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Abstract

We consider the problem of designing linear precoders for fixed multiple input multiple output (MIMO)

receivers. Two different design criteria are considered. In the first, we minimize the transmitted power

subject to signal to interference plus noise ratio (SINR) constraints. In the second, we maximize the worst

case SINR subject to a power constraint. We show that both problems can be solved using standard

conic optimization packages. In addition, we develop conditions for the optimal precoder for both of

these problems, and propose two simple fixed point iterations to find the solutions which satisfy these

conditions. The relation to the well known downlink uplink duality in the context of joint downlink

beamforming and power control is also explored. Our precoder design is general, and as a special case it

solves the beamforming problem. In contrast to most of the existing precoders, it is not limited to full

rank systems. Simulation results in a multiuser system show that the resulting precoders can significantly

outperform existing linear precoders.

1 INTRODUCTION

Multiple input multiple output (MIMO) systems arise in many modern communication channels, such as

multiple user communication [3], and/or multiple antennas channels [4]. It is well known that the use of

multiple antennas promises substantial capacity gains when compared to traditional single antenna systems.

In order to exploit these gains, the system must deal with the distortion caused by the channel and/or the

interference. The conventional way to deal with these distortions is receiver optimization. Recently, the

quest for better performance with lower complexity led researchers to also optimize the transmitter [5–10],
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and even to jointly optimize the transmitter and receiver [11–17]. This, as well as new results and algorithms

in convex optimization theory [18], have significantly improved state of the art communication systems.
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Figure 1: Block diagram of a precoder for a fixed MIMO receiver.

In this paper, we explore the design of a centralized precoder given fixed linear MIMO transmitter,

channel and receiver. We define a precoder as a linear transformation on the transmitted symbols. If

the precoded symbols are sent as is to the channel, then the precoder is the transmitter itself. However, in

general, the precoded symbols may be transformed again before the channel. We refer to this transformation

as the transmitter, and we assume that it is a fixed design parameter. An example of a fixed transmitter is

the multiuser spreading transmitter, which spreads the symbols using standardized signatures which cannot

be altered. The output of the transmitter is then sent over a fixed MIMO channel (or channels), and is

received using fixed linear receivers (See Fig. 1). Naturally, a system which jointly optimizes the precoder

and receivers will outperform a system with fixed receivers. However, this problem is interesting as it allows

improving the system without modifying the receivers. Since optimization techniques are usually costly in

terms of complexity, by optimizing only the precoder, we allow for simple low complexity receivers. An

appealing application is the downlink channel of a cellular system. The base station, which is less restricted

in complexity terms, is optimized and allows better performance without changing the low complexity mobile

hand sets. For example, one of our interesting results is that in a symmetric channels, using an optimized

precoder achieves the performance of minimum mean squared error (MMSE) receivers while using simple

matched filter (MF) receivers.

In our development, we restrict ourselves to design when there is perfect knowledge of the channel
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state information (CSI) at the transmitter. In scenarios when there is no CSI at the transmitter, the

common approach is to resort to space time coding or spatial multiplexing. However, in many situations the

transmitter has this knowledge. In time division duplex (TDD) it can be estimated, whereas in frequency

division duplex (FDD) it can be fedback from the receiver. Therefore, following prior work, we assume that

the CSI is perfect and errorless.

One of the first results on optimizing a precoder for a fixed MIMO linear model is due to [5] in the

context of multiuser transmission. In that work, two precoders were derived. The precoders applied a

linear transformation on the transmitted symbols prior to the spreading. The first precoder was designed

to minimize the mean squared error (MSE) between the received vector and the symbols vector. It was

then scaled to fit an average power constraint on the output of the transmitter. The second was designed

to minimize the MSE subject to an average power constraint. It was observed that the first precoder

decorrelates the channel at the transmitter side, and asymptotically outperforms the second. Therefore, it

is sometimes referred to as the transmit zero forcing (ZF) precoder.

One of the main drawbacks of the transmit ZF precoder is its degraded performance in low signal to

noise ratio (SNR). This phenomena is well known in MIMO reception and multiuser detection [3]. Inverting

the channel decreases the output SNR. Therefore, in low SNR, the preferable receiver is the conventional

MF which maximizes the SNR. This motivated the design of transmit MF precoders [7] and transmit

rakes [19–21]. Clearly, just as in the receiver case, in high SNR, the interference dominates the noise,

and the performance of these precoders degrades. Recently, transmit scaled MMSE precoders were derived

in [7–10], and tried to compensate for the performance in the different SNR regions. It is important to note

that the name transmit MMSE or Transmit Wiener is borrowed from the terminology of receiver design.

These receivers do not minimize the MSE. On the contrary, as we explained, the transmit ZF minimizes

it [5]. This stems from the fact that the choice of the precoder does not effect the noise since it is placed in

the transmitter side.

Other precoders using different kinds of optimization criteria were also derived. We only provide a brief

non comprehensive review of the general schemes and do not elaborate on all of the precoders. Variants

of the previous precoders were discussed in [22–27]. Linear precoders based on an approximate maximum

likelihood approach and maximum asymptotic multiuser efficiency with different power constraints were

derived in [28]. A linear precoding technique based on a decomposition approach was proposed in [29]. A

linear precoder design for non linear maximum likelihood (ML) receivers was discussed in [30]. Moreover,

non linear precoders have also been derived. Among them are the non linear Tomlinson Harashima MIMO
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precoder [6–10,31], the well known “Dirty Paper” precoder [32], and the vector perturbation precoder [33].

Another non linear precoder which optimizes the transmitted symbol’s vector itself was derived in [34].

The problem of precoder design is highly related to other problems in the literature. As stated, we

investigate the design of linear precoders for fixed linear receivers. A related problem is the problem of

jointly optimizing the precoder/transmitter and the receiver, which has been treated, e.g., in [9,11–17,35,36].

The design of the optimal signatures (which can be considered as a linear precoding scheme) for matched

MMSE receivers was discussed in [37,38], whereas signature design for matched decision feedback receivers

was explored in [39]. One of the interesting properties of these joint designs is that maximizing SINR is

related to minimizing MSE [15]. Thus, although different criteria have been explored, most of the research

was dedicated to variants of the MMSE criterion.

Another related problem is the rank one transmit beamforming design and optimal power control, [40–42].

This problem is well investigated in the literature. The main difference between precoding and transmit

beamforming is that in beamforming it is assumed there is no transmitter, i.e., the precoder itself is the

transmitter. This simplifies the transmitted power constraints. At first glance it seems that the precoding

problem can be solved by addressing the transmit beamforming problem and then compensating for the

fixed transmitter. Unfortunately, this is not possible when the transmitter is rank deficient and cannot be

inverted. In this aspect1, our problem is more general. Unlike the previous references regarding precoding

which usually dealt with the MSE criterion and its variants, the beamforming community has successfully

managed to optimize SINR based criteria, which are more related to practical performance measures, such

as bit error rate (BER) and capacity. This problem is mathematically more difficult than MSE optimization.

It was solved using an interesting duality between downlink and uplink beamforming [43–45]. The uplink

beamforming problem has been solved before in [46, 47]. Using the duality, the downlink SINR problem

can be handled as well [41,48,49]. Recently, a non linear Tomlinson Harashima version of these papers was

presented in [50].

In this paper, we integrate the ideas above in the context of MIMO precoding for fixed receivers. As

explained before, the design of most of the previous precoders is based on minimizing variants of the common

MSE criterion. This criterion is usually computationally attractive and performs quite well. However, as

far as the applications are concerned, the interesting and relevant criteria are BER and capacity. It is well

known that these are intimately associated with maximizing SINR [3]. Unlike joint optimization, optimizing

the system to minimize MSE does not necessarily maximize SINR when the receiver is fixed. Thus, following

1On the other hand, most of the above references deal with beamforming for rank r > 1 and are therefore more general than
beamforming.

4



the transmit beamforming approach, we focus on SINR based criteria, and, in particular, try to optimize the

worst SINR. We consider two design strategies. The first maximizes the worst SINR subject to an average

power constraint. The second minimizes the required average power subject to a constraint on the worst

SINR. We prove that the proposed precoders have the attractive property of equal performance among all

the sub channels.

Our precoders design is based on the powerful framework of convex optimization theory [18], which allows

efficient numerical solutions using standard optimization packages [51]. A brief review of such programs

and their standard forms is provided in Section 3. The first contribution of this paper is the casting of

the precoder design problems as standard conic optimization packages. The power optimization can be

formulated as a Second Order Cone Program (SOCP) [52], or a semi definite program (SDP) [53] (otherwise

known as a linear matrix inequalities (LMI) program). This procedure has already been addressed in [42]

in the context of beamforming. We generalize it for the case of precoding. Moreover, we show that the

SINR optimization can also by formulated as a standard conic program known as the generalized eigenvalue

problem (GEVP) [54].

Another contribution of this paper is the derivation of the optimality conditions for both of the design

problems. By analyzing the Karush-Kuhn-Tucker (KKT) conditions for conic programs we present simple

conditions for optimality. These provide more insight to the problem. We derive a simple expression for the

structure of the optimal precoder as a function of the dual variables. The conditions can be used to verify

whether a proposed solution is optimal. For example, using these conditions it is easy to show that the

so called scaled MMSE precoder proposed in [7–9] does not necessarily maximize the worst SINR, except

in the case of a symmetric channel. Another use for these conditions is as a stopping criteria in previous

iterative optimization algorithms.

Probably the most important use of the optimality conditions is in deriving new design algorithms.

Using the conditions, we provide a simple fixed point iteration which is guaranteed to converge to the

solution of the power optimization. As a special case, this simple iteration can solve the well known

beamforming problem. This allows a simple solution to the problem without the need for special optimization

packages. A similar fixed point iteration is derived for the SINR optimization problem without a convergence

proof. In comparison to the downlink-uplink duality based solutions, which consist of inner and outer

iterations and eigenvalues optimizations, our fixed point iterations are considerably more appealing. In

addition, following [42], we derive an alternative approach for satisfying the optimality conditions in the

power optimization through a dual SDP/LMI program.
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One of the advantages of our proposed algorithms is their robustness to the rank of the effective channels.

Most of the previous precoders assume a full rank effective channel. For example, one cannot decorrelate

the channel in [5] if the channel is rank deficient, as is the case when the number of users is greater than

the spreading factor (or the number of transmit antennas). Our design algorithms, both the conic solutions

and the fixed point iterations, are indifferent to the rank of the channel, and are therefore applicable to

such scenarios as well. In addition, following [37,38] which addressed this problem in the context of optimal

sequences design for MMSE receivers, we provide an upper bound for the maximal feasible SINRs in these

cases.

An interesting result of our precoders is their performance in symmetric systems. As already mentioned,

in this case, our precoders admits a simple closed form expression that has already been derived in [7–9]

through different considerations and for general channels. Using our optimality conditions, it is easy to show

that these precoders maximize the worst SINR in symmetric channels. A realistic example of such systems is

a code division multiple access (CDMA) scheme, using pseudonoise (PN) sequences as signatures. Moreover,

we analytically show that the achievable SINRs using these precoders with Matched Filter (MF) receivers

is identical to those obtained by using MMSE receivers with no precoders. This result is interesting, as it

allows for each user to use a simple receiver that does not require neither the knowledge of all the other

signatures nor a matrix inversion. It is important to note that this feature does not extend to non symmetric

channels.

