ROBUST LINEAR ESTIMATION WITH COVARIANCE UNCERTAINTIES
Yonina C. Eldar and Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Technion City, Haifa 32000, Israel
{yonina,merhay@ee.technion.ac.il

ABSTRACT In many practical applications the covariance of the noise can
be estimated within high accuracy. The signal, on the other hand,
will typically have a broader correlation function, so that estimat-

ing this correlation from the data with high accuracy often neces-

We consider the problem of estimating a random vegtowith
covariance uncertainties, that is observed through a known lin-

ear transformatiort and corrupted by additive noise. We first gjai0q 5 larger sample size than is available. Therefore, in this

develop()jthe Ilnel\fllrszstlmator thl‘lf"t mlnykr)rlllzes th‘? Worst-ca§e me%"paper, we develop methods for designing robust estimators in the
squared error ) across all possible covariance matrices. Al-oqq i which the covariance of the noise is known precisely, but

thoggh the minimax approach has enjoygd widespread use in thethe covariance of the desired sigmals not completely specified.
design of robust methods, we show that its performance is often Following the popular minimax approach, in Section 3, we

unsatisfactory. We then develop a competitive minimax approach ge ey the Jinear estimator that minimizes the worst case MSE over

in which we seek the linear esﬂma}or that minimizes the worst- all possible covariance matrices. The resulting estimator, referred
casaregret _namel_y, the worst-case difference between the MS_’E a5 as the minimax MSE estimator, is shown to be an MMSE esti-

tainable using a linear estimator, ignorant ofthe §|gnal covariance, yator matched to the worst possible choice of covariance matrix.
and the optimal MSE attained using a linear estimator that knows Although the minimax approach has enjoyed widespread use in the

the signal covariance. We demonstrate, through an example, tha{}lesign of robust methods, its performance is often unsatisfactory.

the minimax regret approach can improve the performance OV€'The main limitation of this approach is that it tends to be overly
the minimax MSE approach.

conservative since it optimizes the performance for the worst pos-
sible choice of unknowns. As we show in the context of an exam-

1. INTRODUCTION ple in Section 5, this can often lead to degraded performance.

To improve the performance of the minimax MSE estimator,

The theory of estimation in linear models has been studied ex-in Section 4, we propose a new competitive approach to robust es-
tensively, following the classical works of Wiener [1] and Kol- timation in which we seek a linear estimator whose performance is
mogorov [2]. A fundamental linear estimation problem is that of as close as possible to that of the optimal estimator for all possible
estimating a stationary random signal filtered by a known linear values of the covariance matrix. Specifically, we seek the estima-
time invariant (LTI) channel, in additive stationary noise. When tor that minimizes the worst-casegret which is the difference
the signal and noise spectral densities are completely specifiedbetween the MSE of the estimator, ignorant of the signal covari-
the estimation filter minimizing the mean-squared error (MSE) is ance, and the smallest attainable MSE with a linear estimator that
the well-known Wiener filter. knows the signal covariance. By considering thferencebe-

If the spectral densities deviate from the ones assumed, thentween the MSE and the optimal MSE rather than the MSE directly,
the performance of the Wiener filter matched to the assumed specwe can counterbalance the conservative character of the minimax
tral densities can deteriorate considerably [3]. In such cases, it isapproach, as is evident in the example we consider in Section 5.
desirable to design a robust filter whose performance is reasonably ~ The minimax regret concept has recently been used to develop
good across all spectral densities in the uncertainty region. a linear estimator for estimatingdeterministicunknown vectox,

The most common approach for designing robust estimation in a linear model [10]. Similar competitive approaches have been
filters is in the spirit of the minimax MSE approach, initiated by used in a variety of other contexts, for example, universal source
Huber [4], in which the estimation filter is chosen to minimize coding [11], hypothesis testing [12], and prediction [13].
the worst-case MSE over an appropriately chosen class of spectral ~ For analytical tractability, in our development we restrict at-
densities [5, 6, 3]. The minimax approach, in which the goal is tention to the class of linear estimators. As is well known [9k if
to optimize the worst-case performance, is one of the major tech-andw are jointly Gaussian vectors with known covariance matri-
niques for designing robust systems, and has been applied to manges, then the estimator that minimizes the MSE, among all linear
problems in detection and estimation [7, 8]. and nonlinear estimators, is the linear MMSE estimator. In [14],

We consider a finite-dimensional analogue of the classical we show that this property does not hold when minimizing the
Wiener filtering problem, in which we seek to estimate a random worst-case regret with covariance uncertainties, even in the Gaus-
vectorx observed through a known linear transformatidrand sian case. Nevertheless, we demonstrate that in many cases we do
corrupted by additive noisw. If the signal and noise covariance not loose much by confining ourselves to linear estimators, which
matrices are completely specified, then the linear minimum MSE provides additional justification for the restriction to linear estima-
(MMSE) estimator ofk for this problem is well known [9]. tors in the context of minimax regret estimation.



