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Linear Minimax Regret Estimation of Deterministic
Parameters with Bounded Data Uncertainties

Yonina C. Eldar, Member, IEEE, Aharon Ben-Tal, and Arkadi Nemirovski

Abstract—We develop a new linear estimator for estimating an
unknown parameter vector x in a linear model in the presence
of bounded data uncertainties. The estimator is designed to mini-
mize the worst-case regret over all bounded data vectors, namely,
the worst-case difference between the mean-squared error (MSE)
attainable using a linear estimator that does not know the true
parameters x and the optimal MSE attained using a linear esti-
mator that knows x. We demonstrate through several examples
that the minimax regret estimator can significantly increase the
performance over the conventional least-squares estimator, as well
as several other least-squares alternatives.

Index Terms—Deterministic parameter estimation, linear esti-
mation, mean squared error bounded data uncertainties estima-
tion, minimax estimation, regret.

I. INTRODUCTION

THE problem of estimating a vector of unknown parameters
from noisy observations , where is a

known matrix and is a noise vector, arises in many different
fields in science and engineering and has consequently attracted
much attention in the estimation literature.

If the unknown parameter vector is assumed to be random
with known second-order statistics, then the linear estimator
minimizing the mean-squared error (MSE) is the well-known
Wiener estimator [1], [2]. However, in many problems of prac-
tical interest, there is no statistical information available on so
that is treated as an unknown deterministic parameter vector.
In this case, the MSE of an estimator of will in general de-
pend explicitly on the unknown parameter vector and, there-
fore, cannot be minimized directly.

Since the MSE between and generally depends on ,
a common approach is to seek linear estimators that minimize
some function of the data error , where is the
estimated data vector. The celebrated least-squares estimator,
first studied by Gauss [3], seeks the estimator of that min-
imizes the squared-norm of the data error . It is well
known that the least-squares estimate is also the best linear un-
biased estimator [4], i.e., it has the smallest variance among all
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linear unbiased estimators. On the negative side, an unbiased
estimator does not necessarily lead to a small MSE. In fact, it is
well known that in many cases, the least-squares estimator can
result in a large MSE.

Various modifications of the least-squares estimator for the
case in which the data model holds, so that with

and known exactly, and represents a deterministic pa-
rameter vector, have been proposed. Among the alternatives are
Tikhonov regularization [5], which is also known in the statis-
tical literature as the ridge estimator [6], the linear shrunken es-
timator [7], and the covariance shaping least-squares estimator
[8]. In general, these linear least-squares alternatives attempt to
reduce the MSE in estimating by allowing for a bias. Each of
the estimators above can be shown to be a solution to an opti-
mization problem that involves minimizing some function that
depends on the data error.

In an estimation context, we typically would like to minimize
the estimation error, rather than the data error. To this end, we
assume that is known to satisfy a (possibly weighted) norm
constraint and then seek a robust estimator whose performance
is reasonably good across all possible choices of the parame-
ters in the region of uncertainty. The most common approach
for designing robust estimators is the minimax MSE approach,
initiated by Huber [9], [10], in which we seek the estimator that
minimizes the worst-case MSE in the region of uncertainty. This
approach has been applied to a variety of different estimation
problems in which the unknown parameter vector is assumed
to be random, but the statistics of are not completely speci-
fied [11]–[17]. This approach has also been applied to the case
in which is deterministic, under the limiting assumptions that

, and each element of is estimated from the corre-
sponding observation of [18]. Note that effectively, this is
equivalent to assuming that the noise vector has independent el-
ements. The minimax approach, in which the goal is to optimize
the worst-case performance, is one of the major techniques for
designing robust systems with respect to modeling uncertainties
and has been applied to many problems in detection and estima-
tion [19]–[21].

Following the popular minimax approach, we may seek the
linear estimator that minimizes the worst-case MSE over all pos-
sible values of that satisfy a weighted norm constraint. The
minimax estimator of this form for arbitrary matrices and ar-
bitrary noise vectors is developed in [22], in which the case
of uncertainties in the model matrix is also considered.

