeling of time se-
ries. Such modeling warrants the use of standard linear models,
with the traditional Gaussian driving noise substituted by a GM
noise, e.g., to describe impulsively driven autoregressive (AR)
processes [11].

In this paper we propose to model the impulsive, possibly
colored noise as a linearly filtered sequence of independent,
identically distributed (iid) GM random variables (RVs)
consisting of zero-mean components, which we refer to as
zero-mean GM (ZMGM). Such modeling is appealing in
several respects: ZMGM encompasses the popular zero-mean
Gaussian model as a special case; the sum of ZMGM and/or
Gaussian RVs is also a ZMGM RV; when a ZMGM process
undergoes linear filtering, the output is also a ZMGM process.
In addition, a ZMGM model is most appropriate for describing
outlier situations, by assuming mixtures of two components,
where the first component occurs with a high probability, and
the second component has a significantly larger variance and
occurs with a small probability.

Modeling background noise as a GM iid sequence has been
studied in depth by Sorenson and Alspach [6]. They derived
the optimal MSE estimator for a Gaussian signal contaminated
by GM noise, and pursued a recursive implementation thereof.
Their estimator consists of a bank of Kalman filters, whose out-
puts are combined with proper weighting. However, a severe
drawback of this optimal approach is that, as the number of GM
components involved grows exponentially in time, so does the
number of filters in the bank, rendering the estimator computa-
tionally impractical. In [4], Masreliez proposed a suboptimal ap-
proximation to the Sorenson and Alspach recursive filter, which
alleviates the computational load by deliberately ignoring the
non-Gaussian characteristic of some intermediate conditional
distributions along the way.

We propose an alternative, nonrecursive approach to the
filtering problem, in which the estimation of the desired signal
at each time-instant is based only on a fixed number of most
recent observations. The use of finite memory inherently limits
the exponential increase of the number of ZMGM components
involved. Moreover, by employing a certain approximation,
many of these components can be justly ignored. Thus, the
resulting finite-memory filter serves as a close approximation
of the optimal finite-memory filter, but is yet computationally
appealing. By exploiting some algebraic properties of the pro-
posed filter, we proceed to derive an efficient implementation
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structure, which further reduces the overall computational
complexity.

As in [6] and [4], it is assumed throughout that all the statis-
tical model parameters of both the desired signal and the noise
are known.

The paper is structured as follows: In Section II, we confine
the discussion to the case in which both the signal and noise
are iid time series, where the optimal filtering is equivalent to
optimal memoryless (scalar) RV estimation. We derive the op-
timal MSE estimator and provide (in the Appendix) an analyt-
ical derivation for evaluating the resulting MSE, which we use
to identify cases of interest. These results are then extended in
Section III, where we develop the nearly optimal fixed-memory
filter for estimating a stationary Gaussian signal contaminated
by additive colored ZMGM noise. In Section IV, we provide
some simulations results demonstrating the MSE improvement
over the optimal linear filter. Concluding remarks are in Sec-
tion V.

Throughout the paper, denotes an RV taking
a Gaussian distribution with meanand variance . We denote
vectors by boldface lowercase letters, and matrices by boldface
uppercase letters. All RVs involved are real valued.

II. OPTIMAL ESTIMATION OF A GAUSSIAN RANDOM VARIABLE

IN ZMGM NOISE

We first consider the problem in which it is desired to estimate
a RV from the noisy measurement ,
where is some impulsive noise, statistically independent of.
We model the noise as a GM with zero-mean components
(i.e., ZMGM) of variances occurring with
probabilities , respectively. The noise probability
distribution function (pdf) is given by

(1)

where .
The pdf of (1) can be given the following interpretation.

