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ABSTRACT

We consider the problem of designing a linear beamformer
to estimate a source signals(t) from array observations. Con-
ventional beamforming methods typically aim at maximizing the
signal-to-interference-plus-noise ratio (SINR). However this does
not guarantee a small mean-squared error (MSE), hence on av-
erage their resulting signal estimatês(t) can be far froms(t).
To ensure thatŝ(t) is close tos(t), we propose using the more
appropriate design criterion of MSE. Since the MSE depends
in general on s(t) which is unknown, it cannot be minimized
directly. Therefore we develop a competitive beamforming ap-
proach, in which the beamformer is designed to minimize the
worst-caseregret over alls(t), where the regret is the difference
between the MSE using a beamformer ignorant ofs(t) and the
smallest possible MSE attainable with a beamformer that knows
s(t). Thus, we ensure that over a wide range of signal values, our
beamformer will result in a relatively low MSE. We demonstrate
through numerical examples that the proposed minimax regret
beamformer (MMR) outperforms several existing standard and
robust beamformers, for wide range of SNR values.

1. INTRODUCTION

Beamforming is a classical method of processing temporal sensor
array measurements for signal estimation, interference cancella-
tion, or source direction and spectrum estimation [1, 2, 3]. It has
ubiquitously been applied in areas such as radar, sonar, wireless
communications, speech processing, medical imaging, radioas-
tronomy, etc.

Conventional approaches for designing beamformers typi-
cally attempt to maximize the signal-to-interference-plus-noise
ratio (SINR). Maximizing the SINR requires knowledge of the
interference-plus-noise covariance matrix and the array steering
vector. Since this covariance is unknown, it is often replaced by
the sample covariance of the measurements, resulting in deteriora-
tion of performance with higher signal-to-noise ratio (SNR) when
the signal is present in the training data. Some beamforming tech-
niques are designed to mitigate this effect [4, 5, 6, 7, 8], whereas
others are developed to also overcome uncertainty in the steering
vector [9, 10, 11]. However, maximizing SINR may not guarantee
a good estimate of the signal. In anestimationcontext, where our
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goal is to deign a beamformer in order to obtain an estimate of the
signal amplitude that is close to the true amplitude, it would make
more sense to choose the weights to minimize an objective that is
related to the estimation error, rather than the SINR.

In this paper we derive a beamforming method for estimating
a signal in the presence of interference and noise using the mean-
squared error (MSE) as the performance criterion. Computing the
MSE shows, however, that it depends explicitly on the unknown
signal in the deterministic case, or the unknown signal power in
the stochastic case, hence cannot be minimized directly. Thus, we
aim at designing a robust beamformer whose performance in terms
of MSE is good across all possible values of the unknowns. To
develop a beamformer with this property, we employ a new com-
petitive estimation framework, which has been recently proposed
for solving robust estimation problems [12]. This framework con-
siders a general linear estimation problem, and suggests a linear
estimator whose performance is as close as possible to that of the
optimal linear estimator for the case in which the model parame-
ters are completely known. Specifically, the estimator is designed
to minimize the worst-caseregret, which is the difference between
the MSE of the estimator in the presence of uncertainties, and the
smallest attainable MSE with a linear estimator that knows the ex-
act model. Based on this framework, we propose a minimax regret
(MMR) beamformer whose MSE is uniformly as close as possible
to that of the optimal beamformer that knows the signal parame-
ters, for all possible parameter values, as we detail below in the
next section. Thus, we ensure that our proposed beamformer will
result in a relatively low MSE over a wide range of signal values.

In Section 2 we present the problem formulation and review
existing methods. In Section 3 we develop the proposed MMR
beamformer. In Sections 4 and 5 we discuss practical considera-
tions and present numerical examples illustrating the advantage of
the proposed MMR beamformer over several existing standard and
robust beamformers, for wide range of SNR values.

2. PROBLEM FORMULATION

We denote vectors inCm by boldface lowercase letters and matri-
ces inCn×m by boldface uppercase letters.I denotes the identity
matrix of appropriate dimension,(·)∗ denotes the Hermitian con-
jugate, and(̂·) denotes an estimated vector or matrix.

