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Filterbank Reconstruction of Bandlimited Signals
from Nonuniform and Generalized Samples

Yonina C. Eldar, Student Member, IEEE,and Alan V. Oppenheim, Fellow, IEEE

Abstract—This paper introduces a filterbank interpretation of
various sampling strategies, which leads to efficient interpolation
and reconstruction methods. An identity, which is referred to as
the Interpolation Identity, is developed and is used to obtain par-
ticularly efficient discrete-time systems for interpolation of gener-
alized samples as well as a class of nonuniform samples, to uni-
form Nyquist samples, either for further processing in that form
or for conversion to continuous time. The Interpolation Identity
also leads to new sampling strategies including an extension of Pa-
poulis’ generalized sampling expansion.

Index Terms—Filterbanks, generalized sampling, interpolation,
nonuniform sampling, sampling.

I. INTRODUCTION

D ISCRETE-TIME signal processing (DSP) inherently re-
lies on sampling a continuous time signal to obtain a dis-

crete-time representation of the signal. The most common form
of sampling used in the context of DSP is uniform (periodic)
sampling. However, there are a variety of applications in which
data is sampled in other ways, such as nonuniformly in time
or through multichannel data acquisition. Examples in which
nonuniform sampling may arise include data loss due to channel
erasures and additive noise. Multichannel data can arise in dig-
ital flight control, where the velocity as well as the position are
recorded. There are also applications where we can benefit from
deliberately introducing more elaborate sampling schemes. Po-
tential applications include data compression, efficient quanti-
zation methods [10], and flexible A/D converters.

Several extensions of the uniform sampling theorem are well
known [5]. Specifically, it is well established that a bandlim-
ited signal is uniquely determined from its nonuniform samples,
provided that the average sampling rate exceeds the Nyquist rate
[1]. However, in contrast to uniform sampling, reconstruction of
a continuous-time signal from its nonuniform samples using the
direct interpolation procedure is computationally difficult. Sev-
eral alternative reconstruction methods from nonuniform sam-
ples have been previously suggested. These methods involve it-
erative algorithms (e.g., [2], [6], [14]), which are computation-
ally demanding and have potential issues of convergence.
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Another well-known sampling theorem by Papoulis [8],
which generalizes uniform sampling of a signal, states that
a bandlimited signal can be reconstructed from uniformly
spaced samples of the outputs of linear time-invariant (LTI)
systems with the signal as their input sampled at one-th
of the Nyquist rate. However, the reconstruction from these
generalized samples is again computationally complex. In order
to exploit alternative sampling methods in various applications,
practical, efficient reconstruction algorithms are required.

Recently, there has been some work on sampling theorems for
nonbandlimited signals [3], [13] and on nonuniform and gen-
eralized sampling theorems for discrete-time signals [12, Sec.
10.2].

Many of the algorithms for processing and analyzing a
discrete-time signal assume that the signal corresponds to uni-
formly spaced samples of a continuous-time signal. When other
sampling procedures are employed, a common approach is to
interpolate to uniform Nyquist samples of the continuous-time
signal prior to processing. Existing interpolation methods
include approximate polynomial interpolation and iterative
procedures [9]. Here again, practical, efficient interpolation
algorithms are desirable.

In this paper, we derive an identity that leads to efficient recon-
struction methods from generalized samples, as well as efficient
interpolation to uniformly spaced samples. We then develop a
new noniterative approach to reconstruction from recurrent and

th-order nonuniform samples. The resulting procedure con-
sists of processing the samples with a bank of LTI filters, either
to reconstruct the original bandlimited continuous-time signal or
to interpolate the nonuniform samples to uniformly spaced sam-
ples. In addition to offering efficient implementations, the filter-
bank framework leads toanewclassof samplingstrategies.Asan
example, we show that applying the identity derived in this paper
to perfect reconstruction filterbanks results in a generalization of
Papoulis’ sampling theorem [8].

