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ABSTRACT

We consider the problem of estimating a random vectorx, with
covariance uncertainties, that is observed through a known lin-
ear transformationH and corrupted by additive noise. We first
develop the linear estimator that minimizes the worst-case mean-
squared error (MSE) across all possible covariance matrices. Al-
though the minimax approach has enjoyed widespread use in the
design of robust methods, we show that its performance is often
unsatisfactory. We then develop a competitive minimax approach
in which we seek the linear estimator that minimizes the worst-
caseregret, namely, the worst-case difference between the MSE at-
tainable using a linear estimator, ignorant of the signal covariance,
and the optimal MSE attained using a linear estimator that knows
the signal covariance. We demonstrate, through an example, that
the minimax regret approach can improve the performance over
the minimax MSE approach.

1. INTRODUCTION

The theory of estimation in linear models has been studied ex-
tensively, following the classical works of Wiener [1] and Kol-
mogorov [2]. A fundamental linear estimation problem is that of
estimating a stationary random signal filtered by a known linear
time invariant (LTI) channel, in additive stationary noise. When
the signal and noise spectral densities are completely specified,
the estimation filter minimizing the mean-squared error (MSE) is
the well-known Wiener filter.

If the spectral densities deviate from the ones assumed, then
the performance of the Wiener filter matched to the assumed spec-
tral densities can deteriorate considerably [3]. In such cases, it is
desirable to design a robust filter whose performance is reasonably
good across all spectral densities in the uncertainty region.

The most common approach for designing robust estimation
filters is in the spirit of the minimax MSE approach, initiated by
Huber [4], in which the estimation filter is chosen to minimize
the worst-case MSE over an appropriately chosen class of spectral
densities [5, 6, 3]. The minimax approach, in which the goal is
to optimize the worst-case performance, is one of the major tech-
niques for designing robust systems, and has been applied to many
problems in detection and estimation [7, 8].

We consider a finite-dimensional analogue of the classical
Wiener filtering problem, in which we seek to estimate a random
vectorx observed through a known linear transformationH and
corrupted by additive noisew. If the signal and noise covariance
matrices are completely specified, then the linear minimum MSE
(MMSE) estimator ofx for this problem is well known [9].

In many practical applications the covariance of the noise can
be estimated within high accuracy. The signal, on the other hand,
will typically have a broader correlation function, so that estimat-
ing this correlation from the data with high accuracy often neces-
sitates a larger sample size than is available. Therefore, in this
paper, we develop methods for designing robust estimators in the
case in which the covariance of the noise is known precisely, but
the covariance of the desired signalx is not completely specified.

Following the popular minimax approach, in Section 3, we
seek the linear estimator that minimizes the worst case MSE over
all possible covariance matrices. The resulting estimator, referred
to as the minimax MSE estimator, is shown to be an MMSE esti-
mator matched to the worst possible choice of covariance matrix.
Although the minimax approach has enjoyed widespread use in the
design of robust methods, its performance is often unsatisfactory.
The main limitation of this approach is that it tends to be overly
conservative since it optimizes the performance for the worst pos-
sible choice of unknowns. As we show in the context of an exam-
ple in Section 5, this can often lead to degraded performance.

To improve the performance of the minimax MSE estimator,
in Section 4, we propose a new competitive approach to robust es-
timation in which we seek a linear estimator whose performance is
as close as possible to that of the optimal estimator for all possible
values of the covariance matrix. Specifically, we seek the estima-
tor that minimizes the worst-caseregret, which is the difference
between the MSE of the estimator, ignorant of the signal covari-
ance, and the smallest attainable MSE with a linear estimator that
knows the signal covariance. By considering thedifferencebe-
tween the MSE and the optimal MSE rather than the MSE directly,
we can counterbalance the conservative character of the minimax
approach, as is evident in the example we consider in Section 5.

The minimax regret concept has recently been used to develop
a linear estimator for estimating adeterministicunknown vectorx,
in a linear model [10]. Similar competitive approaches have been
used in a variety of other contexts, for example, universal source
coding [11], hypothesis testing [12], and prediction [13].

For analytical tractability, in our development we restrict at-
tention to the class of linear estimators. As is well known [9], ifx
andw are jointly Gaussian vectors with known covariance matri-
ces, then the estimator that minimizes the MSE, among all linear
and nonlinear estimators, is the linear MMSE estimator. In [14],
we show that this property does not hold when minimizing the
worst-case regret with covariance uncertainties, even in the Gaus-
sian case. Nevertheless, we demonstrate that in many cases we do
not loose much by confining ourselves to linear estimators, which
provides additional justification for the restriction to linear estima-
tors in the context of minimax regret estimation.