Let denote an auxiliary RV which we call a “component
indicator,” that takes on values from 1 to , and indicates
the Gaussian component from which is drawn. Then,

and is for
. Consequently, can be expressed as

.
Since is zero-mean Gaussian, the measurement

is a ZMGM RV, taking variances

(2)

with probabilities , respectively.
The optimal minimum MSE (MMSE) estimator of is

well known to be the conditional expectation .
To evaluate , we rewrite this expectation as

(3)

where and is
the posterior probability of given , and is equal to

(4)

Noting that given and are jointly Gaussian,
is the optimal linear estimator of assuming that , or
equivalently, that . Thus,

(5)

where . Substituting (5) and (4) into (3), the
MMSE linear estimator is given by

(6)

This estimator can be viewed as a weighted combination of the
(conditional) optimal linear estimators defined in
(5). However, the weighting coefficients introduce nonlinearity
in the measurement. To visualize the effect of the nonlinearity
we compare the optimal estimator to the optimal linear estimator

of from , which is given by

(7)

where denotes the variance of the noise.
Fig. 1 demonstrates the behavior of the two estimators super-

imposed on 500 realizations of true valuesversus measure-
ments for the case of with

, and a signal-to-noise ratio (SNR) of .
From the figure, it is seen that the linear estimator attempts
to compensate for occurrences of outliers by using a moderate
slope, which in turn misaligns with the more probable popu-
lation in the center. The optimal estimator, on the other hand,
uses a weighted combination of two linear estimators and

, such that the slope of each is properly aligned with the
population appearing in its region of domination. For example,
the region of domination of is the region of large values
of , where . The resulting optimal estimator is rem-
iniscent of a hard limiter, which is a popular tool for estima-
tion in the presence of impulsive noise. However, while a hard
limiter completely discards suspected outliers, the optimal esti-
mator gradually decreases its sensitivity as the posterior proba-
bility of an outlier increases.

In the Appendix we derive an expression for computing the
MSE attained by the optimal estimator for the case of
two mixture components . We used this expression
to demonstrate in Fig. 2 the relative improvement in MSE at-
tained by the optimal estimator over the optimal linear esti-
mator, whose MSE is given by . We consider
three values of SNR: low ( dB), medium (0 dB), and high
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Fig. 1. Optimal nonlinear and linear estimators ofx from y = x + v, superimposed on 500 realizations.

(7 dB). For each SNR, we present six curves corresponding to
, showing the relative improve-

ment as a function of the outlier probability. It is evident that
the improvement increases as increases, but attains an op-
timum as a function of . The peaks become sharper and lower
as the SNR increases.

It is interesting to note that in the inverse situation, when it is
desired to estimate the noise component, the optimal estimator
is the complementary estimator, i.e., . This
holds true since if , then

. Since , the resulting
MSEs are the same in both cases. This property is also shared
by the optimal linear estimator so that the relative improvement
remains the same. This observation is useful when analyzing the
case of an impulsive (ZMGM) iid time series contaminated by
iid Gaussian noise.

III. ESTIMATING GAUSSIAN SIGNALS IN COLORED

ZMGM NOISE

We now expand the results of the previous section to include
estimation of correlated time series contaminated by impulsive
colored noise.

Let denote the desired signal, which is stationary
zero-mean Gaussian with correlation function . It is
desired to filter (estimate) from the noisy measurements

, where denotes the noise, modeled as a
correlated ZMGM process, independent of . The correlated

ZMGM noise is assumed to be an order moving-average
[MA(K)] process, i.e., it is created by an iid sequence of
ZMGM RVs passing through a finite-impulse response (FIR)
filter of length , with coefficients . For
simplicity, we assume that is ZMGM with mixture
components of variances appearing with probabilities

and , respectively; the results extend in a straightforward
way to arbitrary values of . For notational brevity, we denote
by the outlier probability, thus, .

To derive a computationally appealing estimator, we restrict
the discussion to finite-memory filters of length. Thus, it is
desired to filter from the preceding observations of ,
i.e., from the vector .

From Fig. 2, it is evident that in the case of memoryless es-
timation when is ZMGM with , the improvement
attained by using optimal estimation over optimal linear esti-
mation is substantial for small values of. We, therefore, focus
our discussion on such cases in the context of finite-memory fil-
tering as well.