Beamforming methods are used extensively in a variety of dif-
ferent areas, where one of their main goals is to estimate the source
signal amplitudes(t) from the array observations

y(t) = s(t)a + i(t) + e(t), t = 1, . . . , N (1)



wherey(t) ∈ CM is the complex vector of array observations at
time t with M being the number of array sensors,a is the signal
steering vector which depends on the degree of arrival (DOA) of
the wavefront plane associated withs(t) with respect to a uniform
linear array (ULA) of sensors,s(t) is the signal amplitude,i(t)
is the interference,e(t) is a Gaussian noise vector andN is the
number of snapshots [1, 2].

The source signal amplitudes(t) may be a deterministic un-
known signal, such as a complex sinusoid, or a stochastic station-
ary process with unknown signal power. Since the statistics ofs(t)
are unknown, in our development below we will treats(t) as a de-
terministic signal. Note, that as we demonstrate in Section 5, the
algorithms we develop can be applied to both deterministic and
stochastic signals.

Our goal is to estimate the signal amplitudes(t) from the ob-
servationsy(t) using a set of beamformer weightsw(t), where
the output of a narrowband beamformer is given by

ŝ(t) = w∗(t)y(t), t = 1, . . . , N. (2)

Traditionally, the beamformer weightsw(t) = w are chosen to
maximize the SINR

SINR ∝ |w∗a|2
w∗Ri+ew

, (3)

where
Ri+e = E {(i + n)(i + n)∗} (4)

is the interference+noise covariance matrix. The weight vector
maximizing the SINR is given by

w =
R−1

i+ea

a∗Ri+ea
. (5)

The solution (5) is also referred to as the minimum variance distor-
tionless response (MVDR) beamformer, since it can be obtained as
the solution to

min
w

w∗Ri+ew subject to w∗a = 1. (6)

In practice, the interference+noise covariance matrixRi+e is
often not available. In such cases, the exact covarianceRi+e in
(5) is replaced by an estimated covariance. Various methods exist
for estimating the covarianceRi+e. The simplest approach is to
choose the estimate as the sample covariance

bR =
1

N

NX
t=1

y(t)y(t)∗. (7)

The resulting beamformer is commonly referred to as the sample
matrix inversion (SMI) beamformer or the Capon beamformer [13,
14]. If the signal is present in the training data, then it is well
known that the performance of the MVDR beamformer withRi+n

replaced bybR of (7) degrades considerably [6].
An alternative approach for estimatingRi+n is the diagonal

loading approach, in which the estimate is chosen as

bRdl = bR + ξI =
1

N

NX
t=1

y(t)y(t)∗ + ξI, (8)

whereξ is the diagonal loading factor. The resulting beamformer
is referred to as the loaded SMI (LSMI) beamformer [4, 5], or the

loaded Capon beamformer. Various methods have been proposed
for choosing the diagonal loading factorξ; seee.g.,[5]. A heuristic
choice forξ, which is common in applications, isξ ≈ 10σ2, where
σ2 is the noise power in a single sensor.

Another popular approach to estimatingRi+e is the
eigenspace approach [6, 7, 8], in which the covariance matrix is
estimated as bReig = bRPs, (9)

wherePs is the orthogonal projection onto the subspace corre-
sponding to theD + 1 largest eigenvalues ofbR, wereD is the
known rank of the interference subspace.

The Capon, loaded Capon and eigenspace beamformers, can
all be viewed as MVDR beamformers with a particular estimate of
Ri+e. In the sequel, we useR to denote the interference+noise
covariance matrix, whereR is equal toRi+e whenRi+e is avail-
able, and is otherwise chosen as any of the estimates above.

The class of MVDR beamformers assumes explicitly that the
steering vectora is known exactly. Recently, several robust beam-
formers have been proposed for the case in which the steering vec-
tor is not known precisely, but rather lies in some uncertainty set
[9, 10, 11]. Although originally developed to deal with steering
vector mismatch, the authors of the referenced papers suggest us-
ing these robust methods even in the case in whicha is known, in
order to deal with the mismatch in the interference+noise covari-
ance. Each of the above robust methods is designed to maximize
a measure of SINR on the uncertainty set. Specifically, in [9], the
authors suggest minimizingw∗ bRw subject to the constraint that
|w∗c| ≥ 1 for all possible values of the steering vectorc, where
‖c− a‖ ≤ ε. The resulting beamformer is given by

w =
λ

λa∗
�bR + λε2I

�−1

a− 1

�bR + λε2I
�−1

a, (10)