The organization of this paper is as follows. In Section II, we
formulate the Interpolation Identity. Section III illustrates an ap-
plication of the identity to sampling of a signal and its derivative.
In Section IV, we describe recurrent nonuniform sampling and
arrive at a continuous-time filterbank implementation of the re-
construction. We then apply the Interpolation Identity to convert
the continuous-time filterbank to an equivalent discrete-time
filterbank. The resulting discrete-time filterbank inherently in-
terpolates the uniform samples of the continuous-time signal. In
SectionV,weintroduceatypeofnonuniformsamplingreferredto
as th-order nonuniform sampling. We then develop an efficient
interpolation and reconstruction method from these samples
usingarationaldiscrete-timefilterbank.SectionVIdemonstrates
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Fig. 1. Converting the sequence of samplesx (nT ) to a continuous-time
impulse trainy (t).

how the filterbank framework leads to new sampling strategies.
In particular, we present a generalization to Papoulis’ sampling
theorem. In the various sections, key results are stated and their
detailedderivation is included in theappropriateappendix.

II. I NTERPOLATION IDENTITY

Throughout this paper, we use the variablesand to de-
note frequency variables for continuous-time and discrete-time,
respectively. Capital letters are used to denote the Fourier trans-
form, e.g., and denote the continuous-time and
discrete-time Fourier transforms of and , respectively.
Parentheses are used for continuous-time signals and brackets
for discrete-time signals. To further distinguish between contin-
uous-time and discrete-time signals, we will usually denote the
former with a subscript, e.g., . We assume that all signals
have finite energy and are bandlimited to, i.e., their Fourier
transform is zero for . denotes the Nyquist period
given by . We use the notation in the block dia-
gram of Fig. 1 to denote conversion of the sequence of sam-
ples to a continuous-time impulse train , where

. We refer to this operation
as impulse modulation.

The following equivalence, which we refer to as the Interpo-
lation Identity, will be used in subsequent sections to arrive at ef-
ficient implementations of the reconstruction from generalized
and nonuniformly spaced samples. The proof of this identity is
given in Appendix A.

Interpolation Identity: Let be a finite energy con-
tinuous-time signal bandlimited to , and let

denote the impulse responses of the
continuous-time filters with corresponding frequency responses

bandlimited to . For any and
such that for some integer , the block

diagrams depicted in Fig. 2(a) and (b) are equivalent for

(1)

The block diagram of Fig. 2(b) consists of expanding a se-
quence of samples by a factor of and then filtering by
a discrete-time filter with frequency response given by (1). The
filtered output is then decimated by a factor of followed by
impulse modulation and lowpass filtering. The input–output re-
lation for the expander is given by

otherwise.
(2)

The input–output relation for the decimator is given by

(3)

For the case and , the Interpolation Identity
reduces to the equivalence depicted in Fig. 3(a) and (b), where

(4)

Note that (4) implies that , where is
the discrete-time impulse response with frequency response

, and is the continuous-time impulse response with
frequency response . Since , the sequence

is, in general, an undersampled representation of ,
and consequently, is, in general, a filtered and aliased
version of .

As an illustration of the use of the identity, we apply it in
the next section to a well-known sampling theorem associated
with the reconstruction from uniform samples of a signal and its
derivative. Through the use of the identity, we obtain a particu-
larly efficient system for interpolation of the samples to uniform
Nyquist samples, either for further processing in that form or for
conversion to continuous time. In Sections IV and V, we apply
the identity to two classes of nonuniform sampling strategies
referred to as recurrent andth-order nonuniform sampling. In
Section VI, the Interpolation Identity is used to generate new
classes of sampling theorems.

III. I NTERPOLATION AND RECONSTRUCTIONFROM SAMPLES

OF A SIGNAL AND ITS DERIVATIVE

As an example of the application of the Interpolation Identity,
consider sampling a signal and its derivative. It is well known
that a bandlimited signal can be reconstructed from uniform
samples of the signal and its derivative at half the Nyquist rate
[4] using the reconstruction formula

sinc

(5)

where , and . Note
that the sequences and are undersampled representa-
tions of and , respectively.

Equation (5) can be implemented using the continuous-time
filterbank depicted in Fig. 4, with sinc and

sinc . Note that both filters in Fig. 4 are
bandlimited to . If, instead of reconstructing ,
we are interested in interpolating the uniform Nyquist samples
of from and , the interpolation formula obtained
from substituting in (5) is

sinc

(6)
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Fig. 2. Interpolation Identity.

Fig. 3. Interpolation Identity for the caseM = 1 andT = NT .