2. PROBLEM FORMULATION to the worst possible choice of eigenvalues, §; = u;, and there-
fore tends to be overly conservative, which can often lead to de-
We denote vectors i@ by boldface lowercase letters and matri- graded performance, as is evident in the example in Section 5. In
ces inC™*™ by boldface uppercase letters. The malridenotes this example, the minimax MSE estimator performs worse than the
the identity matrix of the appropriate dimensign),* denotes the  “plug-in” estimator, which is the MMSE estimator matched to the

Hermitian conjugate, and) denotes an estimated vector. estimated covariance matrix.
Consider the problem of estimating the unknown vector pa- To improve the performance of the minimax estimator, in Sec-
rameterx in the linear model tion 4 we consider a competitive approach in which we seek the
linear estimator that minimizes the worst-case regret. The resulting
y=Hx+w, (2) estimator can also be interpreted as an MMSE estimator matched

to a covariance matrix which depends on the nominal value

whereH is a knownn x m matrix with rankm, x is a zero-mean,  and the uncertainty interval, as well as on the eigenvalues of
lengthsm random vector with covariance matr®, andw is a H*C_'H. In the example in Section 5, we demonstrate that the
zero-mean, length-random vector with known positive definite  minimax regret estimator can improve the performance over both
covarianceC,,, uncorrelated withx. We assume that we only  the minimax MSE estimator and the plug-in MMSE estimator.
have partial information about the covariarCe.

We seek to estimate using a linear estimator so that= Gy
for somem x n matrix G. We would like to design an estimator 3. MINIMAX MSE ESTIMATOR

x of x to minimize the MSE, which is given by ] ) ] o
We first seek the linear estimator that minimizes the worst-case

E(|x—x]|?) = Tr(GC,G*)+Tr (C.(I - GH)*(I - GH)). MSE over all possible values @ .. that have the same eigenvector
%) matrix asH* C,, ' H, and with eigenvalues satisfying (4). Thus,
If C, is known and positive definite, then the linear estimator min- let H*C,' H have an eigendecompositi##i*C;,'H = VAV™,
imizing (2) is theMMSE estimatof9], which can be expressed as whereV is a unitary matrix and is a diagonal matrix with strictly
positive diagonal elemenfs\; }. ThenC, has the form

x=(H'C,'H+C;") 'H"'C,'y. (3)
C., = VAV", (5)
If C, is unknown, then we cannot implement (3). Instead, we
may seek the estimator that minimizes terst-caseMSE over all whereA is a diagonal matrix with strictly positive diagonal ele-
possible choices o€, consistent with our prior information. To  ments{4;}, withI; < §; < u;, 1 < i < m.
reflect the uncertainty in our knowledge©f;, we assume that ,, We now consider the problem
andH*C,,'H have the same eigenvector matrix, and that each of
the nonnegative eigenvalués> 0,1 < ¢ < m of C, satisfies mc%nz max E(|Gy — X||2) —
li<éi<u;, 1<i<m, 4) ming {Tr(GC,G") + max;, <5,<u; Q(Caz)}, (6)
wherel; > 0 andu; are known. where from (2),
The assumption that, andH*C,'H have the same eigen-
vector matrix is made for analytical tractability.»fis a stationary Q(C,) =Tr(C.(I—- GH)"(I— GH)). (7)

random vector anfil represents convolution af with some filter,

then bothC. andH will be Toeplitz matrices and are therefore ap-  To find the covariance matri€, maximizing Q(C.,), we rely on
proximately diagonalized by the Fourier transform matrix, so that the following lemma [14].

C. andH*C,'H approximately have the same eigenvectors.

The model (4) is reasonable when the covariance is estimated_emma 1. Let W, T and M be nonnegative definite matrices

from the data. Specifically, denoting iy = (u; + 1;)/2,¢; = with W < T. Then TMW) < Tr(MT).