The paper is organized as follows. We begin in Section 2 by introducing the problem formulation. A

brief review of conic optimization is provided in Section 3. The power optimization problem is explored in

Section 4, in which we discuss its feasibility, and provide standard conic optimization solutions. In order

to improve our design algorithms and in order to gain more insight into the problem, we then provide

optimality conditions, and suggest a simple fixed point iteration for finding the variables that satisfy them.

Next, in Section 5 we follow the same steps while addressing the SINR optimization problem. A few special

cases for which a closed form solution exists are explored in Section 6. In Section 7, we illustrate the use of

the aforementioned precoders in the context of multiple user communication systems.

The following notation is used. Boldface upper case letters denote matrices, boldface lower case letters

denote column vectors, and standard lower case letters denote scalars. The superscripts (·)T , (·)H , (·)−1 and

(·)† denote the transpose, the Hermitian, the matrix inverse operators, and the Moore Penrose pseudoinverse,

respectively. [X]i,j denotes the (ith,jth) element of the matrix X. By diag {xi} we denote a diagonal matrix

with xi being the (ith,ith) element, by vec (X) we denote stacking the elements of X in one long column
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vector, by ei we denote a zeros vector with a one at the i’th element, by 1 we denote an all ones vector, and

by I we denote the identity matrix of appropriate size. Tr {·}, | · |, ‖ · ‖ and ||| · ||| denote the trace operator,

the Kronecker product, the absolute value operator, the standard Euclidean norm, and the induced matrix

norm, respectively. Finally, X � 0 denotes that the matrix X is a Hermitian positive semi definite matrix,

and N {·} denotes the Null space operator.

2 PROBLEM FORMULATION

Consider a general, block oriented, MIMO communication system with a centralized transmitter. At each

time instant, a block of symbols is modulated and transmitted over a channel. The possibly distorted output

is then processed at the receiver in a linear fashion, as depicted in Fig. 1. Denoting by yi the length L

output of the i’th receiver, for i = 1, · · · , M , we have that:




y1

...

yM




=




HRx,1HCh,1

...

HRx,MHCh,M




HTxb +




HRx,1w1

...

HRx,MwM




, (1)

where the matrices HRx,i and HCh,i denote the receiver and channel associated with the i’th user, the matrix

HTx is the centralized transmitter, b is the length K = M · L vector of independent, and unit variance

transmitted symbols, and wi are the noise vectors. This system model is quite general. The noise vectors

may be correlated or even identical to each other, and the channels are completely arbitrary. The only

restriction is that the transmitter is centralized and has access to all of the K transmit components.

Let us present two specific examples for which the following problem formulation holds:

• CDMA system - Consider a multiple user downlink system using CDMA. At each time period, the

base station transmits K symbols using an N ×K signature matrix HTx = S with columns si. For

simplicity, we assume ideal channels HCh,i = I and conventional matched filter receivers HRx,i = sH
i

where si denotes the ith column of S. Denoting by yi the output of the i’th user’s receiver, we have

that




y1

...

yK




=




sH
1

...

sH
K




Sb +




sH
1 w1

...

sH
KwK




, (2)

which is clearly a special case of (1).

7



• Beamforming - Consider a multiuser system incorporating multiple antennas. At each time period, K

symbols are modulated, without any transformation at the transmitter HTx = I, through K transmit

antennas to K users, each using one receive antenna. The different pathes between the transmit

antennas and the i’th user are represented in the length K vectors HCh,i = hH
i . Denoting by yi the

output of the i’th user’s receiver, we have that




y1

...

yK




=




hH
1

...

hH
K




b +




w1

...

wK




, (3)

which is again a special case of (1).

In the sequel, we will assume that the transmitter HTx, the channels HCh,i and the receivers HRx,i are

fixed, and cannot be altered due to budget restrictions, standardization, or physical problems. Given this

fixed structure, we will try to improve the performance of such systems by introducing a linear precoder.

The precoder, denoted by T, linearly transforms the original symbol vector prior to the transmission, so

that the outputs of the receiver are now given by




y1

...

yM




=




HRx,1HCh,1

...

HRx,MHCh,M




HTxTb +




HRx,1w1

...

HRx,MwM




. (4)

For ease of representation, we will use the following notation:

y = HTb + w, (5)

where H = HRxChHTx and

y =




y1

...

yM




, HRxCh =




HRx,1HCh,1

...

HRx,MHCh,M




, w =




HRx,1w1

...

HRx,MwM




. (6)

Our goal is to improve the system performance by optimally designing the precoder. The system per-

formance is usually quantified by its quality of service (QoS) and the resources it uses. The most common

QoS metrics are BER and capacity, both of which are highly related to the output SINRs, and in particular

8



to the worst SINR. In our model, the output SINR of the i’th sub channel is defined as:

SINRi =

E

{∣∣∣[HT]i,i

∣∣∣
2
|bi|2

}

E

{[
|yi|2 −

∣∣∣[HT]i,i

∣∣∣
2
|bi|2

]} =

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2
+ σ2

i

, i = 1, · · · , K, (7)

where σ2
i = E{|wi|2} > 0. Another range of criteria deal with the use of system resources, e.g., peak to

average ratio, or maximal transmitted power. The most common resource measure is average transmitted

power, which is defined as:

P = E
{
‖ HTxTb ‖2

}
= Tr

{
THHH

TxHTxT
}

. (8)

It is easy to see that the SINRs metrics and average power metric conflict. One cannot maximize the SINRs

while also minimizing the power, and vice versa. Depending on the application, the designer must decide

which criteria is stricter. We therefore consider one of the following two complementary strategies. The first

optimization strategy seeks to minimize the average transmitted power subject to QoS constraints. This

criterion is interesting from a system level perspective. Given the required QoS, the system tries to satisfy

it with minimum transmitted power [16], [41]:

P(γo) =





minT Tr
{
THHH

TxHTxT
}

s.t. mini
|[HT]i,i|2∑

i6=j|[HT]i,j|2+σ2

i

≥ γo,
(9)

where γo > 0 is the given worst SINR constraint.

The second strategy is maximizing the minimal SINR subject to a power constraint [48], [15]. This

problem formulation is interesting when the power constraint is a strict system restriction which cannot be

relaxed. In this case, the problem can be formulated as

S(Po) =





maxT mini
|[HT]i,i|2∑

i6=j|[HT]i,j|2+σ2

i

s.t. Tr
{
THHH

TxHTxT
}
≤ Po,

(10)

where Po > 0 is the given power constraint.

Note that although we are optimizing the minimum SINR in both problems, in the sequel, we will show

that at the optimal solution of both problems all users will attain equal SINRs. In other words, the above

design criteria both promise fairness among all the sub streams. This is an important property in MIMO

communication systems. In systems where some streams demand different QoS, e.g., systems with voice
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and data streams, the designer can replace each SINRi in the optimizations with SINRi/ρi where ρi are

constant weights that denote the importance of the sub streams. This will ensure weighted fairness among

the streams.

One of the main observations of our work is that both optimization problems (9) and (10) can be

solved using standard conic optimization algorithms. Therefore, in the following section, we review these

algorithms.

3 REVIEW OF CONIC OPTIMIZATION

In recent years, there has been considerable progress and development of efficient algorithms for solving a

variety of optimization problems. In order to use these algorithms, one must reformulate the problem into

a standard form which the algorithms are capable of dealing with. In this section, we will briefly review the

three formulations which we use in the paper: SOCP, SDP and GEVP programming.

The most widely researched field in optimization is convex optimization. A convex program is a program

with a convex objective function and convex constraints. It is well known that in such programs a local

minimum is also a global minimum. Thus, the global minimum can be found by any “Hill Climbing”

or “Gradient Descent” algorithm. The most common convex program is probably the Linear Program

(LP) [18], i.e., an optimization with a linear objection function and linear (affine) constraints. Recent

advances in convex optimization generalize the results and algorithms of LPs to more complicated convex

programs. Special attention is given to conic programs, i.e., LPs with generalized inequalities. The two

standard conic programs are SOCP and SDP optimization. The standard form of an SOCP is [52]:

SOCP :





minx fHx

s.t.




cH
i x + di

AH
i x + bi


 �K 0, i = 1, · · · , N,

(11)

where the optimization variable is the vector x of length n and f , Ai, bi, ci and di for i = 1, · · · , N are the

data parameters of appropriate sizes. The notation �K denotes the following generalized inequality:




z

z


 �K 0 ⇔ ‖z‖ ≤ z. (12)
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The standard form of an SDP is [53]:

SDP :





minx fHx

s.t. A(x) � 0,
(13)

where A(x) = A0 +
∑n

i=1 xiAi is an Hermitian matrix that depends affinely on x. The data parameters are

the Hermitian matrices Ai for i = 0, · · · , n. The notation � denotes the positive semi definite generalized

inequality. A simple case of an SDP is an SOCP. This stems from the property that any SOC inequality

can be written as an LMI [18]:




cH
i x + di

AH
i x + bi


 �K 0 ⇔




cH
1 x + d1 xHA1 + bH

1

AH
1 x + b1

(
cH
1 x + d1

)
I


 � 0. (14)

A common optimization package designed to solve SOCP and SDP is SEDUMI [51].

Although most of the research in the field of optimization concerns convex programs, due to their

importance, some cases of non convex problems have also been investigated. Among them is the generalized

eigenvalue minimization program (GEVP) [54], which is not convex but can still be efficiently solved. Its

standard form is

GEVP :





minβ,x β

s.t. βB(x)−A(x) � 0;

B(x) � 0;

C(x) � 0,

(15)

where A(x) = A0+
∑n

i=1 xiAi, B(x) = B0+
∑n

i=1 xiBi and C(x) = C0+
∑n

i=1 xiCi are Hermitian matrices

that depend affinely on x. The data parameters are the Hermitian matrices Ai, Bi and Ci for i = 0, · · · , n.

The name of the GEVP arises from its resemblance to the well known problem of minimizing the maximal

generalized eigenvalue of the pencil [A,B], i.e., minimizing the largest β such that Av = βBv. It is easy to

show that this problem can be expressed as





minβ β

s.t. βB−A � 0,
(16)

which is of course a simple SDP. The GEVP generalizes this program to the case where A and B also depend

on the optimization variables.
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4 POWER OPTIMIZATION

In this section, we consider the power optimization subject to SINR constraints, i.e., the P problem of (9).

We begin in Section 4.1 by discussing its feasibility, and then provide a few alternative approaches for its

solution. In particular, in Section 4.2, we derive a solution to the problem which is based on standard SOCP

or SDP optimization packages. Next, in Section 4.3, we develop optimality conditions for this problem,

and use them to derive two alternative solutions. For completeness, in Section 4.4, we discuss the downlink

uplink duality in the context of the power optimization.

4.1 FEASIBILITY

The first important property of any optimization problem is its feasibility (admissibility), i.e., whether a

solution exists. In other words, we need to verify whether for a given γo there exists a T such that

min
i

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2
+ σ2

i

≥ γo. (17)

It is easy to see that the SINRs are bounded by the signal to interference ratios (SIR):

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2
+ σ2

i

≤

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2 , i = 1, · · · , K, (18)

with equality if and only if σ2
i = 0 for i = 1, · · · , K, i.e., in a zero noise environment. By scaling T to aT for

large enough a > 0, the difference between the SIRs and the SINRs can be made insignificant. Therefore,

for the sake of examining the feasibility, the interesting case is the zero noise environment. A condition for

the feasibility in this case is provided in the following lemma.