Reconstruction of using (5) or interpolation using (6)
are both difficult to implement directly. However, both inter-
polation and reconstruction can be implemented in a simpler
form by applying the Interpolation Identity to the system in
Fig. 4. Specifically, the continuous-time filterbank of Fig. 4
can be converted to a discrete-time filterbank followed by a
continuous-time lowpass filter (LPF). Applying the equivalence
of Fig. 3 to each branch in Fig. 4 and moving the identical
impulse train modulation and LPF in each branch outside the
summer, we obtain the equivalent implementation in Fig. 5,
where for . As with the contin-
uous-time filterbank, the overall output of Fig. 5 is the orig-
inal continuous-time signal . Since is reconstructed
through lowpass filtering of a uniformly spaced impulse train
with period , the impulse train values must correspond
to uniformly spaced samples of at the Nyquist rate. Thus,
we conclude that the discrete-time filterbank provides a dis-

Fig. 4. Reconstruction from samples of a signal and its derivative at half the
Nyquist rate.

crete-time mechanism for converting the uniform generalized
samples of the signal and its derivative to uniform Nyquist sam-
ples. The filterbank can be implemented very efficiently, ex-
ploiting the many known results regarding efficient implemen-
tation of the filters comprising a discrete-time filterbank (see,
e.g., [12]).

By following an analogous procedure, we can arrive at effi-
cient interpolation and reconstruction methods for other forms
of generalized samples. In the next section, we focus on efficient
implementation of the reconstruction from recurrent nonuni-
form samples using a bank of continuous-time and discrete-time
filters.

IV. RECURRENTNONUNIFORM SAMPLING

It is well established that a continuous-time signal
can be reconstructed from its samples at a set of sampling
times if the average sampling period is smaller than the
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Fig. 5. Interpolation and reconstruction using a discrete-time filterbank.

Nyquist period, where the average sampling period is defined
as . The essential result is incorporated in the
following theorem by Yao and Thomas [15].

Theorem 1: Let be a finite energy bandlimited signal
such that for for some .

is uniquely determined by its samples if

(7)

The reconstruction is given by

(8)

where

(9)

is the derivative of evaluated at , and if
for some , then .

Reconstruction from nonuniform samples using (8) directly
is considerably more complex than reconstruction from uniform
samples. In this section, we focus on an efficient implementation
of (8) for the case of recurrent nonuniform sampling. In this
form of sampling, the sampling points are divided into groups
of points each. The groups have a recurrent period, which
is denoted by , that is equal to times the Nyquist period

. Each period consists of nonuniform sampling points.
Denoting the points in one period by ,
the complete set of sampling points are

(10)

where . Without loss of generality, we will assume
throughout that .

Recurrent nonuniform samples can be regarded as a combi-
nation of sequences of uniform samples taken at oneth of
the Nyquist rate. An example of a sampling distribution for the
case is depicted in Fig. 6.

Recurrent nonuniform sampling arises in a broad range of ap-
plications. For example, we might consider converting a con-
tinuous-time signal to a discrete-time signal using a series of
A/D converters, each operating at a rate lower than the Nyquist
rate, such that the average sampling rate is equal to the Nyquist

Fig. 6. Sampling distribution forN = 3.

rate. This may be beneficial in applications where high-rate A/D
converters are required. Typically, the cost and complexity of a
converter will increase (more than linearly) with the rate. In such
cases, we can benefit from converting a continuous-time signal
to a discrete-time signal using A/D converters, each operating
at one th of the Nyquist rate. Since the converters are typically
not synchronized, the resulting discrete-time signal is a com-
bination of sequences of uniform samples, where each se-
quence corresponds to samples at oneth of the Nyquist rate of
a time delayed version of the continuous-time signal. Thus, the
resulting discrete-time signal corresponds to recurrent nonuni-
form samples of the continuous-time signal.

Dividing the time axis into nonoverlapping intervals of length
, every interval contains sampling points, which implies

that the average sampling rate is the Nyquist rate. Based on The-
orem 1, we can therefore reconstruct a continuous-time signal

from its recurrent nonuniform samples , where the
sampling times are given by (10). In particular, substituting
(10) in (8) and (9), we obtain the following reconstruction for-
mula (see Appendix B):

(11)

where

(12)

As with (8), direct implementation of (11) is computationally
difficult. We will now develop new, efficient, noniterative imple-
mentations of (11). In Section IV-A, we develop an implementa-
tion that consists of processing the samples with a bank of contin-
uous-time LTI filters. In Section IV-B, we develop an alternative
implementation using a bank of discrete-time LTI filters.
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Fig. 7. Reconstruction from recurrent nonuniform samples using a con-
tinuous-time filterbank.