Although the minimax approach has enjoyed widespread use
in the design of robust methods for signal processing and com-
munication [19], [21], its performance is often unsatisfactory.
The main limitation of this approach is that it tends to be overly

1053-587X/04$20.00 © 2004 IEEE



2178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 8, AUGUST 2004

conservative since it optimizes the performance for the worst
possible choice of unknowns. As we show in the context of con-
crete examples in Section VI, this can often lead to degraded
performance.

To improve the performance of the minimax MSE estimator,
we propose, in Section III, a new approach to linear estimation in
which we seek a linear estimator whose performance is as close
as possible to that of the optimal linear estimator, i.e., the one
minimizing the MSE when is assumed to be known. Specif-
ically, we seek the estimator that minimizes the worst-case re-
gret, which is the difference between the MSE of the linear es-
timator that does not know and the smallest attainable MSE
with a linear estimator that knows . Note that as we show in
Section III, since we are restricting ourselves to linear estima-
tors, we cannot achieve zero MSE even in the case in which
the parameters are known. By considering the difference be-
tween the MSE and the optimal MSE rather than the MSE di-
rectly, we can counterbalance the conservative character of the
minimax approach, as is evident in the examples we consider in
Section VI.

The minimax regret concept has recently been used to de-
velop a linear estimator for the unknown vector in the same
linear model considered in this paper, but for the case that is
random with an unknown covariance matrix [17]. Similar com-
petitive approaches have been used in a variety of other contexts,
for example, universal source coding [23], hypothesis testing
[24], [25], and prediction [26].

The paper is organized as follows. In Section II, we provide
an overview of our problem. In Section III, we develop the form
of the minimax regret estimator when the uncertainty region is
defined by for some positive definite weighting
matrix . For analytical tractability, we restrict our attention to
matrices such that and have the same eigen-
vector matrix,1 where is the noise covariance matrix. We
then specialize the results to the case in which
in Section IV and to the case in which in Section V. In
these special cases, we show that the minimax regret estimator
can be derived as the solution to explicit, simple, and compu-
tationally tractable convex optimization problems. Section VI
presents several examples illustrating the performance advan-
tage of the minimax regret estimator.

II. PROBLEM FORMULATION AND MAIN RESULTS

We denote vectors in by boldface lowercase letters and
matrices in by boldface uppercase letters. denotes the
identity matrix of appropriate dimension, denotes the Her-
mitian conjugate of the corresponding matrix, and denotes
an estimated vector or matrix.

Consider the problem of estimating the unknown determin-
istic parameter vector in the linear model

(1)

1If the eigenvalues of T andH C H have geometric multiplicity 1, then
T andH C H have the same eigenvector matrix if and only if they commute
[27].

where is a known matrix with full rank , and is a
zero-mean random vector with covariance . We assume that

is known to satisfy the weighted norm constraint
for some positive definite covariance and scalar , where

.
We estimate using a linear estimator so that for

some matrix . The variance of the estimator
is given by

Tr (2)

and the bias of the estimator is

(3)

We would like to design an estimator of to minimize the
MSE, which is given by

Tr (4)

Since depends explicitly on the unknown parameter
vector , we cannot choose an estimate to directly minimize
the MSE (4).

A common approach is to restrict the estimator to be unbi-
ased so that and then seek the estimator of this form
that minimizes the variance or the MSE. The resulting es-
timator is the (weighted) least-squares estimator [4], which is
given by

(5)

If is a zero-mean Gaussian random vector, then the
least-squares estimator is also the minimum variance unbiased
estimator, i.e., it minimizes the variance from all linear and
nonlinear unbiased estimators. However, an unbiased estimator
does not necessarily lead to a small MSE. Various alterna-
tive linear estimators for the model (1) have been proposed,
for example, Tikhonov regularization [5], [6], the shrunken
estimator [7], and the covariance shaping least-squares esti-
mator [8]. These estimators attempt to reduce the MSE of the
least-squares estimator by allowing for a bias. However, each
of the estimators above is designed to optimize an objective
that depends on the data error and not directly on the MSE.