whereλ is chosen such that|w∗a − 1|2 = ε2w∗w. In practice,
the solution can be found by using a second order cone program.
In [10] the authors consider a similar approach in which they seek
to minimizew∗ bRw subject to‖w − a‖ ≤ ε, which results in the
beamformer

w =

�bR + 1
λ
I
�−1

a

a∗
�bR + 1

λ
I
�−1 bR�bR + 1

λ
I
�
a

, (11)

whereλ is chosen such that





�I + λbR�−1

a





2

= ε. Finally, in

[11] the authors consider a general-rank signal model. Adapting
their results to the rank-one steering vector case, their beamformer
is the solution to minimizingw∗ bRw subject to|w∗a|2 ≥ 1 −
w∗∆w for all ‖∆‖ ≤ ε, and is given by

w = P

��bR + λI
�−1

(aa∗ − εI)

�
, (12)

whereP (A) is the eigenvector associated with the largest eigen-
value ofA, andλ is a diagonal loading factor.

The motivation behind the class of MVDR beamformers and
the robust beamformers is to maximize the SINR. However, choos-
ing w to maximize the SINR does not necessarily result in an esti-
mated signal amplitudês(t) that is close tos(t). In anestimation
context, where our goal is to deign a beamformer in order to obtain



an estimatês(t) that is close tos(t), it would make more sense to
choose the weightsw to minimize the MSE rather than to maxi-
mize the SINR, which is not directly related to the estimation error
ŝ(t)− s(t).

If ŝ = w∗y, where for brevity we omitted the indext, then
the MSE betweens andŝ is given by

E(|ŝ− s|2) = V (ŝ) + |B(ŝ)|2
= w∗Rw + |s|2|1−w∗a|2, (13)

whereV (ŝ) = E(|ŝ − E(ŝ)|2) is the variance of the estimatês
andB(ŝ) = E(ŝ)− s is the bias. Sinces is not known, we cannot
choose a beamformer to minimize the MSE of (13). One approach
is to force the term depending on|s|, namely the bias, to0, and
then minimize the MSE,i.e.,

min
w

w∗Rw subject tow∗a = 1, (14)

which leads to the class of MVDR beamformers. Thus, in addition
to maximizing the SINR, the MVDR beamformer minimizes the
MSE subject to the constraint that the bias in the estimatorŝ is
equal to0. However, this does not guarantee a small MSE, so that
on average, the resulting estimate ofs(t) may be far froms(t).
Indeed, it is well known that unbiased estimators may often lead
to large MSE values.

Instead of forcing the term depending ons to zero, it would
be desirable to design a robust beamformer whose performance
is reasonably good across all possible values ofs. Based on the
ideas of [12], we propose an MMR beamformer whose MSE is
uniformly as close as possible to that of the optimal beamformer
that knowss, for all possible values ofs in a prespecified region of
uncertainty. Thus, we ensure that over a wide range of values ofs,
our beamformer will result in a relatively low MSE. Specifically,
we seek a beamformer that minimizes the worst-case difference
regret, namely the worst-case difference between its MSE and the
best possible MSE attainable using a linear beamformer whens
is known, over a bounded set of values|s|. Whens is known,
the beamformer output has the form̂s = w∗(s)y, wherew can
depend ons. As we show below, even in the case in whichs is
known, we cannot achieve a zero MSE, when restricting ourselves
to linear beamformers.

In [12], a minimax difference regret estimator was derived for
the problem of estimating an unknown vectorx in a linear model
y = Hx + n, whereH is a known linear transformation, andn is
a noise vector with known covariance matrix. The estimator was
designed to minimize the worst-case regret over all bounded vec-
torsx, namely vectors satisfyingx∗Tx ≤ U2 for someU > 0
and some positive definite matrixT. It was shown that the linear
MMR estimator can be found as a solution to a convex optimiza-
tion problem that can be solved very efficiently.

In our problem, the unknown parameterx = s is a scalar, so
that an explicit solution can be derived, as we show in Section 3.
Furthermore, in our development we consider both lower and up-
per bounds on|s|, so that we seek the beamformer that minimizes
the worst-case regret over the uncertainty regionL ≤ |s| ≤ U .
The boundsL andU can either be determined based on prior in-
formation on the signal amplitude, or, in cases in which no such
information is available, these bounds can be estimated from the
data, as we discuss in Section 4. Thus, in practice, the only prior
information needed in order to implement the MMR beamformer
is knowledge of the steering vector.