2. PROBLEM FORMULATION

We denote vectors inCm by boldface lowercase letters and matri-
ces inCn×m by boldface uppercase letters. The matrixI denotes
the identity matrix of the appropriate dimension,(·)∗ denotes the
Hermitian conjugate, and̂(·) denotes an estimated vector.

Consider the problem of estimating the unknown vector pa-
rameterx in the linear model

y = Hx + w, (1)

whereH is a knownn×m matrix with rankm, x is a zero-mean,
length-m random vector with covariance matrixCx andw is a
zero-mean, length-n random vector with known positive definite
covarianceCw, uncorrelated withx. We assume that we only
have partial information about the covarianceCx.

We seek to estimatex using a linear estimator so thatx̂ = Gy
for somem × n matrixG. We would like to design an estimator
x̂ of x to minimize the MSE, which is given by

E(‖x̂−x‖2) = Tr (GCwG∗)+Tr (Cx(I−GH)∗(I−GH)) .
(2)

If Cx is known and positive definite, then the linear estimator min-
imizing (2) is theMMSE estimator[9], which can be expressed as

x̂ = (H∗C−1
w H + C−1

x )−1H∗C−1
w y. (3)

If Cx is unknown, then we cannot implement (3). Instead, we
may seek the estimator that minimizes theworst-caseMSE over all
possible choices ofCx consistent with our prior information. To
reflect the uncertainty in our knowledge ofCx, we assume thatCx

andH∗C−1
w H have the same eigenvector matrix, and that each of

the nonnegative eigenvaluesδi ≥ 0, 1 ≤ i ≤ m of Cx satisfies

li ≤ δi ≤ ui, 1 ≤ i ≤ m, (4)

whereli ≥ 0 andui are known.
The assumption thatCx andH∗C−1

w H have the same eigen-
vector matrix is made for analytical tractability. Ifx is a stationary
random vector andH represents convolution ofx with some filter,
then bothCx andH will be Toeplitz matrices and are therefore ap-
proximately diagonalized by the Fourier transform matrix, so that
Cx andH∗C−1

w H approximately have the same eigenvectors.
The model (4) is reasonable when the covariance is estimated

from the data. Specifically, denoting byζi = (ui + li)/2, εi =
(ui − li)/2 for 1 ≤ i ≤ m, the conditions (4) can equivalently
be expressed asδi = ζi + ei wheree2

i ≤ ε2i , 1 ≤ i ≤ m, so
that each of the eigenvalues ofCx lies in an interval of length
2εi around some nominal valueζi, which we can think of as an
estimate of theith eigenvalue ofCx from the data vectory. The
interval specified byεi may be regarded as a confidence interval
around our estimateζi, and can be chosen to be proportional to the
standard deviation of the estimateζi.

Given {ζi}, a straightforward approach to estimatingx is to
use an MMSE estimate corresponding to the estimated covariance.
However, as we demonstrate through an example in Section 5, by
taking an uncertainty interval aroundζi into account, and seeking
a competitive minimax estimator in this interval, we can further
improve the estimation performance.

In Section 3, we develop the minimax estimator that mini-
mizes the worst case MSE over all covariance matrices{Cx} that
satisfy (4). The resulting estimator is an MMSE estimator matched

to the worst possible choice of eigenvaluesi.e.,δi = ui, and there-
fore tends to be overly conservative, which can often lead to de-
graded performance, as is evident in the example in Section 5. In
this example, the minimax MSE estimator performs worse than the
“plug-in” estimator, which is the MMSE estimator matched to the
estimated covariance matrix.

To improve the performance of the minimax estimator, in Sec-
tion 4 we consider a competitive approach in which we seek the
linear estimator that minimizes the worst-case regret. The resulting
estimator can also be interpreted as an MMSE estimator matched
to a covariance matrix which depends on the nominal valueζi

and the uncertainty intervalεi, as well as on the eigenvalues of
H∗C−1

w H. In the example in Section 5, we demonstrate that the
minimax regret estimator can improve the performance over both
the minimax MSE estimator and the plug-in MMSE estimator.

3. MINIMAX MSE ESTIMATOR

We first seek the linear estimator that minimizes the worst-case
MSE over all possible values ofCx that have the same eigenvector
matrix asH∗C−1

w H, and with eigenvaluesδi satisfying (4). Thus,
let H∗C−1

w H have an eigendecompositionH∗C−1
w H = VΛV∗,

whereV is a unitary matrix andΛ is a diagonal matrix with strictly
positive diagonal elements{λi}. ThenCx has the form

Cx = V∆V∗, (5)

where∆ is a diagonal matrix with strictly positive diagonal ele-
ments{δi}, with li ≤ δi ≤ ui, 1 ≤ i ≤ m.