In this paper, we consider an alternative method for de-
veloping optimal linear estimators. Specifically, we develop
estimators that minimize the worst-case regret, i.e., the dif-
ference between the MSE of an estimator of and the
best possible MSE attainable using any estimator of the form

, where is assumed to be known, so that can
depend explicitly on . As we show in Section III, since we are
restricting ourselves to linear estimators of the form ,
even in the case in which the parameters are known, we
cannot achieve zero MSE. The best possible MSE is illustrated
schematically in Fig. 1. Instead of seeking an estimator to
minimize the worst-case MSE, we therefore propose seeking
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Fig. 1 Line represents the best attainable MSE as a function of x when x is
known, and the dashed line represents a desirable graph of MSE with small
regret as a function of x using some linear estimator that does not depend on x.

an estimator to minimize the worst-case difference between its
MSE and the best possible MSE, as illustrated in Fig. 1.

In Section III, we develop the form of the estimator min-
imizing the worst-case regret for the case in which and

have the same eigenvector matrix (this assumption
is made for analytical tractability). We show that the minimax
regret estimator can be described by parameters, which are
the solution to a convex optimization problem (Theorem 1).
In Section IV, we consider the case in which .
This case may be of interest, for example, when an unknown
signal is sent through a known channel, and the output
signal-to-noise ratio is bounded. As we show, when is large
enough with respect to , the optimal minimax regret estimator
is a shrunken estimator with a specific choice of shrinkage
factor. For small values of , the optimal estimator is given in
terms of a single parameter, which is the solution to a nonlinear
equation (Theorem 2). In Section V, we consider the case in
which and show that the minimax regret estimator can
be determined by solving convex optimization problems,
each in three unknowns (Theorem 3). The case may be
of interest when an unknown signal is sent through a known
channel, and the power of is bounded.

In Section VI, we demonstrate by examples that the minimax
regret estimator can significantly improve the performance over
the traditional least-squares estimator. Furthermore, its perfor-
mance is often better than that of the minimax estimator that
minimizes the worst-case MSE [22] and the Wiener estimator,
which results from assuming that is a random vector with co-
variance .

III. MINIMAX REGRET ESTIMATOR

The minimax regret estimator is designed to minimize the
worst-case regret , which is defined as the difference
between the MSE using an estimator and the smallest
possible MSE attainable with an estimator of the form

when the parameters are known, which we denote by
MSE .

To develop an explicit expression for MSE , we first deter-
mine the estimator that minimizes the MSE when

is known. To this end, we differentiate2 the MSE of (4) with
respect to and equate to 0, which results in

(6)

so that

(7)

Using the Matrix Inversion Lemma [27], we can express as

(8)

Substituting back into (4), MSE is given by

MSE (9)

Since is unknown, we cannot implement the optimal esti-
mator (8). Instead, we seek the estimator that mini-
mizes the worst-case regret , where

MSE

Tr

(10)

subject to the constraint . Thus, we seek the matrix
that is the solution to the problem

(11)

For analytical tractability, we restrict our attention to weighting
matrices such that and have the same eigen-
vector matrix. Thus, if has an eigendecomposition

, where is a unitary matrix and is a
diagonal matrix, then for some diagonal matrix .

Theorem 1 below establishes the general form of the solution
to (11) for any such that and have the same
eigenvector matrix. In Sections IV and V, we use Theorem 1 to
develop the solution for the case in which and

, respectively.
Theorem 1: Let denote the unknown deterministic param-

eter vector in the model , where is a known
matrix with rank , and is a zero-mean random vector with
covariance . Let , where is a uni-
tary matrix, and is an diagonal matrix with diagonal
elements , and let , where is an

2We use the following derivatives: For any Hermitian A

@Tr(BAB )

@B
= 2BA

and

@x B Bx

@B
= 2Bxx :
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diagonal matrix with diagonal elements . Then, the solu-
tion to the problem

has the form

where is an diagonal matrix with diagonal elements
, which are the solution to the convex optimization problem

in (12), shown at the bottom of the page.
Proof: The proof of Theorem 1 is comprised of three parts.

We first show that the optimal minimizing the worst-case
regret has the form

(13)

for some matrix . We then show that can be chosen as
a diagonal matrix. Finally, we show that the diagonal elements
of , which are denoted , are the solution to (12).