Lemma 1. There exists a T such that (17) holds only if

γo ≤
1

K
rank(H) − 1

. (19)

Proof. In order to prove the lemma we must upper bound the minimal SIR:

min
i

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2 = min

i

1
1
ξi
− 1

=
1

1
mini ξi

− 1
, (20)
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where ξi =
|[HT]i,i|2

[HTTHHH ]i,i
, and we have used the monotonicity of f(a) = 1

1

a
−1

in a ≤ 1. Due to monotonicity,

we can bound f(a) by bounding its argument. Thus, we now develop a bound on the minimum ξi. Let HT

have a singular values decomposition (SVD) HT = UΛVH , where U and V are unitary K × r matrices, Λ

is an r × r diagonal matrix, and r = rank (HT). Then,

ξi =

∣∣uH
i Λvi

∣∣2

uH
i Λ2ui

, i = 1, · · · , K, (21)

where ui and vi are the i’th columns of UH and VH , respectively. For every i = 1, · · · , K, we can bound

(21) by applying the Cauchy-Schwarz inequality to the vectors Λui and vi

∣∣uH
i Λvi

∣∣2 ≤
(
vH

i vi

) (
uH

i Λ2ui

)
, i = 1, · · · , K. (22)

Since vH
i vi =

[
(HT)† HT

]
i,i

, we conclude that

ξi ≤
[
(HT)† HT

]
i,i

, i = 1, · · · , K. (23)

Thus, the minimum ξi is bounded by

min
i

ξi ≤
1

K

K∑

i=1

ξi ≤
1

K

K∑

i=1

[
(HT)† HT

]
i,i

=
1

K
Tr

{
(HT)† HT

}
=

rank (HT)

K
≤ rank (H)

K
. (24)

Substituting (24) into (20) yields the required condition on γo.

If the effective channel H is full rank, then the lemma results in γo ≤ ∞, i.e., any SIR is feasible. This is

easily verified as the condition in (17) can be satisfied by choosing T = aH−1 for large enough a > 0. This

choice of precoder inverts the channel and eliminates all interference.

Unfortunately, when the effective channel is rank deficient, the interference cannot be eliminated, and

there is an upper bound on the maximal SIRs. A similar lemma was provided in [37] in the context of

optimal signature design using MMSE receivers (which is a special case of a MIMO system). There, it was

shown that the above condition is necessary and sufficient for feasibility using MMSE receivers. In our case,

the receivers are fixed, and therefore the condition is only necessary. In general, we cannot always attain the

bound when the receiver is fixed. Two simple examples for channels in which the bound cannot be achieved

are a diagonal H with K − rank (H) diagonal zeros, or a channel H with two identical rows. In both of

these examples, it is easy to see that, no matter what the precoder is, we will not attain the bound.
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Nonetheless, experimenting with arbitrary channels shows that in almost all practical channels the bound

can be achieved even for a fixed sub optimal receiver. For example, consider a rank K − 1 channel H, with

the normalized null vector u ∈ N
{
HH

}
. Except for the case in which ui = 0 for some i = 1, · · · , K, the

bound can always be attained by choosing

T = H†diag {1/ui}Q, (25)

where

[Q]i,j =





1, i = j;

− 1
K−1 , j 6= i.

(26)

This is easily shown by considering the following chain:

HT = HH†diag {1/ui}Q = diag {1/ui}Q, (27)

where we have used HH† = I − uuH and the fact that 1 ∈ N {Q}. Substituting the above HT into the

SIRs yields the maximal SIRs in rank K − 1 channels:

∣∣∣[HT]i,i

∣∣∣
2

∑
i6=j

∣∣∣[HT]i,j

∣∣∣
2 =

1
K

K−1 − 1
, i = 1, · · · , K. (28)

4.2 CONIC OPTIMIZATION SOLUTION

We now show that the P problem of (9) can be represented as a standard conic optimization program.

Thus, using off the shelf optimization packages, we can numerically verify its feasibility, and find its optimal

solution. In order to use the standard forms of the conic programs, we must cast our problem constraints

using the standard notations described in Section 3.

Using a slack variable, the program can be rewritten as

P(γo) :





minT,Po
Po

s.t.
|[HT]i,i|2∑

i6=j|[HT]i,j|2+σ2

i

≥ γo, i = 1, · · · , K;

Tr
{
THHH

TxHTxT
}
≤ Po.

(29)

The argument T of the P program is optimal up to a diagonal phase scaling on the right, i.e., if T is

14



optimal, then Tdiag
{
ejφi

}
, where φi for i = 1, · · · , K are arbitrary phases, is also optimal. This is easy to

verify, as the phases do not change the objective nor the constraints. Therefore, we can restrict ourselves to

precoders in which [HT]i,i ≥ 0 for i = 1, · · · , K, i.e., each has a non negative real part, and a zero imaginary

part. Taking this into account, we now recast the SINR constraints in standard form. Rearranging the

constraints and using matrix notations, the constraints yield

(
1 +

1

γo

) ∣∣∣[HT]i,i

∣∣∣
2
≥

[
HTTHHH

]
i,i

+ σ2
i , i = 1, · · · , K, (30)

or

(
1 +

1

γo

) ∣∣∣[HT]i,i

∣∣∣
2
≥

∥∥∥∥∥∥∥

THHHei

σi

∥∥∥∥∥∥∥

2

, i = 1, · · · , K. (31)

Since [HT]i,i ≥ 0 for i = 1, · · · , K, we can take the square root of
∣∣∣[HT]i,i

∣∣∣
2

resulting in

√
1 +

1

γo
[HT]i,i ≥

∥∥∥∥∥∥∥

THHHei

σi

∥∥∥∥∥∥∥
, i = 1, · · · , K, (32)

which can be written as the SOCs




√
1 + 1

γo
[HT]i,i

THHHei

σi



�K 0, i = 1, · · · , K. (33)

The power constraint

Tr
{
THHH

TxHTxT
}
≤ Po, (34)

can be reformulated using the vec(·) operator as ‖vec(HTxT)‖ ≤ √Po, which is equivalent to the SOC




√
Po

vec(HTxT)


 �K 0. (35)
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Using (33) and (35), and denoting p =
√

Po, the program (9) can be cast in the standard SOCP form [52]:

P(γo) :





minT,p p

s.t.




√
1 + 1

γo
[HT]i,i

THHHei

σi



�K 0, i = 1, · · · , K;




p

vec(HTxT)


 �K 0.

(36)

Thus it can be efficiently solved using any standard SOCP package [51]. Such a solver can also numerically

determine the feasibility of the optimization problem. A similar approach was taken in [42] in the context

of transmit beamforming.

As explained in Section 3, each SOC constraint can be replaced with an SDP constraint using (14). Thus

the problem can also be expressed as a standard SDP:

P(γo) :





minT,p p

s.t. Ai(T) � 0, i = 1, · · · , K;

C (T) � 0,

(37)

where

Ai(T) =




√
1 + 1

γo
[HT]i,i

[
eH

i HT σi

]




THHHei

σi




√
1 + 1

γo
[HT]i,i I




, i = 1, · · · , K, (38)

and

C (T) =




p vecH(HTxT)

vec(HTxT) pI


 . (39)

However, solving SOCPs via SDP is not very efficient. Interior point methods that solve SOCP directly

have a much better worst case complexity than their SDP counterparts [52].

It is important to note that the above formulations are general and do not depend on the rank of the

channel. Thus, these solutions are also appropriate for rank deficient channels.
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4.3 OPTIMALITY CONDITIONS

In this section, we will derive the KKT optimality conditions for the power optimization. As explained in the

previous section, the problem can be numerically solved using standard optimization packages. Nonetheless,

the conditions provide more insight into the solution. A simple structure based on the Lagrange dual

variables is derived for the optimal solution. Given this structure, we propose two alternative methods for

finding these variables. In Section 4.3.1, we derive a simple fixed point iteration which converges to these

variables. The computational complexity of this approach is lower than that of the conic solution. Moreover,

this solution does not require any external conic package which is not always available. Alternatively, in

Section 4.3.2, we propose a dual SDP program, whose optimal arguments are the necessary variables. The

main results are summarized in the following theorem:

Theorem 1. Consider the power optimization program P(γo) of (9). Define the dual variables λi > 0 for

i = 1 · · ·K, and denote Λ = diag {λi}. If there exist λi > 0 such that

γo =
1

1[
Λ

1
2 H(HHΛH+HH

Tx
HTx)

†
HHΛ

1
2

]
i,i

− 1
, i = 1, · · · , K, (40)

holds, then the program is strictly feasible. Moreover, if (40) hold, then the optimal T is of the form

T =
(
HHΛH + HH

TxHTx

)†
HHΛ

1

2 diag {δi} , (41)

where δi are the positive weights that allocate the power between the users:

δi =

√√√√∑

j

[
γo

1 + γo
I− F

]−1

i,j

λjσ2
j , i = 1, · · · , K; (42)

[F]i,j =
[
Λ

1

2 H
(
HHΛH + HH

TxHTx

)†
HHΛ

1

2

]2

i,j
, i, j = 1, · · · , K. (43)

This structure of T is unique within the range of HH
Tx. At this optimal solution, all the constraints are

active, i.e., there are equal SINRs for all the subchannels. The optimal objective value is

Po =
∑

i

λiσ
2
i . (44)

Proof. The proof consists of two parts. First, we show that if (40) holds then the problem is strictly feasible.

Next, assuming it is strictly feasible, we will use the KKT optimality conditions to show that the proposed
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solution is necessary and sufficient.

We begin by proving that if (40) holds, then the proposed solution in (41)-(43) is feasible. First, let us

prove that this solution exists, i.e., that the matrix
[

γo

1+γo
I− F

]
in (42) is invertible and that the argument

of the squared root is non negative. The matrix is invertible because that the maximal eigenvalue of F is

less than γo

1+γo
:

eigmax(F) ≤ |||F||| (45)

= max
i

∑

j

∣∣∣∣
[
Λ

1

2 H
(
HHΛH + HH

TxHTx

)†
HHΛ

1

2

]2

i,j

∣∣∣∣ (46)

= max
i

[
Λ

1

2 H
(
HHΛH + HH

TxHTx

)†
HHΛH

(
HHΛH + HH

TxHTx

)†
HHΛ

1

2

]
i,i

(47)

= max
i

{[
Λ

1

2 H
(
HHΛH + HH

TxHTx

)†
HHΛ

1

2

]
i,i

−
[
Λ

1

2 H
(
HHΛH + HH

TxHTx

)†
HH

TxHTx

(
HHΛH + HH

TxHTx

)†
HHΛ

1

2

]
i,i

}
(48)

≤ max
i

{[
Λ

1

2 H
(
HHΛH + HH

TxHTx

)†
HHΛ

1

2

]
i,i

}
(49)

=
[
H

(
HHΛH + HH

TxHTx

)†
HHΛ

]
i,i

(50)

=
γo

1 + γo
, (51)

where the inequality in (45) stems from the fact that any induced matrix norm upper bounds the maximal

eigenvalue of the matrix. The equality in (46) is the definition of the row sum induced matrix norm. The

inequality in (49) stems from neglecting the non negative terms in (48), and the equality in (50) is due

to (40). We still need to prove that the inequality is strict, but this can be proven as follows. Assume

that the inequality is not strict, i.e., there exists an i such that the second element in (48) is zero, i.e.,

HTx

(
HHΛH + HH

TxHTx

)†
HHΛ

1

2 ei = 0, and therefore
[
Λ

1

2 HRxChHTx

(
HHΛH + HH

TxHTx

)†
HHΛ

1

2

]
i,i

=

0. But, since γo > 0, this a contradiction to (40), and therefore the inequality in (49) must be strict.

We now show that the arguments of the squared roots in (42) are non negative. Using a series expansion

for the matrix inversion yields [55]




δ2
1

...