We now consider the problem

min
G

max
li≤δi≤ui

E(‖Gy − x‖2) =

minG {Tr(GCwG∗) + maxli≤δi≤ui Q(Cx)} , (6)

where from (2),

Q(Cx) = Tr (Cx(I−GH)∗(I−GH)) . (7)

To find the covariance matrixCx maximizingQ(Cx), we rely on
the following lemma [14].

Lemma 1. Let W,T and M be nonnegative definite matrices
with W ≤ T. Then Tr(MW) ≤ Tr(MT).

If Cx is an arbitrary matrix of the form (5) with eigenvalues
li ≤ δi ≤ ui, then

Cx ≤ VZV∗, (8)

whereZ is a diagonal matrix with diagonal elementsui. This then
implies, from Lemma 1, that

Tr (Cx(I−GH)∗(I−GH)) ≤
Tr (VZV∗(I−GH)∗(I−GH)) , (9)

with equality if Cx = VZV∗, so thatQ(Cx) is maximized for
the worst possible choice of eigenvaluesi.e.,δi = ui for all i. The
problem of (6), therefore, reduces to minimizing the MSE of (2)
where we substituteCx = VZV∗. The optimal minimax MSE
estimator is then the linear MMSE estimator of (3) withCx =
VZV∗.



4. MINIMAX REGRET ESTIMATOR

To compensate for the conservative character of the minimax MSE
approach, we now seek the linear estimatorx̂ that minimizes
the worst-case regretR(Cx,G), which is defined as the differ-
ence between the MSE using an estimatorx̂ = Gy and the
smallest possible MSE attainable with an estimator of the form
x̂ = G(Cx)y when the covarianceCx is known, denoted by
MSEo. If Cx is known, then the MMSE estimator is given by
(3) and the resulting optimal MSE is

MSEo = Tr
�
(H∗C−1

w H + C−1
x )−1� . (10)

Thus, we seek the matrixG that is the solution to the problem

min
G

max
li≤δi≤ui

R(Cx,G), (11)

whereCx has an eigendecomposition of the form (5), and

R(Cx,G) = Tr(GCwG∗) + Tr (Cx(I−GH)∗(I−GH))

−Tr
�
(H∗C−1

w H + C−1
x )−1

�
. (12)

The linear estimator that minimizes the worst-case regret is given
by the following theorem, the proof of which is derived in [14].

Theorem 1 (Minimax regret estimator). Let x denote the un-
known parameters in the modely = Hx+w, whereH is a known
n×m matrix with rankm, x is a zero-mean random vector uncor-
related withw with covarianceCx andw is a zero-mean random
vector with covarianceCw. LetH∗C−1

w H = VΛV∗ whereV is
a unitary matrix andΛ is anm ×m diagonal matrix with diago-
nal elementsλi > 0 and letCx = V∆V∗ where∆ is anm×m
diagonal matrix with diagonal elements0 ≤ li ≤ δi ≤ ui. Then
the solution to the problem

min
x̂=Gy

max
li≤δi≤ui

�
E(‖x̂− x‖2)− min

x̂=G(x)y
E(‖x̂− x‖2)

�
is

x̂ = VCV∗H∗C−1
w y,

whereC is anm×m diagonal matrix with diagonal elements

ci =
1

λi

 
1− 1p

(1 + λiζi)2 − λ2
i ε

2
i

!
, (13)

ζi = (ui + li)/2 andεi = (ui − li)/2.

As we now show, we can interpret the estimator of Theorem 1
as an MMSE estimator matched to a covariance matrix

Cx = VXV∗, (14)

whereX is a diagonal matrix with diagonal elements

xi =
1

λi

�q
(1 + λiζi)2 − λ2

i ε
2
i − 1

�
. (15)

Note that ifεi = 0 so that theith eigenvalue of the true covariance
of Cx is equal toζi then, as we expect,xi = ζi.

From (3), the MMSE estimate ofx with covarianceCx given
by (14) andH∗C−1

w H = VΛV∗ is

x̂ = V
�
Λ + X−1�−1

V∗H∗C−1
w y. (16)

Since

1

λi + 1
xi

=
1

λi

 
1− 1p

(1 + λiζi)2 − λ2
i ε

2
i

!
= ci, (17)

the estimator̂x of (16) is equivalent to the estimator given by The-
orem 1.

Since the minimax regret estimator minimizes the regret for
Cx = VXV∗, we may view the covarianceCx = VXV∗ as the
“least-favorable” covariance in the regret sense.