We begin by showing that the optimal has the form given
by (13). To this end, note that the regret of (10) de-
pends on only through and Tr . Now, for any
choice of

Tr Tr

Tr Tr (14)

where

(15)

is the orthogonal projection onto the range space of .
Therefore, if is chosen such that

(16)

then Tr Tr . In addition,
since . Thus,

to minimize the worst-case regret, it is sufficient to consider
matrices that satisfy (16), or equivalently, that satisfy

(17)

Substituting (15) into (17), we have

(18)

for some matrix . Denoting , (18) reduces
to (13).

We now show that can always be chosen as a diagonal
matrix. Since , we can express
as

Tr

Tr (19)

where . Combining (19) with

(20)

we conclude that (11) reduces to finding that minimizes

Tr

(21)

Let be a diagonal matrix with diagonal elements equal to
1. Then

Tr

Tr

(22)

where , and we used the fact that , and for
any diagonal matrix , . Therefore, if mini-
mizes , then also minimizes . Now, since the
problem of minimizing is convex, the set of optimal so-
lutions is also convex [28], which implies that if is op-
timal for any diagonal with diagonal elements 1, then so is

, where the summation is over all
diagonal matrices with diagonal elements 1. It is easy to see
that has diagonal elements. Therefore, we have shown that
there exists an optimal diagonal solution .

Denoting by the diagonal elements of and by
where are the components of , we can express as

(23)

(12)
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where

(24)

and is the set of vectors with components such
that , and , i.e.,

(25)

To complete the proof of Theorem 1, we rely on the following
lemma.

Lemma 1: Let

for some given , , and , . If

where is defined by (25), then or .
Proof: Let be the set of vectors such that or

. To establish the lemma, we need to show that
for any , for some .

Fix such that , and let be defined
on the segment , where is the largest value of for
which . Clearly, and . Since ,

, and , where , to prove
that for some , it suffices to show that

(26)

We now establish (26) by first showing that is convex.
It then follows that obtains its maximum at one of its end
points. Since is defined on , this implies that

for any and, in particular, for
, which establishes (26). It remains to show that is convex.

Writing

(27)

where , and
, we can express as

(28)

Since is convex in , is convex.
From (23) and Lemma 1, it follows that finding to mini-

mize is equivalent to finding to minimize

(29)

Since , this problem can be written as (12), completing
the proof of Theorem 1.

Theorem 1 reduces the problem of minimizing the regret to
the simpler optimization problem (12). As we show in Sec-
tions IV and V, for certain choices of , the problem can be fur-
ther simplified, and in some cases, a closed-form solution for the
minimax regret estimator exists. In Section IV, we consider the
case in which the weighting , and in Section V, we
consider the case in which . As we show, when is large
enough with respect to , and , the minimax
regret estimator of Theorem 1 reduces to a shrunken estimator
with a shrinkage factor that depends only on the bound . For
small values of , the minimax regret estimator is a function of
a single parameter, that is the solution to a nonlinear equation. In
the case in which , the minimax regret estimator depends
on three parameters, which can be found by solving convex
optimization problems in three unknowns.

IV. MINIMAX REGRET ESTIMATOR WITH

We now consider the case in which the weighting
so that the eigenvalues of are equal to .

From Theorem 1, the optimal that minimizes the regret in
this case is given by (13), where the diagonal elements of
are the solution to the problem , which is defined in (30),
shown at the bottom of the page.

To develop a solution to , define the set as

(31)

Then

is a linear program [29]. From linear programming duality
theory, it follows that

(32)

where is the set of scalars for which

(33)

Thus, the problem can be written as

(34)

(30)
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Since is a convex optimization problem, from Lagrange du-
ality theory [30], it follows that in the problem
is equal to the optimal value of the dual problem, namely

(35)

where the Lagrangian is given by

(36)

Substituting (36) into (35), we have

(37)

where we used the fact that the optimal are given by

(38)

The dual problem of is therefore the problem

(39)

subject to

(40)

Once we find the dual optimal values , the optimal values
can be calculated using (38).