δ2
K




=

[
γo

1 + γo
I− F

]−1




λ1σ
2
1

...

λKσ2
K




=
1 + γo

γo

∞∑

j=1

[
γo

1 + γo
F

]j




λ1σ
2
1

...

λKσ2
K




. (52)

The elements of γo

1+γo
F are nonnegative. Therefore, the elements of the sum will also be non negative, and

we can take the element wise squared roots and solve for δi for i = 1, · · · , K.
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Thus, we have shown that the solution in (41)-(43) exists. Plugging this solution into the SINR con-

straints satisfies all the constraints with equality. Therefore, the problem is feasible. Moreover, since σ2
i > 0

for i = 1, · · · , K, we can always scale the solution T by c > 1, and satisfy the constraints with inequalities,

i.e., the problem is strictly feasible.

In the next part of the proof, we will show that if (40) holds, then the solution in (41)-(43) is necessary

and sufficient for optimality. The power optimization problem can be written as follows:

P(γo) :





minT Tr
{
THHH

TxHTxT
}

s.t.

∥∥∥∥∥∥∥




THHHei

σi




∥∥∥∥∥∥∥

2

−
(
1 + 1

γo

)
| [HT]i,i |2 ≤ 0, i = 1, · · · , K.

(53)

The above program is not written in convex form (in order to write it in convex form, conic inequalities

must be used). In general, the KKT conditions are not sufficient for optimality in non convex programs.

However, in Appendix A, we show that in this special case, if the program is strictly feasible, then its KKT

conditions are necessary and sufficient for optimality. The Lagrangian associated with program (53) is

L = Tr
{
THHH

TxHTxT
}

+
∑

i

λi




∥∥∥∥∥∥∥




THHHei

σi




∥∥∥∥∥∥∥

2

−
(

1 +
1

γo

) ∣∣∣[HT]i,i

∣∣∣
2




= Tr
{
TH

[
HHΛH + HH

TxHTx

]
T

}
+

∑

i

λiσ
2
i −

∑

i

λi

(
1 +

1

γo

) ∣∣∣[HT]i,i

∣∣∣
2
, (54)

where λi ≥ 0 are the Lagrange dual variables. As we have shown in the first part of the proof, if (40)

holds, the problem is strictly feasible. Therefore, its primal and dual variables are optimal if and only if the

following conditions are satisfied:

1. Feasibility: The variable T is feasible

(
1 +

1

γo

) ∣∣∣[HT]i,i

∣∣∣
2
≥

∥∥∥∥∥∥∥




THHHei

σi




∥∥∥∥∥∥∥

2

, i = 1, · · · , K, (55)

and the dual variables are dual feasible, i.e., λi ≥ 0 for i = 1, · · · , K.

2. Complementary Slackness: For each i = 1, · · · , K, either λi = 0 or

(
1 +

1

γo

) ∣∣∣[HT]i,i

∣∣∣
2

=

∥∥∥∥∥∥∥




THHHei

σi




∥∥∥∥∥∥∥

2

. (56)
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3. Zero derivative: The derivative of L with respect to T is zero, resulting in

[
HHΛH + HH

TxHTx

]
T = HHΛ

1

2 diag

{(
1 +

1

γo

) [
Λ

1

2 HT
]
i,i

}
. (57)

At the optimal solution all the constraints are active, i.e., (56) holds with equality for i = 1, · · · , K.

As proof, note that if one constraint does not hold with an equality, then we can always scale the row in

T associated with it, and arrive with a feasible solution that results in a lower objective value, which is a

contradiction.

Another important property of the optimal solution, is that all the dual variables are strictly positive.

As proof, assume the contrary, i.e., there exists an i such that λi = 0. Then, multiplying (57) by TH on the

left and examining the i’th diagonal element, we have eH
i TH

[
HHΛH + HH

TxHTx

]
Tei = 0, which holds if

and only if Λ
1

2 HTei = 0 and HTxTei = 0, in which case the i’th SINR is clearly zero. But, since γo > 0,

this contradicts the SINR constraints.

In general, the T that satisfies (57) is not unique. Nonetheless, expressing T as T = T‖ + T⊥ where

T‖ = PT, T⊥ = (I−P)T, and P = H
†
TxHTx, we can find T‖ which is unique within the range of HH

Tx.

Using HT = HT‖, we arrive with the following necessary and sufficient conditions:

T‖ =
[
HHΛH + HH

TxHTx

]†
HHΛ

1

2 diag {δi} ; (58)

(
1 +

1

γo

) ∣∣∣
[
HT‖

]
i,i

∣∣∣
2

=

∥∥∥∥∥∥∥




TH
‖ HHei

σi




∥∥∥∥∥∥∥

2

, i = 1, · · · , K, (59)

where δi =
(
1 + 1

γo

) [
Λ

1

2 HT‖

]
i,i

for i = 1, · · · , K. As already explained, if (40) holds then the solution in

(41)-(43) satisfies (59). In addition, it has the structure of (58) and is therefore sufficient. Moreover, it is

easy to show that this structure is also necessary (within the range of HH
Tx). Plugging T‖ from (58) into

(59) yields

(
1 +

1

γo

)
1

λi
[F]i,i δ2

i =
∑

j

1

λi
[F]i,j δ2

j + σ2
i , i = 1, · · ·K, (60)
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where F is the matrix defined by (43). Rewriting in matrix form, we have

[
γo

1 + γo
I− F

]



δ2
1

...

δ2
K




=




λ1σ
2
1

...

λKσ2
K




. (61)

Since [HT]i,i ≥ 0 for i = 1, · · · , K, the unique solution to this set of equations in given by (42)-(43). Finally,

the optimal objective value in (44) can be easily found using (8) and (57).

Theorem 1 provides a simple strategy for designing the precoder. Given a feasible γo, all one has to do

is find λi > 0 which satisfy (40). Once these are found, T can be derived through (41)-(43). As we will

show in Section 6, in some special cases, these variables can be derived in closed form. Otherwise, we now

propose two alternative methods for finding these variables. In Section 4.3.1, we present a simple fixed point

iteration, and in Section 4.3.2 we propose the use a SDP dual program.

4.3.1 FIXED POINT ITERATION FOR FINDING λi

The structure of (40) motivates a fixed point iteration for finding λi. By rearranging (40), we arrive with

the following simple iteration:

λ
(n+1)
i =

γo

1 + γo

1[
H

(
HHdiag

{
λ

(n)
i

}
H + HH

TxHTx

)†
HH

]

i,i

, i = 1, · · ·K. (62)

Clearly, the optimal λi satisfy this fixed point. As we now show, if P(γo) is feasible, then the above

iteration will converge from any λ
(0)
i to a set λ

(n)
i > 0 that satisfies (40). The convergence proof is based on

the standard function approach introduced in [56], which can be summarized as follows. Consider the fixed

point iteration

λ
(n+1)
i = fi(Λ

(n)), i = 1, · · ·K, (63)

where Λ(n) = diag
{
λ(n)

}
. If the functions fi(Λ) obey the following properties:

• Positivity fi(Λ) > 0 for all i;

• Monotonicity If λi ≥ λ′
i for all i, then fi(Λ) ≥ fi(Λ

′) for all i;

• Scalability If α > 1, then αfi(Λ) > fi(αΛ) for all i,
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Figure 2: Block diagram of a downlink (broadcast) system. The matrices ∆m for m = 1, · · · , M , are diagonal
matrices with the δis associated with bm.

then the iteration has a fixed point, it is unique, and for any initial Λ(0), the iteration will converge to it.

In Appendix B, we show that if the problem is feasible, and
[
H

(
HH

TxHTx

)†
HH

]
i,i

< ∞ for i = 1, · · · , K,

then the functions in (62) satisfy these exact properties. Thus, the iteration will converge.

4.3.2 DUAL PROGRAM FOR FINDING λi

Alternatively, the dual variables can be found through a dual program. The dual program is a concave

program that optimizes the dual variables. The details of its derivation are provided in Appendix C. The

resulting program is:

PD(γo) :





maxλi≥0
∑

i λiσ
2
i

s.t. γo

1+γo

[
HHΛH + HH

TxHTx

]
− λiH

Heie
H
i H � 0, i = 1, · · · , K.

(64)

This is a simple SDP/LMI program, which can be efficiently solved by any standard SDP/LMI optimization

package. Moreover, it has only K optimization variables, in comparison to K2 optimization variables in the

original program, and therefore has a lower computational complexity. A similar result was obtained in [42]

in the context of beamforming.
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Figure 3: Block diagram of a uplink (multiple access) system. The matrices Λm for m = 1, · · · , M , are
diagonal matrices with the λis associated with bm. The vector w is the virtual uplink noise vector.

4.4 INTERPRETATION USING DOWNLINK UPLINK DUALITY

In this section, we provide an alternative solution for the power optimization problem based on the well

known downlink uplink duality [43, 44]. As explained in the previous sections, the power optimization

can be solved efficiently without the use of duality. However, previous attempts for solving the downlink

beamforming problem, which is a special case of precoding (where HTx = I), are based on this approach.

Therefore, for completeness, we now review this method and generalize it to the case of precoding, i.e.,

arbitrary HTx. Moreover, the duality is interesting from an engineering point on view, as it provides an

interesting physical interpretation for the solution.

Recently, an interesting duality was found between downlink beamforming and another problem called

uplink beamforming. It is usually referred to as downlink (broadcast) - uplink (multiple access) duality,

since one problem is usually found in the broadcast channel of a downlink system, and the other is found in

the multiple access channel of an uplink system. Fortunately, the uplink beamforming problem is easier to

solve. Using the duality, the downlink solution can be derived through the uplink solution. For simplicity, in

the sequel, we restrict ourselves to full rank channels (as did all the works in this context). Mathematically,

the duality can be stated as follows:
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Theorem 2. Consider the downlink program P:

P(γo) =





minT Tr
{
THHH

TxHTxT
}

s.t.
|[HT]i,i|2∑

j 6=i|[HT]i,j|2+σ2

i

≥ γo, i = 1, · · · , K,
(65)

and the uplink program:

P(γo) =





minλi>0
∑

i σ
2
i λi

s.t.
λi

∣∣∣[WHH ]
i,i

∣∣∣
2

∑
j 6=i λj|[WHH ]i,j|2+[WHH

Tx
HTxW

H ]
i,i

≥ γo, i = 1, · · · , K.
(66)

If the optimal arguments and objective value of P are W, λi, and Po, then the optimal objective value of P

is also Po, and its optimal argument is T = WHΛ
1

2 diag {δi}, where δi are defined in Theorem 1.