The derivation of our suboptimal filter is based on the further
assumption, that the probability of multiple occurrences of out-
liers in influencing is negligible. Since contains
samples, and is filtered by a filter of length , there are

samples of bearing impact on . The probability of
no outlier occurrence in these samples is given by

, and the probability of occurrence of a single outlier
is given by . Therefore, the proba-
bility of multiple occurrences of outliers in influencing
is given by , which when expanded ignoring terms
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Fig. 2. MSE improvement [dB] attained by the nonlinear ZMGM estimator over the optimal linear estimator for three SNRs: low, medium, and high. Curves
in each figure show the improvement as a function of the outlier probabilityp , parameterized by� =� = 2; 5; 10; 15;20;25 (the curves are monotonically
ordered in� =� , with the highest corresponding to� =� = 25).

smaller than reduces to . Our as-
sumption can, therefore, be expressed by the condition

(8)

Thus, rather than develop the optimal finite-memory es-
timator, we develop a suboptimal finite-memory estimator,
which is approximately optimal under the highly probable
assumption (8) that no more than one outlier occurred in the
recent samples of .

To derive our suboptimal estimator of , we define a vector
composed of the individual

“component indicators” for
, respectively [as described in Section II in the paragraph fol-

lowing (1))].
In analogy to (3), the optimal MSE estimator of

is given by the conditional expectation
, where can take values. However,

for our suboptimal estimator we consider only the
most probable values of corresponding to one or no outlier
occurrence, namely , where
and are all-ones vectors with a 2 at the

th entry (the remaining possibilities will be indexed implicitly
as ).

Thus, in a way similar to the scalar case (6), our estimator can
be expressed as

(9)

where , and
denotes the posterior probability of given .

To determine we note that given and
are jointly Gaussian. Thus,

(10)

where and
. Here, is the correlation matrix

of is its first column, and is the conditional cor-
relation matrix of given , which can be derived as
follows:
denote by

...
...

...
. . .

(11)

the Toeplitz matrix composed of the
noise-generating FIR filter’s impulse response coefficients,

. We now have

(12)

where and

. Thus,

(13)
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where is the correlation matrix of given , de-
rived as follows: for there are no outliers in , and,
therefore, all the components have equal variance. For ,
there is a single outlier of variance at the th entry of . In
any event, the components of are independent. Thus,

(14)

where denotes the identity matrix, is the th column of ,
and . Therefore,

(15)

where is the th column of .
Noting that

(16)

where

(17)

and using the Matrix Inversion Lemma (see, e.g., [2, p. 18]) we
have

(18)

and

(19)

Finally,

(20)

where

(21)

and

(22)

(The in (20) should be interpreted in a probabilistic sense:
the terms discarded in the denominator are negligible only

in the highly probable case where not more than one outlier
occurred in .)
Using (18) and (19), we may rewrite (22) as

(23)

Note that the first two terms are independent ofand are, there-
fore, common to the numerator and denominator in (20), which
we may consequently rewrite as

(24)

where

(25)

with

(26a)

(26b)

(26c)

Substituting into (9), we observe that can be in-
terpreted as a weighted combination of linear estimators. The
first linear estimator, , is the optimal linear estimator of

assuming that , namely, that no outlier
occurred in . The other estimators are each optimal
linear estimators assuming that , namely that
a single outlier occurred in the respective location in. The
weights reflect the posterior probability of the respec-
tive events presumed by the estimators.

The data-dependent terms in the estimator are common
to both the linear estimators and to the terms
for , respectively. This feature can be
exploited by the implementation depicted in Fig. 3, where

, and and
are given above in (26). The estimator is calculated using
only FIR filters whose outputs are denoted

, scalar nonlinearities composed of
simple and operations, and one division. This
architecture also allows parallel implementation of the FIR
filters and nonlinear operations (up to the final division).

It is important to observe that the filter’s memory length
has to be carefully designed. On one hand, the correlation length
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Fig. 3. Finite memory filter for Gaussian signals in colored ZMGM noise.

of the signals involved may require long memory; on the other
hand, as grows, the condition of (8) may be
breached, implying that more than one outlier is likely to occur
in , thus, devalidating our filter derivation. It has been veri-
fied by simulation (some of which are presented in the next sec-
tion), that when is chosen properly, substantial improvement
of MSE over the optimal linear estimator can be attained by the
proposed filter. The improvement increases as increases,
but attains an optimum as a function of SNR and.