Since the problem of (39) subject to (40) is a convex opti-
mization problem, we can find an optimal solution by forming
the Lagrangian

(41)

where from the Karush–Kuhn–Tucker conditions [29], we must
have that , . The values are optimal if and only if they
satisfy (41) and there exist , such that

(42)

and the complementary slackness conditions are satisfied,
namely

(43)

Suppose first that . If , then from (42),
, which contradicts the condition .

Therefore, we must have that , which implies from (43)
that . Substituting into (42)

(44)

or

(45)

From (38), we then have

(46)

so that from Theorem 1, the optimal estimator in this case is

(47)

The outlined candidate solution is valid if and only if it satisfies
(40), which happens if and only if

(48)

or, equivalently

(49)

Now, assume that the inequality opposite to (48) holds true,
i.e.,

(50)

From the above analysis, in this case, , and (43), (40), and
(42) become

(51)

Let . If for some ,
then , . For suppose that for some .
Then, from (51), , and

(52)
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On the other hand, since , , and from (51)

(53)

which contradicts (52) because . Thus, we conclude that
there exists a such that for , and

for . If , then , .
Since for , from (51), for , and

(54)

where , and should be such that for . On
the other hand, from (51) combined with the fact that
and for , it follows that

for . Therefore, for

(55)

where is chosen such that

(56)

Equivalently, is chosen as a positive root of , where

(57)

We can immediately verify that is continuous in .
Furthermore, for each , is nonincreasing in , and

as . Therefore, has a positive root if
and only if , which is exactly condition (50). Note
also that the function is strictly decreasing in on
the entire segment where . Thus, in the case of
(50), has exactly one positive root (which can be easily
found by bisection).

We summarize our results in the following theorem.
Theorem 2: Let denote the unknown deterministic param-

eter vector in the model , where is a known
matrix with rank , and is a zero-mean random vector with
covariance . Let , where is a unitary
matrix, and is an diagonal matrix with diagonal ele-
ments . Then, the solution to the problem

with is given by

where , and is an diagonal matrix
with diagonal elements that are given by

Here, is the unique positive root of defined by (57), and

otherwise

where is defined by (55).
The minimax regret estimator of Theorem 2 for the case in

which is a shrunken estimator proposed
by Mayer and Willke [7], which is simply a scaled version of
the least-squares estimator, with an optimal choice of shrinkage
factor. We therefore conclude that this particular shrunken es-
timator has a strong optimality property: Among all linear es-
timators of such that , it minimizes the
worst-case regret.

As we expect intuitively, when , the minimax regret
estimator of Theorem 2 reduces to the least-squares estimator
(5). Indeed, when the weighted norm of can be made arbi-
trarily large, the MSE, and therefore the regret, will also be ar-
bitrarily large, unless the bias is equal to zero. Therefore, in this
limit, the worst-case regret is minimized by choosing an esti-
mator with zero bias that minimizes the variance, which leads
to the least-squares estimator.

V. MINIMAX REGRET ESTIMATOR WITH

We now consider the case in which . In this case, it
follows from Theorem 1 that the optimal that minimizes the
worst-case regret has the form given by (13), where is a di-
agonal matrix with diagonal elements which are solution to
the problem and are defined as (58), shown at the bottom
of the page. Here, are the eigenvalues of .

To develop a solution to , we note that

(59)

(58)
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where is the set of vectors and scalars defined
by

(60)

or, equivalently

(61)
Since is a convex set, and the objective in (59) is linear,

(59) is a convex optimization problem. From Lagrange duality
theory [30], it then follows that is equal to the optimal value
of the dual problem, namely

(62)

where the Lagrangian is given by

(63)

Substituting (63) into (62), we have

(64)

where we used the fact that the optimal is . The
problem of (58) can therefore be expressed as

(65)
Since is a convex optimization problem, we can find an

optimal solution to by forming the Lagrangian

(66)

where, from the Karush–Kuhn–Tucker conditions [29], we must
have that , , and . Differentiating with respect to
and equating to 0

(67)

Differentiating with respect to and equating to 0

(68)

from which we conclude that

(69)

From (65), must satisfy

(70)

Suppose that we have equality in (70) for some .
Then, to satisfy (69), we must have that

(71)

and

(72)

If for some we have inequality in (70) so that

(73)

then by complementary slackness, we must have that ,
which from (68) implies that .