Proof. It is easy to see that each constraint in P deals with one row of W and that the objective is not

a function of W at all. Therefore, it is clear that each row of W will be chosen to maximize the SINR

associated with it. Thus, for fixed λi, the optimal receiver W is the well known MMSE matrix [3]:

W = H
(
HHdiag {λi}H + HH

TxHTx

)−1
, (67)

which is unique up to a diagonal matrix multiplication on the left. In addition, similarly to the downlink

problem, all the constraints of the uplink problem are active (otherwise, one can always decrease the λi

associated with the passive constraint and decrease the objective). Thus, at the optimum:

λi

∣∣∣
[
WHH

]
i,i

∣∣∣
2

∑
j 6=i λj

∣∣∣[WHH ]i,j

∣∣∣
2
+

[
WHH

TxHTxWH
]
i,i

= γo, i = 1, · · · , K. (68)

Plugging in the optimal W and simplifying the terms results in

λi

[
H

(
HHdiag {λi}H + HH

TxHTx

)−1
HH

]
i,i

=
γo

1 + γo
, i = 1, · · · , K. (69)

Thus, the optimal λi’s of P satisfy (40). Due to (67), the precoder T = WHΛ
1

2 diag {δi} satisfies also (41).

Therefore, according to Theorem 1, this precoder is optimal for P .

This uplink downlink duality was developed in [43] for the special case of HTx = I. In Theorem 2 we

generalize this result to arbitrary HTx. The importance of this theorem is in its interesting interpretation

of the optimal solution and to the duality between the downlink and the uplink problem. For example, it
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provides a physical interpretation to the positive dual variables λi > 0 as the virtual power allocation. In

order to visualize this duality, we provide block diagrams of the two dual systems in Figs. 2 and 3.

Moreover, previous attempts for solving the P problem are based on this duality. As we have shown

in the previous section, the problem can be solved without the duality using the optimality conditions.

However, for completeness, we now present the duality based approach as well. This approach confronts

the P problem by addressing the P problem first and then adjusting the solution based on Theorem 2.

Fortunately, there is an intuitive iterative solution to program P . The problem can be solved by iteratively

solving for each of the parameters, while keeping the others fixed [41,46]:

P(γo)

1 repeat

2 for i← 1 to K

3 wi ← arg

{
maxwi

λi|wH
i HHei|2∑

j 6=i λj |wiH
Hej |

2+‖HTxwi‖
2

}

4 Λ← arg





minλi

∑
i σ

2
i λi

s.t.
λi|wH

i HHei|2∑
j 6=i λj |wiH

Hej |
2+‖HTxwi‖

2
≥ γo, i = 1, · · · , K.





5 until convergence

where wH
i is the ith row of W. Each optimization in line 3 tries to maximize an SINR using a receive weight

vector. Their optimal solutions are given by the columns of (67). The optimization in line 4 can be carried

out using the following fixed point iteration [56]:

λi ← γo

∑
j 6=i λj

∣∣wiH
Hej

∣∣2 + ‖HTxwi‖2∣∣wH
i HHei

∣∣2 , i = 1, · · · , K. (70)

In [46] it was shown that the above algorithm using (70) always converges to the optimal solution. However,

the algorithm is quite complicated, and consists of an outer iteration with two inner iterations. Therefore,

it is not as appealing as our simple fixed point iteration in (62).

5 SINR OPTIMIZATION

We now consider the problem of maximizing the worst SINR subject to a power constraint, i.e., the S

program of (10). As before, we begin by examining its feasibility. Fortunately, it is easy to verify that the S

program is always feasible, as we can always scale T so that it would satisfy the power constraint. In Section

5.1, we discuss the connection between the power optimization and the SIR optimization and explain how

this connection can be used to solve the SIR optimization. Then, we follow the steps we took before in the
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context of the power optimization, and repeat them in the context of the SINR optimization. In Section

5.2, we formulate the SIR problem as a standard GEVP conic program, in Section 5.3 we provide a fixed

point iteration, and in Section 5.4 we discuss its downlink uplink duality.

5.1 CONNECTION WITH POWER OPTIMIZATION

The most interesting property of the SINR optimization program is its relation to the power optimization

program. In order to mathematically define this relation, we introduce the following theorem:

Theorem 3. The power optimization problem of (9) and the SINR optimization problem of (10) are inverse

problems:

γo = S(P(γo)); (71)

Po = P(S(Po)). (72)

In addition, the optimal objective value of each program is continuous, and strictly monotonic increasing in

its input argument:

γo > γ̃o ⇒ P(γo) > P(γ̃o); (73)

Po > P̃o ⇒ S(Po) > S(P̃o). (74)

Proof. We begin by proving (71) by contradiction. Assume the contrary, i.e. P and T are the optimal value

and argument of P(γ), and γ̃ 6= γ and T̃ are the optimal value and argument of S(P ). If γ̃ < γ, then this

is a contradiction for the optimality of T̃ for S(P ), since T is feasible for it, and provides a larger objective

value γ. Otherwise, if γ̃ > γ, then this is a contradiction for the optimality of T for P(γ), since γ̃ > γ, and

we can always find c < 1 such that cT̃ will still be feasible, but will result in a smaller objective.

Next, we prove (73) by contradiction. Assume the contrary, i.e., P and T are optimal for γ, and P̃ ≥ P

and T̃ are optimal for γ̃ < γ. We can always multiply T by c < 1 so that it will still achieve the SINRs

constraints of γ̃, with an effective power constraint c2P < P ≤ P̃ . This contradicts the assumption that T̃

was optimal for γ̃. The continuity can be verified using similar arguments to those in Lemma 2 of [57]. The

proofs of (72) and (74) are similar and are therefore omitted.

Using the properties in the Theorem 3, we can solve S(Po) for a given Po by iteratively solving P(γo)

for different γo’s. Due to the inversion property, if Po = P(γo), then its solution will be optimal also for
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S(Po). The strict monotonicity and continuity guarantees that a simple one dimensional bisection search

will efficiently find the required γo. This procedure is summarized in the following algorithm (see also [47]):

S(Po)

1 γmax ← MaxSINR

2 γmin ← MinSINR

3 repeat

4 γo ← (γmin + γmax) /2

5 P̂o ← P(γo)

6 if P̂o ≤ Po

7 then γmin ← γo

8 else γmax ← γo

9 until P̂o = Po

10 return γo

where MinSINR and MaxSINR define a range of relevant SINRs for a specific application, and where we

have used the convention that ∞ = P(γo) if it is infeasible.

Theoretically, this means that the SINR optimization problem can be solved through the previous results

concerning the power optimization. Nonetheless, due to its importance and in order to obtain more efficient

numerical solution, we now provide direct solutions for the SINR optimization through conic optimization,

via the optimality conditions, and through the downlink uplink duality.

5.2 CONIC OPTIMIZATION SOLUTION

The SINR optimization can be cast as a standard conic program. Using a slack variable, the problem can

be rewritten as

S(Po) :





maxT,γo
γo

s.t.
|[HT]i,i|2∑

i6=j|[HT]i,j|2+σ2

i

≥ γo, i = 1, · · · , K;

Tr
{
THHH

TxHTxT
}
≤ Po.

(75)

At first glance, (75) seems similar to (29). However, it turns out to be considerably more complicated.

This is because the SINR matrix inequalities in (38) are linear in β =
√

1 + 1
γo

or in T, but not in both

simultaneously. Thus, when β is an optimization variable and not a parameter, these constraints are no
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longer LMIs. In fact, the sets which they define are not convex2. Nonetheless, we can still express them

using generalized matrix inequalities as in (37) and (38). If we rewrite the Ai(T)’s in (38) and separate out

the terms which are linear, we have

Ai (T) = βA1
i (T)−A2

i (T) , (76)

where A1
i (T) and A2

i (T) are matrices that depend affinely on T:

A1
i (T) =




[HT]i,i 0

0 [HT]i,i I


 ; (77)

A2
i (T) =




0 −
[

eH
i HT σi

]

−




THHHei

σi


 0




. (78)

Using (76) we can express S in the standard GEVP form:

S(Po) :





minT,β β

s.t. βA1
i (T) � A2

i (T), i = 1, · · · , K;

A1
i (T) � 0, i = 1, · · · , K;

C(T) � 0.

(79)

It can be solved using appropriate software, e.g., the GEVP command in the LMI toolbox [58].

As before, it is important to note that the GEVP formulation is general and does not depend on the

rank of the channel. Thus, this solutions is also appropriate for rank deficient channels.

5.3 A FIXED POINT ITERATION FOR FINDING λi

The SINR optimization problem can also be solved using the conditions in Theorem 1. As explained in

Theorem 3, S and P are inverse problems. Thus, the optimal solution of the SINR optimization is also

optimal for an inverse power optimization problem, and therefore must satisfy its optimality conditions as

well. All we need to do in order to solve the SINR optimization is find λi > 0 that satisfy (40) and (44).

Unfortunately, in this case, γo is an optimization variable and not a parameter and has to be found as well.

2The exact definition of such sets is quasi convex [18].
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This can be overcome by adjusting the fixed point iteration in (62):

λ̃i =
1[

H
(
HHdiag

{
λ

(n)
i

}
H + HH

TxHTx

)†
HH

]

i,i

, i = 1, · · · , K, (80)

and then normalizing the result so that it will satisfy (44):

λ
(n+1)
i =

Poλ̃i∑
j σ2

j λ̃j

, i = 1, · · ·K. (81)

If this iteration converges to a fixed point λ
(n)
i > 0 then it will satisfy (40) and (44). We do not have a

convergence proof for this iteration. However, numerous numerical simulations with arbitrary initial points

and parameters show a rapid convergence rate.

5.4 INTERPRETATION USING DOWNLINK UPLINK DUALITY

Following the success of the uplink downlink duality in the power optimization, the duality was recently

used to confront the SINR optimization [48, 49]. The uplink downlink duality in the case of the SINR

optimization can be stated as follows:

Theorem 4. Recall the downlink program S:

S(Po) =





maxT,γo
γo

s.t.
|[HT]i,i|2∑

j 6=i|[HT]i,j|2+σ2

i

≥ γo, i = 1, · · · , K;

Tr
{
THHH

TxHTxT
}
≤ Po.

(82)

and consider the following uplink program:

S(Po) =





maxW,λi≥0,γo
γo

s.t.
λi

∣∣∣[WHH ]
i,i

∣∣∣
2

∑
j 6=i λj|[WHH ]i,j|2+[WHH

Tx
HTxW

H ]
i,i

≥ γo, i = 1, · · · , K;

∑
i σ

2
i λi ≤ Po.

(83)

If the optimal arguments and objective value of S are W, λi, and γo, then the optimal objective value of S

is also γo, and its optimal argument is T = WHΛ
1

2 diag {δi}, where δi are non negative weights.

Proof. The proof is similar to the other proofs in this paper, and therefore we only provide a sketch of it.

As before, the problems P and S are inverse problems. But in Theorem 2 we have shown that P and P
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are equivalent. Therefore, S and S must be equivalent too. A more detailed proof on this duality in the

case of HTx = I can be found in [49].