3. THE MINIMAX REGRET BEAMFORMER

The MMR beamformer is designed to minimize the worst-case re-
gretR(s,w), which is defined as the difference between the MSE
using an estimator̂s = w∗y and the smallest possible MSE attain-
able with an estimator of the form̂s = w∗(s)y whens is known,
which we denote byMSEo.

To develop an explicit expression forMSEo we first determine
the estimator̂s = w∗(s)y that minimizes the MSE whens is
known. To this end we differentiate MSE of (13) with respect to
w and equate to0, which results in

Rw(s) + |s|2(a∗w(s)− 1)a = 0, (15)

so that
w(s) = |s|2(R + |s|2aa∗)−1a. (16)

Using the Matrix Inversion Lemma we can expressw(s) as

w(s) =
|s|2

1 + |s|2a∗Ra
R−1a. (17)

Substitutingw(s) back into (13),MSE0 is given by

MSEo =
|s|2

1 + |s|2a∗R−1a
=

|s|2
1 + |s|2α, (18)

where for brevity we denoteα = a∗R−1a.
Sinces is unknown, we cannot implement the optimal beam-

former (17). Instead we seek the beamformerŝ = w∗y that mini-
mizes the worst-case regretR(s,w) = E(|w∗y − s|2)−MSEo

subject to the constraintL ≤ |s| ≤ U . Thus we seek the beam-
formerw that is the solution to the problem

min
w

max
L≤|s|≤U

R(s,w) = min
w

�
w∗Rw+

+ max
L≤|s|≤U

�
|s|2|1−w∗a|2 − |s|2

1 + |s|2α
��

. (19)

To develop a solution to (19), we first consider the inner max-
imization problem

f(w) = max
L≤|s|≤U

�
|s|2|1−w∗a|2 − |s|2

1 + |s|2α
�

= max
L2≤x≤U2

�
x|1−w∗a|2 − x

1 + xα

�
, (20)

wherex = |s|2. Noting that the functionh(x) = ax−bx/(c+dx)
with b, c, d > 0 is convex inx ≥ 0, we have that for fixedw,

g(x) = x|1−w∗a|2 − x

1 + xα
(21)

is convex inx ≥ 0, and consequently the maximum ofg(x) over
a closed interval is obtained at one of the boundaries. Thus,

f(w) = max
L2≤x≤U2

g(x) = max
�
g(L2), g(U2)

�
, (22)

and the problem (19) reduces to

min
w

�
w∗Rw + max

�
L2|1−w∗a|2 − L2

1 + L2α
,

U2|1−w∗a|2 − U2

1 + U2α

��
. (23)



We now show that the optimal value ofw has the form

w = d(a∗R−1a)−1R−1a =
d

α
R−1a, (24)

for somed. To this end, we first note that the objective in (23)
depends onw only throughw∗a andw∗Rw. Now, suppose that
we are given a beamformer̃w, and let

w =
a∗w̃
α

R−1a. (25)

Then

w∗a =
w̃∗a
α

a∗R−1a = w̃∗a, (26)

and

w∗Rw =
|a∗w̃|2

α2
a∗R−1a =

|a∗w̃|2
α

. (27)

¿From the Cauchy-Schwarz inequality, for any vectorx,

|a∗x|2 ≤ a∗R−1ax∗Rx = αx∗Rx. (28)

Substituting (28) withx = w̃ into (27), we have that

w∗Rw ≤ |a∗w̃|2
α

≤ w̃∗Rw̃. (29)

It follows from (26) and (29) thatw is at least as good as̃w for
minimizing (23). Therefore, the optimal value ofw satisfies

w =
a∗w
α

R−1a, (30)

which implies thatw has the form (24) for somed.
Combining (24) and (23), our problem reduces to

min
d

� |d|2
α

+ max

�
L2|1− d|2 − L2

1 + αL2
,

U2|1− d|2 − U2

1 + αU2

��
. (31)

Sinced is in general complex, we can writed = |d|ejφ for some
0 ≤ φ ≤ 2π. Using the fact that|1− d|2 = 1 + |d|2 − 2 cos(φ),
it is clear that at the optimal solution,φ = 0. Therefore, without
loss of generality, we assume in the sequel thatd ≥ 0. We can
then express the problem of (31) as

min
t,d

t (32)

subject to

d2

α
+ L2(1− d)2 − L2

1 + αL2
≤ t;

d2

α
+ U2(1− d)2 − U2

1 + αU2
≤ t. (33)