(u; — 1;)/2 for 1 < i < m, the conditions (4) can equivalently

be expressed a& = (; + e; wheree? < ¢7,1 < i < m, SO If C. is an arbitrary matrix of the form (5) with eigenvalues
that each of the eigenvalues @f, lies in an interval of length l;i < 8; < g, then

2¢; around some nominal valug, which we can think of as an C. < VZV"*, (8)

estimate of theth eigenvalue ofC,, from the data vectoy. The ) ) o )
interval specified by; may be regarded as a confidence interval WhereZ is a diagonal matrix with diagonal elemenis This then
around our estimat&;, and can be chosen to be proportional to the implies, from Lemma 1, that
standard deviation of the estimaje .

Given {¢;}, a straightforward approach to estimatirgs to Tr(C,(I- GH)"(I-GH)) <
use an MMSE estimate corresponding to the estimated covariance. Tr(VZV*(I- GH)"(I- GH)), 9)
However, as we demonstrate through an example in Section 5, by
taking an uncertainty interval arouginto account, and seeking  with equality if C, = VZV™, so thatQ(C,) is maximized for
a competitive minimax estimator in this interval, we can further the worst possible choice of eigenvalues, §; = u; for all . The

improve the estimation performance. problem of (6), therefore, reduces to minimizing the MSE of (2)
In Section 3, we develop the minimax estimator that mini- where we substitut€, = VZV™*. The optimal minimax MSE
mizes the worst case MSE over all covariance matr{€@s} that estimator is then the linear MMSE estimator of (3) with, =

satisfy (4). The resulting estimator is an MMSE estimator matched VZV™.



4. MINIMAX REGRET ESTIMATOR Since

To compensate for the conservative character of the minimax MSE 1 1 1
approach, we now seek the linear estimatothat minimizes i + IL i \/(1 T NG — A2e2

the worst-case regrét(C., G), which is defined as the differ- ‘ c

ence between the MSE using an estimator= Gy and the the estimatok of (16) is equivalent to the estimator given by The-
smallest possible MSE attainable with an estimator of the form orem 1.

x = G(C;)y when the covarianc€, is known, denoted by Since the minimax regret estimator minimizes the regret for
MSE®’. If C, is known, then the MMSE estimator is given by C, = VXV*, we may view the covariandg@, = VXV* as the
(3) and the resulting optimal MSE is “least-favorable” covariance in the regret sense.
. .1 1 Itis interesting to note that while the minimax MSE estimator
MSE® =Tr (H'C,, H+C, ") ). (10) for the model (4) is matched to a covariance matrix with eigenval-

uesu; > (;, the minimax regret estimator is matched to a covari-

Thus, we seek the matri& that is the solution to the problem ance matrix with eigenvalues < ¢;. Indeed, from (15),

min max R(C;, Q) (11)
i i u ’ ’ Q12 1 2 — 1
¢ s R 18)
whereC,, has an eigendecomposition of the form (5), and !
Expressinge; as

R(Cz,G) = Tr(GC,G*) + Tr(C.(I - GH)*(I — GH))
~Tr(H'C,'H+C;)™). (12) T = % (A +AC)V1—a;i - 1), 19)
The linear estimator that minimizes the worst-case regret is given

— \2.2 AY i . . i
by the following theorem, the proof of which is derived in [14]. wherea; = Aje; /(14 Xi¢i)” < 1, (since(; > ¢;), and using the

first order approximatioR/1 —y ~ 1 — (1/2)yfor0 <y < 1,
Theorem 1 (Minimax regret estimator). Let x denote the un- 9
known parameters in the model= Hx+w, whereH is a known T~ G — Ai€; )
n X m matrix with rankm, x is a zero-mean random vector uncor- 2(1+ Nii)
related withw with covarianceC, andw is a zero-mean random
vector with covarianc€,,. LetH*C,'H = VAV * whereV is
a unitary matrix andA is anm x m diagonal matrix with diago-
nal elements\; > 0 and letC, = VAV ™* whereA isanm x m
diagonal matrix with diagonal elements< I; < §; < u;. Then
the solution to the problem 5. EXAMPLE

(20)