As explained, the downlink beamforming SINR optimization problem was solved using this duality

[48, 49]. As before, the algorithm iteratively optimizes each of the optimization variables while keeping the

others fixed:

S(Po)

1 repeat

2 for i← 1 to K

3 wi ← arg

{
maxwi

λi|wH
i HHei|2∑

j 6=i λj |wiH
Hej |

2+‖HTxwi‖
2

}

4 {γo,Λ} ← arg





maxλi,γo
γo

s.t.
λi|wH

i HHei|2∑
j 6=i λj |wiH

Hej |
2+‖HTxwi‖

2
≥ γo, i = 1, · · · , K;

∑
i σ

2
i λi ≤ Po.





5 until convergence

The solution for the optimization in line 3 remains as in (67). The optimization in line 4 is more complicated.

It is based on the work of [13], which showed that this optimization can be carried out using eigenvalue

optimization. As already discussed, at the optimal solution, all the constraints are active:

λi

∣∣wH
i HHei

∣∣2
∑

j 6=i λj |wiHHej |2 + ‖HTxwi‖2
= γo, i = 1, · · · , K, (84)

or

(
1 +

1

γo

)
λi =

∑

j

∣∣wiH
Hej

∣∣2
∣∣wH

i HHei

∣∣2 λj +
‖HTxwi‖2∣∣wH

i HHei

∣∣2 , i = 1, · · · , K. (85)

Let us multiply (85) with σ2
i for i = 1, · · · , K, and sum over i on both sides:

(
1 +

1

γo

) ∑

i

σ2
i λi =

∑

i

σ2
i

∑

j

∣∣wiH
Hej

∣∣2
∣∣wH

i HHei

∣∣2 λj +
∑

i

σ2
i

‖HTxwi‖2∣∣wH
i HHei

∣∣2 . (86)

Similarly to the other constraints, it can be shown the power constraint is also active, i.e.,
∑

i σ
2
i λi = Po.

Thus,

(
1 +

1

γo

)
=

1

Po

∑

i

σ2
i

∑

j

∣∣wiH
Hej

∣∣2
∣∣wH

i HHei

∣∣2 λj +
1

Po

∑

i

σ2
i

‖HTxwi‖2∣∣wH
i HHei

∣∣2 . (87)
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Rewriting the K equalities of (85) and the equality of (87) in matrix form:

(
1 +

1

γo

)



λ

1


 =




Q q

1
Po

vTQ 1
Po

vTq







λ

1


 , (88)

where λ is a length K vector with elements λi, Q is a K ×K matrix with elements [Q]i,j =
|wiH

Hej|2
|wH

i HHei|2 , q

is a length K vector with elements qi = ‖HTxwi‖
2

|wH
i

HHei|2 , and v is a length K vector with elements σ2
i . It is easy

to see that (88) defines an eigensystem. The optimal
(
1 + 1

γo

)
is its maximal eigenvalue, and the optimal λ

is the eigenvector associated with this maximal eigenvalue scaled so its last element will be one. For more

details on this procedure (in the special case of HTx = I) please refer to [13, 48]. Clearly, this solution is

much less appealing than the fixed point iteration in (80)-(81).

6 SPECIAL CASES

In this section, we examine a few interesting cases in which the problems P and S have simple closed forms.

6.1 DIAGONAL CASE

The first case is when the matrices H and HTx are diagonal. In this case, it is easy to satisfy the optimality

conditions in Theorem 1. The solution to the power optimization in (9) is

Po = γo

∑

i

σ2
i [HTx]

2
i,i

[H]2i,i
; (89)

[T]i,i =
√

γodiag

{
σi

[H]i,i

}
. (90)

The solution to the SIR optimization in (10) is

γo =
Po

∑
i

σ2

i [HTx]2i,i
[H]2i,i

; (91)

[T]i,i =

√√√√
Po

∑
i

σ2

i [HTx]2i,i
[H]2i,i

diag

{
σi

[H]i,i

}
. (92)

The resulting precoders in these cases are simple power allocation strategies.
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6.2 SYMMETRIC CASE

The second case is when the matrices H and HTx have equal diagonal elements and equal off diagonal

elements, and the variances are equal σ2
i = σ2. Due to the symmetry it is clear that choosing λi = Po/(Kσ2)

will satisfy the conditions in Theorem 1. Therefore, the solution for the SIR optimization problem is:

γo =
1

1[
H

(
HHH+ Kσ2

Po
HH

Tx
HTx

)−1

HH

]

i,i

− 1
; (93)

T = c

[
HHH +

Kσ2

Po
HH

TxHTx

]†
HH , (94)

where c is a constant that scales the matrix to satisfy the power constraint. This particular precoder has

been previously derived in [7,8] and recently in [9,10] through scaled MMSE considerations. However, it is

easy to verify that in general, i.e., in nonsymmetric channels, it does not necessarily satisfy the conditions

in Theorem 1, and is therefore suboptimal in this sense. For example, if the channels are symmetric but the

noise variances are not equal, then, in order to ensure equal SINRs among all the streams, the precoder in

(94) must be diagonally scaled using (42).

7 APPLICATIONS IN MULTIPLE USER SYSTEMS

In this section, we present possible applications of the proposed precoders. Consider a multiple user precoded

downlink system. At each symbol’s period the base station transmits using an N × K non orthogonal

signatures matrix HTx = S. The cross correlations between the signatures are denoted by ρi,j =
[
SHS

]
i,j

.

For simplicity, we assume ideal channels, i.e., HCh,i = I. Denoting by y the output vector of the multiple

user receiver, we have that

y = HRxSTb + HRxw, (95)

where HRx is one of the standard filters:

• MF receiver: HRx = SH .

• ZF receiver: HRx =
(
SHS

)−1
SH .

• MMSE receiver: HRx = SH
(
SSH + diag

{
σ2

i

})−1
.

We now discuss the performance of these systems with and without precoding.
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7.1 EQUAL POWER AND EQUAL CROSS CORRELATIONS

The first interesting result of our precoder is its performance in an equal power and equal cross correlations

multiuser system, i.e. ρi,j = ρ and σ2
i = σ2. As explained in Section 6.2, our precoder and its SINRs have

closed forms in this case.

Lemma 2. Consider the multiuser system in (95). If SHS is invertible, ρi,j = ρ and σ2
i = σ2, then the

output SINRs using the S precoder along with an MF receiver are identical to those resulting by using an

MMSE receiver without any precoder, and are equal to

γo =
1[(

I + Po

Kσ2 S
HS

)−1
]
i,i

− 1. (96)

Proof. Using (93) and the matrix inversion lemma, the output SINRs can be derived as

γo =
1

1[
SHS

(
SHSSHS+ Kσ2

Po
SHS

)−1

SHS

]

i,i

− 1
=

1[(
I + Po

Kσ2 S
HS

)−1
]
i,i

− 1, (97)

In [3], it is shown that the output SINRs using MMSE receivers are also equivalent to (96).

This result is interesting, as it allows for each user to attain the MMSE performance without the use of an

MMSE receiver which requires the knowledge of all the other signatures and a matrix inversion. Moreover,

when the S precoder is used with ZF or MMSE receivers the performance improves even more. In Fig. 4 we

plot the output SINRs given by (93) for the three linear receivers. For comparison, we also plot the output

SINRs that result from similar systems without a precoder [3]. As expected, using the precoder always

improves the output SINR.

7.2 NON SYMMETRIC CHANNEL

As a second example, we consider an equal power system with unequal cross correlations between the users

signatures. In such systems, there is no closed form expression for the performance. Therefore, we resort to

Monte Carlo simulations. Following [5], we simulate the cross correlations ρ12 = 0.8, ρ13 = 0.9, and ρ23 = 0.7.

Each user uses an MF receiver. For comparison, we provide results of the decorrelator precoder [5], and

our SIR precoder of (10). Due to the asymmetry, each of the three users performs differently when using

the previous precoders. On the other hand, our precoder has the attractive property of equal BERs for all

the users. Naturally, the performance of the best user degrades compared to previous methods. In Fig. 5,
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Figure 4: SINR of a symmetric system with equal cross correlations. Due to the symmetry, all users have
equal output SINRs.

we provide the BERs using each of the precoders. It is easy to see that the our precoder outperforms that

of [5].

7.3 RANK DEFICIENT CHANNELS

As explained in the introduction, one of the main advantages of our precoder over previous ones is its

performance in rank deficient systems. We now illustrate this property in a multiuser system with K = 4

users and length N = 3 sequences. The transmitter uses the optimal sequences of [37], and the receiver

uses conventional matched filters. However, we use a distorting channel for the first user, i.e., HCh,1 is a

toeplitz matrix with the first row [1.0, 0.8, 0.0]. Due to this channel the sequences are no longer optimal

and a precoder should be used. The common decorrelating precoder of [5] cannot be derived in this case as

N < K. Therefore, we compare our results to the precoder of [7]. The worst output SINRs with and without

the precoders are presented in Fig. 6. Using our S precoder significantly increases the SINR compared to a

system with no precoder. Using the precoder, the SINRs asymptotically converge to the bound in (19), i.e.

γi = 1
4

3
−1

= 3 for i = 1, · · · , 4. Interestingly, the performance using the precoder of [7] is even worse than

not using a precoder at all. For fairness, we must note that the SINR of the best user using this precoder

are much higher. But from a system’s prespective, the interesting metric is the performance of the worst

user, and therefore our precoder is more appealing.
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8 CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of designing linear precoders for fixed MIMO receivers. We consid-

ered two complementary design criteria, and proposed numerous alternative algorithmic solutions for these

optimization problems.

It is first observed that in precoder design, maximizing the worst SINR is advantageous to minimizing

MSE. Most of the previous work regarding precoders is based on optimizing variants of the MMSE criterion.

These ad hoc criteria are usually computationally attractive and perform quite well. However, the ever

increasing demand for better performance, as well as the considerable progress in optimization theory, sug-

gests that upcoming research should focus on design criteria which are more related to practical performance

measures, such as maximizing the worst SINR.

Our second important observation is that by using conic optimization theory and algorithms, the precoder

design problems can be solved in a straight forward manner without using downlink uplink duality. This

duality is remarkable, and has enabled solutions to problems which were unsolvable before. Nonetheless,

we believe that understanding the precoder design on first principles, and not as a byproduct of the uplink

problem, is also important. For example, in future work, the simple optimality conditions may help in

analyzing the performance of these systems, or in improving the design criteria, without the need to always

return to the virtual uplink problem.

There are many interesting extensions to this work which are worth pursuing. The first concerns the

extension of our results to the case of partial CSI. In many practical systems, the transmitter does not have

access to perfect CSI, and needs to resort to noisy channel estimates, and/or delayed feedback. In this

case, robust optimization algorithms should be applied as in [59]. Another possible direction is to consider

fixed non linear receivers, such as the successive cancelling receiver. It is well known that such receivers

outperform the linear receivers explored in our paper. Therefore, by designing the precoder to optimally

work with such receivers, the performance can significantly improve.

A OPTIMALITY CONDITIONS FOR PROGRAMS WITH SOC CON-

STRAINTS

In this appendix, we derive optimality conditions for optimization programs with SOC constraints. The

conditions are summarized in the following lemma.
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Lemma 3. Consider a non convex program of the structure





minX f (X)

s.t. ‖ai(X)‖2 − |ai(X)|2 ≤ 0, i = 1, · · · , N.
(98)

where f(X) is convex in X, and ai(X) and ai(X) for = 1, · · · , K, are affine functions of X. Let us associate

the dual variables λi for i = 1, · · · , K with this program. If the program is strictly feasible, then the following

KKT conditions are necessary and sufficient conditions for optimality of X and λi:

1. Feasibility - the variable X is feasible

|ai(X)|2 ≥ ‖ai(X)‖2, i = 1, · · · , K, (99)

and the dual variables are dual feasible λi ≥ 0 for i = 1, · · · , K.