The constraints (33) can be equivalently written as

fL(d)
4
=

�
1

α
+ L2

��
d− αL2

1 + αL2

�2

≤ t;

fU (d)
4
=

�
1

α
+ U2

��
d− αU2

1 + αU2

�2

≤ t. (34)

To develop a solution to (32) subject to (34), we note that both
fL(d) andfU (d) are quadratic functions ind, that obtain a mini-
mum atdL anddU respectively, where

dL =
αL2

1 + αL2
;

dU =
αU2

1 + αU2
. (35)

Therefore, the optimal value ofd, denotedd0, satisfies

dL ≤ d0 ≤ dU . (36)

Indeed, lett(d) = max(fL(d), fU (d)), and lett0 = t(d0) be the
optimal value of (32) subject to (34). Since bothfL(d) andfU (d)
are monotonically decreasing ford < dL, t(d) > t(dL) ≥ t0 for
d < dL so thatd0 ≥ dL. Similarly, since bothfL(d) andfU (d)
are monotonically increasing ford > dU , t(d) > t(dU ) ≥ t0 for
d > dU so thatd ≤ dU .

SincefL(d) andfU (d) are both quadratic, they intersect at
most at two points. IffL(d) = fU (d), then

(1− d)2 =
1

(1 + αL2)(1 + αU2)
, (37)

so thatfL(d) = fU (d) for d = d+ andd = d−, where

d± = 1± 1p
(1 + αL2)(1 + αU2)

. (38)

Denoting byI the intervalI = [dL, dU ], sinced+ > 1, clearly
d+ /∈ I. Using the fact that

1

1 + αU2
≤ 1p

(1 + αL2)(1 + αU2)
≤ 1

1 + αL2
, (39)

we have thatd− ∈ I. We now show that the optimal value ofd is
d0 = d−. If L = U , thend− = dL = dU so that from (36),d0 =
d−. Next, assume thatL < U . In this case, ford ∈ I, fL(d) is
monotonically increasing andfU (d) is monotonically decreasing.
Denotingt− = t(d−) and noting thatt− = fL(d−) = fU (d−),
we conclude that ford− < d ≤ dL, fU (d) > t−, and fordU ≤
d < d−, fL(d) > t− so thatt(d) > t− for anyd ∈ I such that
d 6= d−, and therefored0 = d−.

We summarize our results in the following theorem.

Theorem 1. Let s denote an unknown parameter in the model
y = sa + n, wherea is a known length-M vector, andn is a
zero-mean random vector with covarianceR. Then the solution to

min
ŝ=w∗y

max
L≤|s|≤U

�
E(|ŝ− s|2)− min

ŝ=w∗(s)y
E(|ŝ− s|2)

�
is

ŝ =

 
1− 1p

(1 + L2a∗R−1a)(1 + U2a∗R−1a)

!
a∗R−1y

a∗R−1a
.

4. PRACTICAL CONSIDERATIONS

In our development of the MMR beamformer, we assumed that
there exists boundsL andU on the magnitude of the signal to be
estimated. In some applications, such bounds may exist, for exam-
ple when the type of the source and the possible distances from the



array are known. If no such bounds are available, then we may esti-
mate them from the data using one of the conventional beamform-
ers. Specifically, letwc denote one of the conventional beamform-
ers. Then, using this beamformer we can estimates asŝ = w∗

cy.
We may then use this estimate to obtain approximate values forL
andU . In the examples below, we chooseU = β|w∗

cy| for some
β > 0, andL = 0. Assuming thata is known, with this choice of
bounds the MMR beamformer becomes

w =

 
1− 1p

(1 + β2|w∗
cy|2a∗R−1a)

!
R−1a

a∗R−1a
. (40)

Since in most applications the true covaraince is not available we
have to estimate it, e.g. using (7). However, as we discussed in
Section 2, ifs(t) is present in the training data, then a diagonal
loading (8) or a projection approach (9) may perform better than
(7). Thus in the examples below, the true covariance is replaced
by (8) or (9).