A. Reconstruction from Recurrent Nonuniform Samples Using
a Continuous-Time Filterbank

In this subsection, we develop a continuous-time filterbank
representation of (11). To this end, we interchange the order of
summations in (11) and denote the inner sum by , i.e.,

(13)

Using the relation , we can express
as a convolution. Specifically

(14)

where

(15)

and is an impulse train of samples, i.e.,

(16)

given by (11) can now be expressed as a sum ofcon-
volutions:

(17)

Equation (17) can be interpreted as a continuous-time fil-
terbank as depicted in Fig. 7. The signals are formed
according to (16), i.e., the samples are divided intosubse-
quences, where each subsequence corresponds to samples at
one- th of the Nyquist rate of a time-shifted version of .
Each subsequence is converted to a continuous-time signal
using a shifted impulse train. The signal is then filtered

Fig. 8. Alternative form of Fig. 7.

by a continuous-time filter with impulse response given
by (15). Summing the outputs of the branches results in the
reconstructed signal .

Note that each one of the subsequences corresponds to uni-
form samplesat one- th of the Nyquist rate.Therefore, the
output of each branch of the filter bank is an aliased and fil-
tered version of . The filters, as specified by (15), have the
inherent property that the aliasing components of the filter out-
puts cancel in forming the summed output .

An alternative form of Fig. 7, which we will find useful in
Section IV-B, is shown in Fig. 8. This form follows in a straight-
forward way by simply noting that the delay ofin the impulse
train of the th branch can be incorporated into the filter .

To determine the frequency responses of the filters in Figs. 7
and 8, we note that the impulse response given by (15) can be
expressed as

(18)

(19)

where the complex coefficients are the result of expanding
the product of sines in (18) into complex exponentials.

The first term in (19) corresponds to an
ideal LPF with cut-off frequency , which we denote as

. The effect of the summation is to create
shifted and scaled versions of the LPF, i.e.,

(20)

Hence, we conclude that the filters in Figs. 7 and 8 have
the properties that for , i.e., the filters
are bandlimited to the same bandwidth as the continuous-time
signal, and each filter is piecewise constant over fre-
quency intervals of length .

In the next subsection, we will derive a discrete-time filter
bank implementation of the reconstruction, which also provides
efficient interpolation to uniform samples.
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Fig. 9. Reconstruction from recurrent nonuniform samples using a discrete-time filterbank.

B. Interpolation and Reconstruction from Recurrent
Nonuniform Samples Using a Discrete-Time Filterbank

Following an analogous procedure to Section III, the contin-
uous-time filterbank of Fig. 8 can be converted to a discrete-time
filterbank followed by a continuous-time LPF. Applying the
Interpolation Identity of Fig. 3 to each branch in Fig. 8 and
moving the impulse modulation and LPF in each branch outside
the summer, we obtain the equivalent implementation in Fig. 9,
where

(21)

for .
As with the continuous-time filter banks of Figs. 7 and 8,

the overall output of Fig. 9 is the original continuous-time
signal . Furthermore, since is reconstructed through
lowpass filtering of a uniformly spaced impulse train with
period , the impulse train values must correspond to
uniformly spaced samples of at the Nyquist rate. Thus,
the discrete-time filterbank of Fig. 9 effectively interpolates the
recurrent nonuniform samples to uniform Nyquist samples.

The discrete-time filterbank of Fig. 9 can be used to interpo-
late the uniform samples and to reconstruct the continuous-time
signal from its recurrent nonuniform samples very efficiently,
exploiting the many known results regarding the implementa-
tion of filterbank structures. As with the continuous-time filter-
bank, the magnitude responses of the discrete-time filters are
piecewise constant, which allows for further efficiency in the
implementation.