2. Complementary Slackness - for each i = 1, · · · , K, one of the following conditions hold

λi = 0 or |ai(X)|2 = ‖ai(X)‖2. (100)

3. Zero derivative - the derivative of the the Lagrangian of (98) with respect to X is zero

∂

∂X

{
f(X) +

∑

i

λi

[
‖ai (X)‖2 − |ai(X)|2

]}
= 0. (101)

Proof. For simplicity, we will only deal with real valued variables and functions. The extension to complex

values is straight forward. The KKT conditions are necessary for optimality of any optimization problem

[18]. If the program in (98) was in convex form, then the conditions were also sufficient for optimality.

Unfortunately, the program is not expressed in convex form and therefore we must prove the sufficiency.

Let us begin by rewriting (98) in convex form:





minX f (X)

s.t.




ai(X)

ai(X)


 �K 0, i = 1, · · · , N.

(102)

If (102) is strictly feasible, then the following conic KKT conditions are necessary and sufficient for optimality

[18]:
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1. Feasibility: The primal variable X is feasible, and the associated dual cones are dual feasible:




ai(X)

ai(X)


 �K ,




wi

wi


 �K 0, i = 1, · · · , K. (103)

2. Complementary Slackness:

[
wi wT

i

]



ai(X)

ai(X)


 = 0, i = 1, · · · , K. (104)

3. Zero derivative: The derivative of the Lagrangian 3 of (102) with respect to X is zero

∂

∂X





f(X)−
∑

i




[
wi wT

i

]



ai(X)

ai(X)











= 0. (105)

We now show that the conditions in (99)-(101) are sufficient for satisfying the conditions in (103)-(105).

Let us choose:




wi

wi


 = 2λi




ai(X)

−ai(X)


 , i = 1, · · · , K. (106)

Plugging the dual variables from (106) into the conic KKT conditions reveals that conditions (103)-(104)

hold due to (99)-(100). Similarly, using (106), the conditions in (101) and (105) are identical:

∂

∂X





f(X)−
∑

i




[
wi wT

i

]



ai(X)

ai(X)











=
∂f(X)

∂X
−

∑

i

(
2λiai(X)

∂ai(X)

∂X
− 2λia

T
i (X)

∂ai (X)

∂X

)

=
∂

∂X

{
f(X) +

∑

i

λi

(
‖ai (X) ‖2 − |ai(X)|2

)}
. (107)

3The Lagrangian is formulated by subtracting the product of the dual cones with the primal cones. The products are
subtracted instead of added (as in regular convex programming) because the SOC is defined as a “greater than or equal”
generalized inequality and not as a “less than or equal” generalized inequality [18].
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B PROPERTIES OF fi(Λ)

Consider the functions:

fi (Λ) =
γo

1 + γo

1[
H

(
HHΛH + HH

TxHTx

)†
HH

]
i,i

, i = 1, · · · , K, (108)

In this appendix, we will prove some properties of fi(Λ). The proofs rely on the following lemma:

Lemma 4. If A � 0, B � 0 and c is in the range of A, then

1

cH (A + B)† c
≥ 1

cHA†c
, (109)

with equality if and only if B (A + B)† c = 0.

Proof. First note that if c is in the range of A then

Q (A, c) =
1

cHA†c
=





minx xHAx

s.t. cHx = 1
. (110)

As proof, let us derive the Lagrangian of (110):

L = xHAx + λ
(
cHx− 1

)
. (111)

Equating the derivative with respect to x to zero yields

∂L
∂x

= 2Ax + λc = 0. (112)

Clearly, the solution to this condition is x = A†c

cHA†c
+y and λ = −2 1

cHA†c
, where y is any vector in the null

space of A.

Using (110), we need to prove that

Q (A + B, c) ≥ Q (A, c) . (113)

Let us denote the optimal argument of Q (A, c) by xA and the optimal argument of Q (A + B, c) by xA+B.

In order to prove the inequality, assume the contrary, i.e., the optimal value of Q (A + B, c) is less than

that of Q (A, c). Then, this is a contradiction to the optimality of xA, because xA+B is feasible for Q (A, c)
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and results in a smaller objective value.

In order to prove the case of strict inequality, we examine the case when

Q (A + B, c) = Q (A, c) . (114)

Due to the optimality of xA, we have xH
A AxA ≤ xH

A+BAxA+B. But, due to (114), we have xH
A AxA =

xH
A+BAxA+B + xH

A+BBxA+B. These conditions hold together if and only if xH
A+BBxA+B = 0. Plugging

in the optimal xA+B yields cH (A + B)† B (A + B)† c = 0. Finally, due to semidefiniteness of B, this is

possible only if B (A + B)† c = 0.

Using Lemma 4 with c = HHei (which is in the range of HH
TxHTx), we prove the following properties:

• Positivity - if λi ≥ 0 for i = 1, · · · , K, then fj(Λ) > 0 for j = 1, · · · , K.

Proof. Observe the following chain:

fi(Λ) =
γo

1 + γo

1[
H

(
HHΛH + HH

TxHTx

)†
HH

]
i,i

≥ γo

1 + γo

1[
H

(
HH

TxHTx

)†
HH

]
i,i

, i = 1, · · · , K, (115)

where we have used Lemma 4 with A = HH
TxHTx and B = HHΛH. Due to the semi definiteness,

the diagonal elements of H
(
HH

TxHTx

)†
HH are non negative. Therefore, if they are finite, then their

inverses are positive, and the property holds.

• Monotonicity - if λi ≥ λ′
i for i = 1, · · · , K, then fj(Λ) ≥ fj(Λ

′) for j = 1, · · · , K.

Proof. Observe the following chain:

fi(Λ) =
γo

1 + γo

1[
H

(
HHΛH + HH

TxHTx

)†
HH

]
i,i

=
γo

1 + γo

1[
H

(
HHdiag {λ′

i}H + HH
TxHTx + HHdiag {λi − λ′

i}H
)†

HH
]
i,i

≥ γo

1 + γo

1[
H

(
HHdiag {λ′

i}H + HH
TxHTx

)†
HH

]
i,i

= fi(Λ
′), i = 1, · · · , K, (116)

where we have used Lemma 4 with A = HHdiag {λ′
i}H+HH

TxHTx and B = HHdiag {λi − λ′
i}H.
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• Scalability - if α > 1, then αfi(Λ) > fi(αΛ) for j = 1, · · · , K.

Proof. Observe the following chain:

αfi(Λ) = α
γo

1 + γo

1[
H

(
HHΛH + HH

TxHTx

)†
HH

]
i,i

=
γo

1 + γo

1[
H

(
HHdiag {αλi}H + HH

TxHTx + (α− 1)HH
TxHTx

)†
HH

]
i,i

≥ γo

1 + γo

1[
H

(
HHdiag {αλi}H + HH

TxHTx

)†
HH

]
i,i

= fi(αΛ), i = 1, · · · , K, (117)

where we have used Lemma 4 with A = HHdiag {αλi}H + HH
TxHTx and B = (α− 1)HH

TxHTx. The

inequality is non strict, i.e., holds with equality if and only if HTx (A + B)† HHei = 0. Multiplying

by eH
i HRxCh on the left, yields eH

i H (A + B)† HHei = 0. Therefore HHei ∈ N
{

(A + B)†
}

, and

due to the symmetry of A + B, we also have HHei ∈ N {A + B}. In addition, due to the semi

definiteness, this means that HHei ∈ N
{
HHdiag {αλi}H

}
and HHei ∈ N

{
HH

TxHTx

}
. Therefore,

HH
TxHTxH

H
TxH

H
ChRxei = 0, and HH

TxH
H
ChRxei = 0. Consequently, the problem is infeasible.

C DERIVATION OF DUAL PROGRAM

In this appendix, we derive the dual program (64) and prove that its optimal solution satisfies the conditions

of Theorem 1. Let us rewrite the power optimization problem using simple scalar inequalities:





minT Tr
{
THHH

TxHTxT
}

s.t.
∑

j

∣∣∣[HT]i,j

∣∣∣
2
+ σ2

i −
(
1 + 1

γo

) ∣∣∣[HT]i,i

∣∣∣
2
≤ 0, i = 1, · · · , K.

(118)

The above program is not in convex form, since its constraints are not defined as f(·) ≤ 0 where f(·) is

convex in its arguments. Nonetheless, it will still have a concave dual program, whose optimal solution will

lower bound its optimal objective value. Define the Lagrangian of (118):

L(ti, λi) = Tr
{
THHH

TxHTxT
}

+
∑

i

λi


∑

j

∣∣∣[HT]i,j

∣∣∣
2
+ σ2

i −
(

1 +
1

γo

) ∣∣∣[HT]i,i

∣∣∣
2




=
∑

i

λiσ
2
i +

∑

i

tH
i

[
HHΛH + HH

TxHTx −
(

1 +
1

γo

)
λiH

Heie
H
i H

]
ti (119)
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where ti = Tei for i = 1 · · ·K. The dual function associated with (118) is obtained by minimizing L(ti,Λ)

over the primal variables ti:

d(λi) = inf
ti

L(ti, λi)

=





∑
i λiσ

2
i HHΛH + HH

TxHTx −
(
1 + 1

γo

)
λiH

Heie
H
i H � 0, , i = 1, · · · , K;

−∞ else.
(120)

where we have used the fact that the infimum of a quadratic form is either zero (if the form is positive semi

definite) or −∞ (if the form is not positive semi definite). Using the dual function, the dual program is

defined as:

maxλi
d(λi)

s.t. λi ≥ 0, i = 1, · · · , K.
(121)

Thus, the dual program associated with the power optimization is:





maxλi≥0
∑

i λiσ
2
i

s.t. γo

1+γo

[
HHΛH + HH

TxHTx

]
− λiH

Heie
H
i H � 0, i = 1, · · · , K.

(122)

In general, there is no guaranty for zero duality gap between (118) and (122). Nor is there a guaranty that

the solution of (122) will satisfy the conditions in Theorem 1. However, using the properties in Appendix

B, we can prove that in this specific case, the conditions will be satisfied. A similar proof is available in [42],

and is therefore omitted.

References

[1] A. Wiesel, Y. C. Eldar, and S. Shamai (Shitz), “Multiuser precoders for fixed receivers,” in Proc. of

IEEE Int. Zurich Seminar (IZS-2004), Feb. 2004.

[2] A. Wiesel, Y. C. Eldar, and S. Shamai (Shitz), “Linear precoder for fixed MIMO receivers,” in Proc.

of IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP-2004), May 2004.

[3] S. Verdu, Multiuser Detection, Cambridge University Press, 1998.

[4] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE

Journal on selected areas in Communications, vol. 21, pp. 684–702, June 2003.

42



[5] B. R. Vojcic and W. M. Jang, “Transmitter precoding in synchronous multiuser commmunication,”

IEEE Trans. on Communications, vol. 46, no. 10, pp. 1346–1355, Oct. 1998.

[6] R. F.H. Fischer, Precoding and Signal Shaping for Digital Transmission, John Wiley and Sons, Inc.,

2002.