It is interesting to note that while the minimax MSE estimator
for the model (4) is matched to a covariance matrix with eigenval-
uesui ≥ ζi, the minimax regret estimator is matched to a covari-
ance matrix with eigenvaluesxi ≤ ζi. Indeed, from (15),

xi ≤
p

(λiζi + 1)2 − 1

λi
= ζi. (18)

Expressingxi as

xi =
1

λi

�
(1 + λiζi)

√
1− ai − 1

�
, (19)

whereai = λ2
i ε

2
i /(1 + λiζi)

2 < 1, (sinceζi ≥ εi), and using the
first order approximation

√
1− y ≈ 1− (1/2)y for 0 ≤ y < 1,

xi ≈ ζi − λiε
2
i

2(1 + λiζi)
. (20)

Thus, the correction to the nominal covarianceζi is approximately
λiε

2
i /(2(1 + λiζi)), which is quadratic in the length of the uncer-

tainty intervalεi.

5. EXAMPLE

We now consider an example illustrating the minimax regret esti-
mator of Theorem 1. Suppose that

y = x + w, (21)

wherex is a length-n segment of a zero-mean stationary first or-
der AR process with componentsxi, so thatE(xixj) = ρ|j−i| for
some parameterρ, andw is a zero-mean random vector uncorre-
lated withx with known covarianceCw = σ2I. We assume that
we know the model (21) and thatx is a segment of a stationary
process, however, its covarianceCx is unknown.

To estimatex, we may first estimateCx from the observations
y. A natural estimate ofCx is given bybCx = [bCy −Cw]+ = [bCy − σ2I]+, (22)

where bCy(i, j) =
1

n

n−|j−i|X
k=1

ykyk+|j−i| (23)

is an estimate of the covariance ofy, and[A]+ denotes the matrix
in which the negative eigenvalues ofA are replaced by0.

Given bCx, we may estimatex using an MMSE estimate
matched tobCx, which we refer to as a plug-in estimator. How-
ever, as can be seen below in Fig. 1, we can further improve the
estimation performance by using the minimax regret estimator.

To compute the minimax regret estimator, we chooseV to be
equal to the eigenvector matrix of the estimated covariance matrix



bCx, andζi = σi whereσi are the eigenvalues ofbCx. We would
then like to chooseεi to reflect the uncertainty in our estimateζi.
Since computing the standard deviation ofζi is difficult, we choose
εi to be proportional to the standard deviation of an estimatorσ̃2

x

of the varianceσ2
x of x, where

σ̃2
x =

1

n

nX
i=1

y2
i − σ2

w. (24)

Under the assumption thatx andw are uncorrelated Gaussian ran-
dom vectors, it can be shown that the variance ofσ̃2

x is given by

E
n�

σ̃2
x − σ2

x

�2o
=

2

n

 
(σ2

x + σ2)2 +

nX
i=2

C2
x(1, i)

!
. (25)

Sinceσ2
x andCx(1, i) are unknown, we substitute their estimatesbCx(1, i), 1 ≤ i ≤ m. Finally, to ensure thatεi ≤ ζi, we choose

εi = min

0@ζi, A

vuut 2

n

 
(bC2

x(1, 1) + σ2)2 +

nX
i=2

bC2
x(1, i)

!1A ,

(26)
whereA is a proportionality factor.

In Fig. 1, we plot the MSE of the minimax regret estimator
averaged over1000 noise realizations as a function of the SNR
defined by−10 log σ2 for ρ = 0.8, n = 10 andA = 4. The
performance of the plug-in MMSE estimator matched to the es-
timated covariance matrixbCx and the minimax MSE estimator
are plotted for comparison. As can be seen from the figure, the
minimax regret estimator can increase the estimation performance
particularly at low to intermediate SNR values. It is also interest-
ing to note that the popular minimax MSE approach is useless in
this example, since it leads to an estimator whose performance is
worse than the performance of the plug-in estimator.
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Fig. 1. MSE in estimatingx as a function of SNR using the mini-
max regret estimator, the minimax MSE estimator and the plug-in
MMSE estimator matched to the estimated covariance matrix.

6. CONCLUSION

We developed a competitive minimax approach for the problem of
estimating a random vectorx in the linear modely = Hx + w,
where the covariance matrixCx of x is subject to uncertainties.
In this approach, we seek the linear estimator that minimizes the
worst-case regret, which is the difference between the MSE of the
estimator and the best possible MSE attainable with a linear es-
timator that knows the covarianceCx. As we demonstrated, the
competitive minimax approach can increase the performance over
the traditional minimax method, which in some cases turns out to
be completely useless.
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