V. TH-ORDER NONUNIFORM SAMPLING

In this section, we consider a subclass of recurrent nonuniform
sampling, for which the sampling points in each period can be
further divided into groups with a common inner period. Specif-
ically, the samples consist of sequences of uniform samples
taken at rates, i.e., the set of sampling points are

(22)

where so that the average sampling rate is
the Nyquist rate. An example of a sampling distribution for the
case with and is depicted in
Fig. 10.

th-order nonuniform sampling may arise in a similar
context as recurrent nonuniform sampling, namely, when

Fig. 10. Sampling distribution forN = 2 with T = 3T andT = 3T =2.

converting a continuous-time signal to a discrete-time signal
using a series of A/D converters, each operating at adifferent
rate, such that the average sampling rate is equal to the Nyquist
rate. Thus, in addition to allowing for a series of asynchronized
A/D converters as in recurrent nonuniform sampling, we also
allow for converters operating at different rates.

The reconstruction formula is given by (23), shown at the
bottom of the next page (see Appendix C). If for some

and , (23) cannot be expressed as a sum ofconvolutions.
Nevertheless, we will show that (23) can be implemented using

discrete-time filters and a continuous-time LPF.
To this end, we denote the inner sum in (23) by , i.e., in

(24), shown at the bottom of the next page. We further denote by
the least common multiplier (LCM) of and define

. In Appendix D, we show that can be expressed as
a sum of convolutions, i.e.,

(25)

Here

(26)

where we define as

(27)

and is an impulse train of modulated samples, i.e.,

(28)
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Equation (25) can be interpreted as a filterbank, as depicted
in Fig. 11. The signals are formed according to (28),
i.e., the samples are divided into subsequences, where each
subsequence corresponds to uniform samples with period

of a time-shifted version of the original signal. From
each subsequence , we form discrete-time
signals by modulating the subsequence by for

. For every , each one of the
discrete-time signals is converted to a continuous-time signal

using an impulse train with period . The signal
is then filtered by a continuous-time filter with impulse

response given by (26) and (27). Summing the outputs of the
branches results in . Since ,

summing the outputs of filterbanks of the form of Fig. 11 will
result in . Thus, (23) can be implemented using

continuous-time filters (where, in general, ).
The filters in Fig. 11, with impulse responses given

by (26), are all bandlimited to since given by (27) is
bandlimited to for all and . This can be seen by rewriting

as

(29)

where is a constant. The term cor-
responds to an ideal LPF with cutoff frequency . By ex-
panding the product of sines into complex exponentials, we see
that the effect of the product is to create shifted and scaled ver-
sions of the LPF. The largest shift will result when multiplying

by , where is a constant.

This corresponds to shifting the LPF by
in the frequency domain. Since the cutoff frequency of the LPF
is , is bandlimited to

. From (26), it then follows that the filters in Fig. 11
are all bandlimited to as well.

Fig. 11. Reconstructingg (t) using a continuous-time filterbank.

We now wish to obtain an equivalent implementation of (23)
using discrete-time filters. We first assume that each sam-
pling period satisfies the condition

(30)

for some integer . Then, since is obtained by summing
the outputs of filterbanks of the form of Fig. 11 and each
sampling period satisfies (30), we can apply the Interpolation
Identity to each filterbank, resulting in branches of the form
of Fig. 2(b). Moving the impulse modulation and LPF in each
branch outside the summer and noting that
for all leads to the equivalent implementation of Fig. 12, where

(31)

and is the frequency response of the filter given by
(26). The overall output of Fig. 12 is the original continuous-time

(23)

(24)
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Fig. 12. Reconstruction fromN th-order nonuniform samples using a discrete-time filterbank.

signal , and the impulse train values correspond to uni-
formly spaced samples of at the Nyquist rate.

Using the discrete-time filterbank of Fig. 12, we can recon-
struct the continuous-time signal from itsth-order samples
very efficiently using only discrete-time filters, in con-
trast with the continuous-time implementation that requires

filters. In addition, the discrete-time filterbank
interpolates the uniform Nyquist samples from theth-order
nonuniform samples.

We now show that we can implement (23) using dis-
crete-time filters as in Fig. 12 for any set of sampling periods.
This stems from the fact that if a continuous-time signal

is bandlimited to , then it is also ban-
dlimited to for any . Therefore, let

, where is the LCM of , and is
the smallest integer greater than zero such that . Since
the filters in Fig. 11 are all bandlimited to , they are also
bandlimited to . In addition

(32)

which is an integer. Thus, if we regard and the filters in
Fig. 11 as bandlimited to , then the condition
of (30) holds. We can therefore apply the Interpolation Identity
to each filterbank of the form of Fig. 11, resulting in the equiva-
lent implementation of Fig. 12, where we substitutefor .
In this case, corresponds to uniform samples of taken
at the rate , which is higher than the Nyquist rate.