[7] M. Joham, K. Kusume, M. H. Gzara, and W. Utschick, “Transmit wiener filter for the downlink of

TDD DS-CDMA systems,” in Proc. of IEEE 7th ISSSTA, Sept 2002.

[8] F. Wathan, R. Irmer, and G. Fettweis, “On transmitter-based interference mitigation in TDD-downlink

with frequency selective fading environment,” in Proc. of Asia-Pacific Conf. on Communications

(APCC), Sept. 2002.

[9] R. L. U. Choi and R.D. Murch, “New transmit schemes and simplified receivers for MIMO wireless

communications systems,” IEEE Trans. on Wireless Communications, vol. 2, no. 6, pp. 1217–1230,

Nov. 2003.

[10] L. U. Choi and R. D. Murch, “Transmit-preprocessing techniques with simplified receivers for the

downlink of MISO TDD-CDMA systems,” IEEE Trans. on Vehicular Technology, vol. 53, no. 2, pp.

285–295, March 2004.

[11] Y. Ding, T. N. Davidson, Z.-Q. Luo, and K. M. Wong, “Minimum BER block precoders for zero-forcing

equalization,” IEEE Trans. on Signal Processing, vol. 51, pp. 2410–2423, Sept. 2003.

[12] K. Ban, M. Katayama, T. Yamazato, and A. Ogawa, “Transmitter precoding with multiple trans-

mit/receive antennas for high data rate communication in bandwidth-limited channels,” in Proc. of the

Vehicular Technology Conf. (VTC 1999 - Fall), Sept. 1999.

[13] J. Yang and S. Roy, “Joint transmitter receiver optimization for multi input multi output systems with

decision feedback,” IEEE Trans. on Information Theory, vol. 40, pp. 1334–1347, Sept. 1994.

[14] A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. S. Sampath, “Optimal designs for space

time linear precoders and decoders,” IEEE Trans. on Signal Processing, vol. 50, no. 5, pp. 1051–1064,

May 2002.

[15] D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier

MIMO channels: A unified framework for convex optimization,” IEEE Trans. on Signal Processing,

vol. 51, no. 9, Sept. 2003.

43



[16] D. P. Palomar, M. A. Lagunas, and J. M. Cioffi, “Optimum linear joint transmit-receive processing

for MIMO channels with QoS constraints,” IEEE Trans. on Signal Processing, vol. 52, no. 5, pp.

1179–1197, May 2004.

[17] Z. Q. Luo, T.N. Davidson, G.B. Giannakis, and K.M. Wong, “Transceiver optimization for block-based

multiple access through ISI channels,” IEEE Trans. on Signal Processing, vol. 52, no. 4, pp. 1037–1052,

April 2004.

[18] S. Boyd and L. Vandenberghe, Introduction to Convex Optimization with Engineering Applications,

Stanford, 2003.

[19] R. Esmailzadeh, E. Sourour, and M. Nakagawa, “Pre-rake diversity combining in time division duplex

CDMA mobile communications,” IEEE Trans. on Vehicular Technology, vol. 48, no. 3, pp. 795–801,

May 1999.

[20] L. U. Choi and R. D. Murch, “Transmit MMSE pre-RAKE pre-processing with simplified receivers

for the downlink of MISO TDD-CDMA systems,” in Proc. of Global Telecommunications Conference,

2002 (GLOBECOM-2002), 2002, pp. 17–21.

[21] K. N. Modi, K. Reynolds, and X. Wang, “Linear precoding for multi antenna CDMA onver multipath

ISI channels,” in Proc. of conference on Information Sciences and Systems, Princeton, (CISS-2004),

March 2004.

[22] M. Brandt Pearce and A. Dharap, “Trasmitter based multiuser interference rejection for the downlink

of a wireless CDMA system in a multiplath environment,” IEEE Jour. on selected areas in Communi-

cations, vol. 18, pp. 407–417, March 2000.

[23] M. Meurer, P. W. Baier, T. Weber, Y. Lu, and A. Papathanassiou, “Joint transmission: advantageous

downlink concept for CDMA mobile radio systems using time division duplexing,” Electronics Letters,

vol. 36, no. 10, pp. 900–901, May 2000.

[24] S. Georgoulis and D. Cruickshank, “Pre-equalization, transmitter precoding, and joint transmission

techniques for time division duplex CDMA,” in Proc. of IEE 3G Mob. Communications Technology,

London,, March 2001, pp. 257–261.

[25] A. N. Barreto and G. Fettweis, “Joint signal precoding in the downlink of spread spectrum systems,”

IEEE Trans. on Wireless Communications, vol. 2, no. 3, pp. 511–518, May 2003.

44



[26] S. L. Georgoulis and D. G. M. Cruickshank, “Transmitter-based inverse filters for reducing MAI and

ISI in CDMA-TDD downlink,” IEEE Trans. on Wireless Communications, vol. 3, no. 2, pp. 353–358,

March 2004.

[27] J. Choi and S. Perreau, “MMSE multiuser downlink multiple antenna transmission for CDMA chan-

nels,” IEEE Trans. on Signal Processing, vol. 52, no. 6, pp. 1564–1573, June 2004.

[28] S. Wang and J. Caffery, “Linear multiuser precoding for synchronous CDMA,” in Proc. of IEEE

Wireless Communications and Networking Conference (WCNC2003), 2003.

[29] L. U. Choi and R. D. Murch, “A transmit preprocessing technique for multiuser MIMO systems using

a decomposition approach,” IEEE Trans. on Wireless Communications, vol. 3, no. 1, pp. 20–24, Jan.

2004.

[30] L. Collin, O. Berder, P. Rostaing, and G. Burel, “Optimal minimum distance based precoder for MIMO

spatial multiplexing systems,” IEEE Trans. on Signal Processing, vol. 52, no. 3, pp. 617–627, March

2004.

[31] R. Fischer, C. Windpassinger, A. Lampe, and J. Huber, “Space time transmission using Tomlinson-

Harashima precoding,” in Proc. of 4th ITG Conf. on Source and Channel Coding, Jan. 2002.

[32] M. Schubert and H. Boche, “Joint ’dirty paper’ pre-coding and downlink beamforming,” in Proc. of

IEEE International Symposium on Spread Spectrum Techniques and Applications (ISSSTA2002), Sept.

2002.

[33] C. Peel, B. Hochwald, and L. Swindlehurst, “A vector-perturbation technique for near-capacity multi-

antenna multi-user communication,” in Proc. of the 41st Allerton Conference on Communication,

Control, and Computing,, Oct. 2003.

[34] E. S. Hons, A. K. Khandani, and W. Tong, “An optimized transmitter precoding scheme for synchronous

DS-CDMA,” in Proc. of IEEE Int. Communications Conf., April 2002.

[35] H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and decoder design for MIMO

channels using the weighted MMSE criterion,” IEEE Trans. on Communications, vol. 49, no. 12, pp.

2198–2206, Dec. 2001.

[36] S. Serbetli and A. Yener, “Transceiver optimization for multiuser MIMO systems,” IEEE Trans. on

Signal Processing, vol. 52, no. 8, pp. 214–226, August 2004.

45



[37] P. Viswanath and D. N. C. Tse, “Optimal sequences, power control, and user capacity of synchronous

CDMA systems with linear MMSE multiusers receivers,” IEEE Trans. on Information Theory, vol. 45,

pp. 1968–1983, Sept. 1999.

[38] S. Ulukus and R. Yates, “Iterative construction of optimum signature sequence sets in synchronous

cdma systems,” IEEE Transactions on Information Theory, vol. 47, no. 5, July 2001.

[39] T. Guess, “Optimal sequences for CDMA with decision feedback receivers,” IEEE Trans. on Informa-

tion Theory, vol. 49, pp. 886–900, April 2003.

[40] J. H. Chang, L. Tassiulas, and F. Rashid Farrokhi, “Joint transmitter receiver diversity for efficient

space division multiple access,” IEEE Trans. on Wireless Communications, vol. 1, pp. 16–27, Jan.

2002.

[41] E. Visotsky and U. Madhow, “Optimum beamforming using transmit antenna arrays,” in Proc. of

IEEE Vehicular Technology Conf., May 1999, vol. 1, pp. 851–856.

[42] M. Bengtsson and B. Ottersten, “Optimal downlink beamforming using semidefinite optimization,” in

Proc. of 37th Annual Allerton, Sept. 1999.

[43] H. Boche and M. Schubert, “A general duality theory for uplink and downlink beamforming,” in Proc.

of IEEE Vehicular Technology Conf. (VTC-2002 Fall), Sept. 2002, pp. 87–91.

[44] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector gaussian broadcast channel and uplink

downlink duality,” IEEE Trans. on Information Theory, vol. 49, pp. 1912–1921, Aug. 2003.

[45] D. N. C. Tse and P. Viswanath, “Downlink uplink duality and effective bandwidths,” in Proc. of IEEE

International Symposium on Information Theory (ISIT-2002), June 2002.

[46] F. Rashid Farrokhi, L. Tassiulas, and K. J. Ray Liu, “Joint optimal power control and beamforming

in wireless networks using antenna arrays,” IEEE Trans. on Communications, vol. 46, pp. 1313–1324,

Oct. 1998.

[47] Tai-Lai Tung and Kung Yao, “Optimal downlink power-control design methodology for a mobile radio

DS-CMDA system,” in Proc. of IEEE workshop on Signal Processing Systems (SIPS-2002), 2002, pp.

165–170.

46



[48] M. Schubert, D. Karadoulamas, H. Boche, and G. Lebmann, “Joint downlink beamforming and power

control for 3G WCDMA,” in Proc. of IEEE Vehicular Technology Conf. (VTC-2003 Spring), April

2003, vol. 1, pp. 331–335.

[49] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem with individual

SINR constraints,” IEEE Trans. on Vehicular Technology, vol. 53, no. 1, pp. 18–28, Jan 2004.

[50] S. Shi and M. Schubert, “Precoding and power loading for multi antenna broadcast channels,” in Proc.

of conference on Information Sciences and Systems, Princeton, (CISS-2004), March 2004.

[51] J. F. Sturm, “Using SEDUMI 1.02, a Matlab toolbox for optimizations over symmetric cones,” Opti-

mization Meth. and Soft., vol. 11-12, 1999.

[52] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second order cone program-

ming,” Linear Algebra and App., 1998.

[53] L. Vandenberghe and S. Boyd, “Semidefinite programming,” Siam Review, vol. 38(1), pp. 49–95, March

1996.

[54] S. Boyd and L. E. Ghaoui, “Method of centers for minimizing generalized eigenvalues,” Linear Algebra

and App., April 1992.

[55] C. D. Meyer, Matrix analysis and applied linear algebra, Siam, 2000.

[56] R. Yates, “A framework for uplink power control in cellular radio systems,” IEEE Journal on Selected

Areas in Communications, vol. 13, no. 7, Sept. 1995.

[57] Y. C. Eldar, “Minimax MSE-ratio estimation with bounded data uncertainties,” in submitted to IEEE

Trans. Signal Processing, Dec. 2003.

[58] P. Gahinet, A. Nemirovski, A. J. Laud, and M. Chilali, LMI Control Toolbox, Matlab, the Mathworks.

[59] A. Ben-Tal and A. Nemirovski, “Robust optimization methodology and applications,” Math Program-

ming, vol. 92, pp. 453–480, 2002.

47