5. NUMERICAL EXAMPLES

To evaluate and compare the performance of the proposed MMR
method with other techniques, we conducted numerical examples
using the same scenarios as in [11]. These consist of a uniform lin-
ear array of 20 omnidirectional sensors spaced half a wavelength
apart. In all the examples below the interference and noise are
zero-mean complex white Gaussian processes. The signals(t) is
continuously present throughout the training data and the steer-
ing vectora is known. The plane-waves ofs(t) and interference
i(t) have directions of arrival (DOAs) of30o and−30o, respec-
tively, relative to the array normal. The power of the noisee(t)
is one and the interference-to-noise ratio (INR) in a single sensor
is 20 dB. The merit function we use to evaluate the performance
is the square root of the normalized mean-square error NMSE =
E(|ŝ(t) − s(t))|2)/E(|s(t)|2). Each result presented below was
obtained as a sample mean from 100 Monte Carlo experiments.

The performance of the proposed method was compared
against six methods: the Capon beamformer (CAPON) [13, 14],
loading Capon beamformer (L-CAPON) [4, 5], eigenspace-based
beamformer (EIG) [6, 7, 8] and robust beamformers (ROB1,
ROB2 and ROB3) [9, 10, 11]. The parameters of each of the com-
pared methods were chosen as suggested in the literature. For the
L-CAPON (8) the diagonal loading was set asξ = 10 σ2

w [9, 10]
with σ2

w being the variance of the noise in each sensor, assumed to
be known (σ2

w = 1 in this example); for the EIG beamformer (9) it
was assumed that the low rank condition and number of interfer-
ers is known. For the alternative robust methods we have that, for
ROB1 (10) the upper bound on the steering vector uncertainty was
set asε = 3 [9], for ROB2 (11), the upper bound on the steering
vector uncertainty was set asε = 3.5 [10] and the diagonal loads
for ROB3 (12) [11] were chosen asλ = 30 andε = 9. In order
to show the best possible performance by each approach, the op-
timal CAPON and optimal MMR beamformer are also included.
By optimal we refer to the case when the covariance matrixR,
and|s(t)|2 for t = 1, . . . , N are known, in addition to the steering
vectora.

Example 1 - Deterministic signal. We choses(t) to be a com-
plex sine wave with varying amplitude to obtain the desired SNR,
and used 30 training snapshots. We implemented MMR1 with a
sample covariance matrix estimated with a loading factor,ξ = 10
[9, 10], β = 8 andwc given by the L-CAPON beamformer with

ξ = 10; MMR2 was applied by using (9) withD = 1, β = 8 and
wc given by the EIG beamformer. It can be seen in Figure 1 that
MMR1 has the best performance for SNR values between -6 to
-4 dB, whereas MMR2 has the best performance between -3 and
4 dB. Figure 2 shows the performance as a function of the num-
ber of training data for a fixed SNR = -5 dB. It can be seen that
MMR1 and MMR2 have improved performance with larger num-
ber of training snapshots.
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Figure 1: Performance comparison of the different methods in
terms of the square root of the normalized mean-squared error for
estimating a complex sinewave, as a function of signal-to-noise
ratio for a training data of 30 snapshots.
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Figure 2: Performance comparison of the different methods in
terms of the square root of the normalized mean-squared error for
estimating a complex sinewave, as a function of number of training
snapshots for SNR = -5 dB.

Example 2 - Stochastic signal. In this example we choses(t)
to be a zero-mean complex Gaussian signal with varying variance
to obtain the desired SNR, and used 30 training snapshots. We
implemented MMR1 and MMR2 as described in the last example,



but with β = 12. From Figure 3, we can draw similar conclusions
as in the last example about the performance of optimal and practi-
cal beamformers presented. It can be seen that MMR1 withξ = 10
andβ = 12, has the best performance for SNR values between -8
to -5 dB, whereas MMR2 withβ = 12 has the best performance
between -4 and 2 dB. Also, it can be seen in Figure 4 that MMR1
and MMR2 improve their performances with a larger number of
training snapshots for SNR of -5 dB.
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Figure 3: Performance comparison of the different methods in
terms of the square root of the normalized mean-squared error for
estimating a zero mean complex Gaussian signal, as a function of
signal-to-noise ratio for a training data of 30 snapshots.
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Figure 4: Performance comparison of the different methods in
terms of the square root of the normalized mean-squared error for
estimating a zero mean complex Gaussian signal, as a function of
number of training snapshots for SNR = -5 dB.
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