To summarize, for any sampling periods, we can recon-
struct a continuous-time signal from its th-order samples
using discrete-time filters as in Fig. 12, where we substitute

for , if necessary, with chosen so that
.

VI. GENERATING NEW CLASSES OFSAMPLING STRATEGIES

In the previous sections, we used the Interpolation Identity
to obtain discrete-time filterbank structures for reconstruction
of a continuous-time signal from generalized and nonuniformly
spaced samples. In this section, we show how the filterbank in-
terpretation suggests new sampling strategies.

The Interpolation Identity can be used to convert the recon-
struction (synthesis) part of a continuous-time filterbank to an
equivalent discrete-time filterbank followed by impulse modu-
lation and lowpass filtering. Similarly, we can convert the sam-
pling (analysis) part of a filterbank using the equivalence of

Fig. 13. Sampling equivalence.

Fig. 13(a) and (b) for any , bandlimited to
, where

(33)

The equivalence of Fig. 13 follows in a straightforward way
by noting that sampling a continuous-time signal at one-th of
the Nyquist rate can be realized by sampling the signal at the
Nyquist rate followed by decimation by a factor of. We can
then apply the well-known results [7] regarding discrete-time
processing of a continuous-time signal to replace the contin-
uous-time filter by a discrete-time filter with frequency response
given by (33), operating on Nyquist rate samples of the contin-
uous-time signal.

The Interpolation Identity of Fig. 3 together with the equiva-
lence of Fig. 13 enable us to convert any continuous-time fil-
terbank to an equivalent discrete-time filterbank preceded by
Nyquist rate sampling and followed by impulse modulation and
lowpass filtering, and vice versa. Thus, any perfect reconstruc-
tion (PR) filterbank (i.e., a discrete-time analysis-synthesis filter
bank for which the input and output are equal) can be converted
to a continuous-time filterbank, which can then be interpreted
in terms of sampling and reconstruction.

As an example, consider the PR filterbank of Fig. 14. The
theory of PR filterbanks is well established (see, e.g., [12]), and
closed-form solutions for the synthesis filters given the
analysis filters are known. We can convert the analysis
part of the filterbank to a sampling strategy by applying the
equivalence of Fig. 13. This results in the sampling strategy de-
picted in Fig. 15, where the signal is filtered by three con-
tinuous-time filters with frequency responses ,

, and the outputs are sampled at the corresponding rates.
The reconstruction is obtained by applying the Interpolation
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Fig. 14. Perfect reconstruction discrete-time filterbank.

Fig. 15. Sampling procedure.

Fig. 16. Reconstruction using a continuous-time filterbank.

Identity of Fig. 3 to the synthesis part of the filterbank followed
by impulse modulation and lowpass filtering, resulting in the re-
construction depicted in Fig. 16.

The sampling procedure of Fig. 15, together with the recon-
struction of Fig. 16, constitute a generalization to Papoulis’
well-known generalized sampling expansion (described in [8]).
Papoulis showed that a bandlimited signal is uniquely
determined by the samples of the responses
of LTI filters with input sampled at one- th of
the Nyquist rate. By converting a PR filterbank with unequal
decimation factors to a sampling and reconstruction scheme,
we allow for different sampling rates of the filters outputs, thus
generalizing Papoulis’ theorem.

As an example, consider the sampling strategy discussed in
Section III, namely, sampling a signal and its derivative at half
the Nyquist rate. Such a sampling scheme may be employed
in digital flight control, where the position, as well as the ve-
locity of the aircraft, are recorded. In practical situations, we

may be able to obtain readings of the velocity more frequently
then readings of the position since the latter typically requires
additional computation. In such cases, we can benefit from an al-
ternative sampling strategy, where the position is recorded every

seconds with , and the velocity is recorded every
seconds. Thus, we allow for a lower sampling

rate of the position, which is compensated for by a higher sam-
pling rate of the velocity.

