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I. Introduction
In a quantum detection problem a transmitter conveys clas-

sical information to a receiver using a quantum-mechanical
channel. We assume that each message corresponds to a pure
quantum state {|φi〉, 1 ≤ i ≤ m}. The information is de-
tected by subjecting the system to a quantum measurement,
optimized to distinguish between pure nonorthogonal states.

In unambiguous quantum detection [1] a measurement is
designed comprising m + 1 operators {Πi, 0 ≤ i ≤ m} satisfy-
ing

∑m

i=0
Πi = I, that with a certain probability returns an

inconclusive result, but such that if the measurement returns
an answer, then the answer is correct with probability one.
Each operator Πi, 1 ≤ i ≤ m corresponds to detection of the
corresponding state |φi〉, 1 ≤ i ≤ m, and Π0 corresponds to
an inconclusive result.

An unambiguous measurement exists if and only if the
states are linearly independent [2]. In this case, without loss

of generality [3], Πi = pi|φ̃i〉〈φ̃i| 4= piQi, 1 ≤ i ≤ m, for some
pi ≥ 0, where |φ̃i〉 ∈ U are the unique vectors in the space U
spanned by the vectors |φi〉 satisfying 〈φ̃i|φk〉 = δik, 1 ≤ i, k ≤
m. If the state |φi〉 is prepared with prior probability ηi, then
the total probability of correctly detecting the state is

PD =

m∑
i=1

ηi〈φi|Πi|φi〉 =

m∑
i=1

ηipi. (1)

The problem then is to choose pi ≥ 0 to maximize PD subject
to

∑m

i=1
piQi ≤ I.

II. Optimal Detection and the EPM
As we show in [3], the problem of (1) can be formulated as a

convex semidefinite programming problem (SDP) [4]. By ex-
ploiting the many well known algorithms for solving SDPs,
which are guaranteed to converge to the global optimum,
the optimal measurement can be computed very efficiently
in polynomial time. Furthermore, the SDP formulation can
be used to derive necessary and sufficient conditions for opti-
mality on pi, as incorporated in the following theorem.

Theorem 1 Let Λ denote the scalars pi ≥ 0, 1 ≤ i ≤ m that
satisfy

∑m

i=1
piQi ≤ I, and let Γ denote the matrices X ≥ 0

and scalars zi ≥ 0, 1 ≤ i ≤ m such that Tr(QiX) − zi = ηi.
Then pi ∈ Λ maximizes PD if and only if there exists X, zi ∈ Γ
such that X(I −∑m

i=1
piQi) = 0 and zipi = 0, 1 ≤ i ≤ m.

A simple suboptimal measurement for unambiguous dis-
crimination is the equal-probability measurement (EPM) in
which pi = p, 1 ≤ i ≤ m. Using Theorem 1 we can derive
conditions under which the EPM is optimal. In particular,
we must have that p = σ2

m where σm is the smallest singular
value of the matrix Φ of columns |φi〉. In addition, we have
the following theorem.

Theorem 2 Let Φ have an SVD Φ = UΣV ∗, let |vi〉 denote
the columns of V ∗ and vi(k) the kth component of |vi〉, and let
s be the multiplicity of the smallest singular value σm. Then,

1. If s = 1 then the EPM is optimal if and only if
|vi(m)|2 = ηi for 1 ≤ i ≤ m;

2. If s > 1 then the EPM is optimal if there exists bi ≥
0, 1 ≤ i ≤ s such that Ab = η where b and η are the
vectors of components bi and ηi respectively, and

A =




|v1(m)|2 · · · |v1(m− s + 1)|2
|v2(m)|2 · · · |v2(m− s + 1)|2

...
...

|vm(m)|2 · · · |vm(m− s + 1)|2


 ; (2)

3. For an arbitrary state set, if we choose the prior prob-
abilities η = Ab where bi ≥ 0 are arbitrary coefficients
satisfying

∑m

i=1
bi = 1, then the EPM is optimal;

4. If 〈φi|(ΦΦ∗)t/2−1|φi〉 = ηiat, 1 ≤ i ≤ m, 1 ≤ t ≤ m for
some constants at, then the EPM is optimal.

Chefles and Barnett [5] showed that the EPM is optimal in
the special case in which the state vectors form a cyclic set.
Using Theorem 2 we can generalize this result to a large class
of state sets. Specifically, for geometrically uniform state sets
S = {|φi〉 = Ui|φ〉, Ui ∈ G} where G is a group of unitary
matrices, the EPM is optimal. For compound geometrically
uniform (CGU) state sets S = {|φik〉 = Ui|φk〉, 1 ≤ i ≤ l, 1 ≤
k ≤ r} where the matrices {Ui, 1 ≤ i ≤ l} are unitary and
form a group G, and the vectors {|φk〉, 1 ≤ k ≤ r} are the
generating vectors, the EPM is optimal if

〈φk|(ΦΦ∗)t/2−1|φk〉 = at, 1 ≤ k ≤ r, 1 ≤ t ≤ m, (3)

for some constants at. In particular, if the generating vectors
{|φk〉 = Vk|φ〉, 1 ≤ k ≤ r} are themselves GU, and UpVt =
VtUpejθ(p,t) for all t and p and arbitrary θ(p, t), then the EPM
is optimal.
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