As we noted in the scalar case, when it is desired to estimate
the noise component, the optimal estimator is the complemen-
tary estimator, i.e., . This holds true since if

, then
. Since , the

resulting MSEs are the same in both cases. However, since our
estimator is only nearly optimal, this property is only approxi-
mately exhibited.

IV. SIMULATIONS RESULTS

We present some simulation results demonstrating the im-
provement attained by the proposed filter (denoted hereafter as
the “ZMGM filter”) over the optimal linear filter. The under-
lying signal was generated as an AR process of order 2, with
poles at and , i.e., it satisfies the difference
equation

(27)

where is a zero-mean white Gaussian noise sequence,
whose variance was set such that would have unit variance.
The additive colored ZMGM noise was generated by passing

an iid ZMGM sequence through a five-coefficients FIR
filter

otherwise
(28)

hence,

(29)

The ZMGM sequence consists of zero-mean
Gaussian components with variancesand occurring with
probabilities and , respectively—thus, denotes the
“outlier probability.” and were set such that would
have unit variance, and their ratio equals its desired
values (see the following).

The measured signal is , hence, the input
SNR to all filters tested is 0 dB. To estimate from , we
applied to three filters: the optimal linear causal (“infinite
memory”) Kalman filter, the optimal linear FIR filter of length

, and the proposed ZMGM nonlinear filter of memory length
. Results are displayed in terms of the SNR at the filters’ out-

puts, which is actually also the MSE in estimating , since
has unit variance.

In Fig. 4 we demonstrate the dependence of performance
on the ratio , with the outlier probability fixed at

. For the finite-memory filters (FIR and ZMGM), we used a
memory length of . The solid lines represent the theoret-
ical output SNRs for the Kalman and FIR filters, as indicated.
These values are, of course, independent of the variances ratio.
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Fig. 4. SNR at the output of the optimal linear filters and proposed ZMGM filter versus� =� . Solid lines denote the theoretical values for the optimal linear
Kalman (infinite memory) filter and an FIR filter of lengthL = 6. Simulations results are indicated by dots, each representing a single trial over a signal of length
250 000 (four trials per test point). All filters used the same data.

Superimposed on these lines are dots representing simulation re-
sults [four trials (dots) per test point]. Similar dots are also pro-
vided for the ZMGM filter as indicated, where their empirical
means are connected by a dashed line (we do not have a tractable
analytic expression for the ZMGM filter’s performance—the
derivation in the Appendix is only valid for the static case). It is
clearly seen that the ZMGM filter offers substantial improve-
ment over the optimal linear FIR filter of the same memory
length, as well as over the infinite-memory Kalman filter, as the
variance ratio increases. As expected, for
(practically no outlier situation), the ZMGM filter’s perfor-
mance coincides with that of the FIR filter, but it quickly departs
as the outliers situation becomes more imminent.

In Fig. 5, we demonstrate the interesting dependence on the
memory length . In this case, the variances ratio is fixed at

, and we present results for two outlier probabilities:
and . Again, solid lines represent the theoret-

ical values, and simulation results appear as dots, with four trials
(dots) per test point. Only the linear FIR and the ZMGM filters
depend on ; the Kalman filter’s results are simply repeated
for each for ease of comparison. As expected, the linear FIR
filter’s SNR approaches the Kalman filter’s SNR from below
as increases. However, both fall well below the SNR of the
ZMGM filter. It is reassuring to note, however, that while the
FIR filter’s performance monotonically improves asis in-
creased, the ZMGM filter’s performance has an optimum as a
function of , since further increase ofgradually breeches the
condition in (8), and thus, slowly degrades performance. This

behavior is more pronounced for the higher outlier probability
. In addition, since the ZMGM performance has an

optimum as a function of (see, e.g., Fig. 1), performance for
is generally worse than for . Naturally, the

performance of the linear filters is insensitive to.