Thus, the correction to the nominal covariaqgés approximately
Xi€2 /(2(1 + X;i(;)), which is quadratic in the length of the uncer-
tainty intervale;.

min  max {E(||§<fx||2)fhimin E(||x —x|*)

We now consider an example illustrating the minimax regret esti-
x=Gy 1;<8; <u; G(x)y

mator of Theorem 1. Suppose that

is y=x+w, (22)
% =VCV*H*C,ly, , _ _
) . o . wherex is a lengthn segment of a zero-mean stationary first or-
whereC is anm x m diagonal matrix with diagonal elements

der AR process with componenis, so thatE (z;x;) = p!? ! for

some parametes, andw is a zero-mean random vector uncorre-
¢ = N 1 7 (13) lated withx with known covarianceC.,, = o°I. We assume that
Ai VI +XiG)? — A2e? we know the model (21) and thatis a segment of a stationary

process, however, its covarian€k, is unknown.
G = (ui +1:;)/2ande; = (ui — 1) /2. To estimatex, we may first estimat€., from the observations

. . y. A natural estimate o€, is given by
As we now show, we can interpret the estimator of Theorem 1

as an MMSE estimator matched to a covariance matrix C. =[Cy— Culs = [Cy — oT]4, (22)
C. = VXV’, (14) where
n—|j—il
. . A . ~ 1
whereX is a diagonal matrix with diagonal elements C,(i,j) = - Z Ykt )i (23)
k=1
1
Ti = ( (14 XiCi)? — N2e2 — 1) ) (15) is an estimate of the covarianceypfand|[A].. denotes the matrix

¢ in which the negative eigenvalues Afare replaced by.
Note that ife; = 0 so that theth eigenvalue of the true covariance Given C,, we may estimatex using an MMSE estimate
of C, is equal to¢; then, as we expect,; = (;. matched toC,, which we refer to as a plug-in estimator. How-

From (3), the MMSE estimate of with covarianceC,, given ever, as can be seen below in Fig. 1, we can further improve the

by (14) andH*C_,'H = VAV ™ is estimation performance by using the minimax regret estimator.

. To compute the minimax regret estimator, we cho¥st be
x=V (A + X‘l) V*H*'C,'y. (16) equal to the eigenvector matrix of the estimated covariance matrix



C., and(; = o; whereo; are the eigenvalues & .. We would
then like to choose; to reflect the uncertainty in our estimajge

Since computing the standard deviatiort o difficult, we choose
¢; 10 be proportional to the standard deviation of an estiméfor

of the variancer? of x, where

~2 1 - 2 2
==yl -0l 24

Under the assumption thatandw are uncorrelated Gaussian ran-

dom vectors, it can be shown that the variancéfs given by

n

E{(&i - 02)2} _2 ((ai +0%)% + ici(u)) . (25)

Sinces? andC, (1, i) are unknown, we substitute their estimates

~

C5(1,7),1 < i < m. Finally, to ensure that; < ¢;, we choose

=2

e =min [ G, A i((63(1,1)+a2)2+263(1,i)) :

(26)
whereA is a proportionality factor.

In Fig. 1, we plot the MSE of the minimax regret estimator
averaged oveil000 noise realizations as a function of the SNR

defined by—10logo? for p = 0.8, n = 10 andA = 4. The

performance of the plug-in MMSE estimator matched to the es-
timated covariance matriC, and the minimax MSE estimator

6. CONCLUSION

We developed a competitive minimax approach for the problem of
estimating a random vecter in the linear modely = Hx + w,
where the covariance matrik',, of x is subject to uncertainties.

In this approach, we seek the linear estimator that minimizes the
worst-case regret, which is the difference between the MSE of the
estimator and the best possible MSE attainable with a linear es-
timator that knows the covariané€g,.. As we demonstrated, the
competitive minimax approach can increase the performance over
the traditional minimax method, which in some cases turns out to
be completely useless.
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are plotted for comparison. As can be seen from the figure, the
minimax regret estimator can increase the estimation performance [7]

particularly at low to intermediate SNR values. It is also interest-
ing to note that the popular minimax MSE approach is useless in

this example, since it leads to an estimator whose performance is (8]

worse than the performance of the plug-in estimator.
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Fig. 1. MSE in estimatingk as a function of SNR using the mini-
max regret estimator, the minimax MSE estimator and the plug-in

MMSE estimator matched to the estimated covariance matrix.
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