Note that the fact that is uniquely determined by sam-
ples of the outputs of filters sampled at different sampling
rates can be shown using Papoulis’ theorem by splitting theth
branch, consisting of a continuous-time filter followed by uni-
form sampling with period , into branches, where is
the LCM of . Each new branch will consist of filtering with
a filter whose impulse response is the original impulse response
shifted by a multiple of followed by uniform sampling with
period . The novelty in our generalization is in proving that the
reconstruction is possible using a single filter for each branch in-
stead of filters, as follows from Papoulis’ theorem.

VII. CONCLUSION

This paper introduces a filterbank interpretation of various
sampling methods, thereby allowing for efficient implementa-
tion of the reconstruction from generalized samples as well as
from a class of nonuniform samples. The main focus of this
paper was on recurrent andth-order nonuniform sampling,
for which a continuous-time filterbank implementation of the
reconstruction was presented. Through the use of the Interpo-
lation Identity derived in Section II, the continuous-time filter-
banks were converted to equivalent discrete-time filterbanks fol-
lowed by impulse modulation and lowpass filtering. The dis-
crete-time filterbanks provide interpolation to uniform samples
and can be implemented very efficiently exploiting the many
known results regarding the implementation of filterbank struc-
tures. The block diagram equivalences formulated in this paper
are general in the sense that they can be used to convert ar-
bitrary continuous-time filterbanks to equivalent discrete-time
filterbanks, and vise versa. Presenting the reconstruction from
generalized samples in terms of continuous-time filters and ap-
plying the Interpolation Identity leads to efficient implementa-
tions that inherently interpolate the uniform Nyquist samples of
the signal. Furthermore, the equivalences provide additional in-
sight into the sampling and reconstruction process, thus leading
to a whole new class of sampling strategies.

APPENDIX A
PROOF OF THEINTERPOLATION IDENTITY

Referring to Fig. 2(a) and denoting the input to the filter
by , we have

(34)
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Consequently

(35)

and

(36)

Referring to Fig. 2(b), we denote the Fourier transforms
of , , , and by , , , and

, respectively. The sequence is obtained by
uniformly sampling with period , and thus

(37)

Using the frequency domain input–output relations of the ex-
pander and the decimator [7], we have

(38)

and

(39)

Since is required to be an integer, we may substi-
tute in (39), resulting in

(40)

Next, we relate the transform of the output to .
Since is obtained by lowpass filtering a uniformly spaced
impulse train with impulse train values and period [7]

otherwise.
(41)

Substituting (40) in (41) we have

(42)

Comparing (42) with (36), we conclude that the outputs of
Fig. 2(a) and (b) are equal if

(43)

for . Equation (43) specifies how to choose
so that the outputs are equal. Specifically

(44)

Since for ,
outside . We can there-
fore combine the equations represented by (44) for

into the single equation

(45)

or

(46)

Choosing according to (46) guarantees that the outputs of
Fig. 2(a) and (b) are equal, establishing the identity.

APPENDIX B
PROOF OF THERECONSTRUCTIONFORMULA FROM RECURRENT

NONUNIFORM SAMPLES (11)

Substituting (10) in (9) we have

(47)

Each one of the products in (47) converges to a constant times
. This can be shown as follows. The function

can be expressed as an infinite product ([11, p. 114]):

(48)

where is a constant. Thus
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(49)

Therefore, (47) can be rewritten as

(50)

with a constant. Differentiating (50) and evaluating the deriva-
tive at , we have

(51)

Substituting (10), (50), and (51) in (8) results in the reconstruc-
tion formula given by (11).

Note, that Yen derives the same reconstruction formula in
[16]. However, his derivation does not rely on Theorem 1 and is
considerably more complex then the derivation presented here.

APPENDIX C
PROOF OF THERECONSTRUCTIONFORMULA FROM TH-ORDER

NONUNIFORM SAMPLES (23)

For this case, (8) can be written as

(52)

Substituting (22) in (9) and using (49), we conclude that

(53)

with a constant. Differentiating (53) and evaluating the deriva-
tive at , we have

(54)

The reconstruction formula given by (23) follows from substi-
tuting (53) and (54) in (52).

APPENDIX D
PROOF OF THEFILTER BANK REPRESENTATION OF (25)

From the definition of [see (27)] and the relation
, [defined in (24)] can be

written as

(55)

Note from (27) that . Thus, we further
express (55) as

(56)

Using the equality

(57)

we rewrite as

(58)

Equation (58) can be expressed as a sum ofconvolutions.
Specifically, , where
and are defined in (26) and (28), respectively.
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