V. CONCLUSION

We presented the optimal (nonlinear) estimator and asso-
ciated error analysis for estimating a Gaussian RV from its
measurement contaminated by impulsive noise modeled as a
ZMGM RV. The estimator can be interpreted as a nonlinear
weighting of optimal linear estimators, each suited to a cor-
responding mixture component. The weighting reflects the
posterior probability of occurrence of the respective com-
ponents. In extreme outlier situations the optimal estimator
resembles a hard limiter; however, its advantage is in its ability
to deal properly with moderate outlier situations without
discarding data on one hand, and without compromising
performance in “benign” (no outliers) situations (as does the
optimal linear estimator) on the other hand.

We demonstrated via error analysis for the case of two mix-
ture components, that as may be expected, the attainable im-
provement in performance over the optimal linear estimator be-
comes more significant as the variance ratio of the two compo-
nents increases. However, an optimum is attained as a function
of the outlier probability and SNR.
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Fig. 5. SNR at the output of the optimal linear filters and proposed ZMGM filter versus the memory lengthL, for two outlier probabilitiesp. Solid lines denote
the theoretical values for the optimal linear Kalman and FIR filters. Simulations results are indicated by dots, each representing a single trial over a signal of length
250 000 (four trials per test point). The same data was used by all filters for allL-s. The Kalman filter results are repeated at eachL for comparison only, sinceL
is irrelevant to the Kalman filter.

We then extended the results to the case of filtering correlated
time series. We presented a suboptimal finite-memory filter for
estimating a stationary Gaussian signal from measurements cor-
rupted by colored ZMGM noise. Under the assumption that in-
dependent occurrences of outliers are usually sufficiently far
apart, the filter is nearly optimal. Using simulation results, its
superiority with respect to the optimal linear filter, as well as its
sensitivity to the memory length, were demonstrated.

In general, Gaussian mixture models can be used in appli-
cations other than signal denoising, involving estimation with
impulsive signals, such as channel estimation and equalization,
source separation, bearing estimation, time-delay estimation,
etc. Often in such applications, the ZMGM modeling tool can be
used either to properly combat the undesired effects of impul-
sive noise, or to exploit useful impulsive properties of the target
signal.

The nonlinear functions employed by using the ZMGM
model are reminiscent of those generated by other nonlinear
filtering methods, such as piecewise linear filters [8], piecewise
polynomials [9], and threshold decomposition [10]. However,
in contrast to these other methods, the proposed ZMGM filter
is (nearly) optimal when the statistical model is indeed ZMGM.
The other nonlinear methods are not specifically related to
(nor are claimed optimal in) the context of a specific statistical
model. Thus, these methods would be more robust with respect
to the model assumption, but may be far from optimal when the
true model is indeed a Gaussian mixture.

APPENDIX

ESTIMATION ERRORANALYSIS

In this Appendix, we derive expressions for computing the
MSE attained by the optimal estimator in the iid
case, for noise consisting of two mixture components .
Throughout, we shall use the notations defined in Section II for
the distributions’ parameters and related constants.

The implicit expression for the MSE is given by

(30)

Thus, evaluating the MSE involves the evaluation of
, which in the case reduces to

(31)

To simplify the exposition, let us define the constants
and . Noting

that the denominator in parenthesis in (31) equals
and defining ,
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we may break (31) down into three terms denoted
, where

(32)

Here, and
where and

for .
Evaluating amounts to evaluating , for which there is

no known closed-form solution. Nevertheless, we may get rid
of the denominator in by exploiting the relations

(33)

as follows: define . Assuming (which
is a common assumption in an outlier situation), we have

, and we may, therefore, use to
partition the integration domain into two regions:

and in which and ,
respectively. We may now evaluate using

(34)

where and
.

Let us also define as the two possible results
of (34). Combining (33) and (34), we may express as an
infinite sum as follows:

(35)

The expression in the second term of (35) becomes
negative for values of beyond a certain threshold. When
obtains a negative value as its argument, of an imaginary
argument has to be computed. The definition for stated
below (34) holds true for any complex argument. However,
standard tables and routines for evaluating are usually
available for real valued-s only (e.g., in MATLAB). We, there-
fore, provide below the following sum for evaluating for
imaginary values of (here and is real-valued):

(36)

(see, e.g., [7, p. 299]).

Thus, the MSE of can be calculated analytically to
within arbitrary precision by taking sufficiently many terms in
(35).
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