Let . Then, by (68), we have that
. Therefore, if for some , then

for all . It follows that at an optimal solution, there exists
a such that

if then (74)

We conclude that of (65) can be solved by first solving
problems , for with three unknowns each,
where we have (75), shown at the bottom of the page, and then
choosing the value of and the corresponding optimal values
given by (74), which result in the smallest possible value of .

Each problem is a simple convex optimization problem
involving three unknowns and can therefore be solved very ef-
ficiently, for example, using the Ellipsoidal method (see, e.g.,
[29, Ch. 5.2]).

if then

(75)
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Following similar steps to those taken in (37)–(40), we can
derive the dual problem of given by (65), which results in

(76)

subject to

(77)

Suppose now that , so that .
In this case, the objective (76) can be written as

(78)

where we used the fact that from (77), . Since
no longer appears in the objective, (77) can be expressed as

(79)

As we expect, the resulting dual problem of (78) and (79) is
equivalent to the dual problem of (39) and (40) derived in Sec-
tion IV for the case in which when substi-
tuting . Indeed, if , then the weighting
matrices considered in Section IV and V are equal so that the
corresponding optimization problems must coincide.

We summarize our results in the following theorem.
Theorem 3: Let denote the unknown deterministic param-

eter vector in the model , where is a known
matrix with rank , and is a zero-mean random vector with
covariance . Let , where is a unitary
matrix, and is an diagonal matrix with diagonal ele-
ments . Then, the solution to the problem

has the form

where is an diagonal matrix with diagonal elements
that are given by

with , , and . Here, , , and
are the optimal solutions to the problem given by (75).

We now show that as we expect intuitively, when , the
minimax regret estimator of Theorem 3 reduces to the least-
squares estimator (5). From (75), it follows that if and

, then
, which implies that . Therefore, to minimize , we

must have that , which immediately implies that

since we must have that and . In addition,
since for , , we must have that

. We conclude that for , and ,
which from Theorem 3 implies that , and reduces to
the least-squares estimator.

VI. EXAMPLES

We now present some examples that illustrate the perfor-
mance advantage of the minimax regret estimator.

We consider the problem of estimating a two-dimensional
(2-D) image from noisy observations, which are obtained by
blurring the image with a blurring kernel (a 2-D filter) and
adding random Gaussian noise. Specifically, we generate an
image , which is the sum of harmonic oscillations:

(80)

where

(81)

and are given parameters. Clearly, the image
is periodic with period . Therefore, we can represent the image
by a length- vector , with components

.
The observed image is given by

(82)

where is a blurring filter defined by

(83)

for some parameter , and are randomly chosen shifts, and
is an independent, zero-mean, Gaussian noise process

so that for each and , is .
By defining the vectors and with components

and , respectively, and defining a matrix with the
appropriate elements , the observations can be ex-
pressed in the form of a linear model .

To evaluate the performance of the minimax regret estimator,
we consider four different data sets, with parameters given by
Table I. The filters used in all four simulations have, up to shifts,
the same support ; how-
ever, the kernel used for the first data set is essentially different
from the kernels used for data sets numbers 2–4, which are iden-
tical up to shifts of each other. The distributions of the singular
values and the condition numbers of the kernels are shown in
Fig. 2.

To estimate the image from the noisy observa-
tions , we consider four different estimators: the
least-squares (LS) estimator of (5), the minimax regret (REG)
estimator of Theorem 3, and two other estimators—the deter-
ministic Wiener estimator (WNR) and the minimax estimator
(MMX)—which we now describe. We assume that
and the noise variance are known.
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Fig. 2. Distribution of the singular values of theH-matrix for data set # 1 (left) and data sets # 2–4 (right).

TABLE I
PARAMETERS FOR THE FOUR DATA SETS

The least-squares estimator does not incorporate the prior
knowledge on and the image norm . To develop an
estimator that incorporates this knowledge, we may assume that

is a random vector with covariance independent of the
noise , and we may design an MMSE Wiener filter matched
to this covariance. The resulting estimator is [2]

(84)

The minimax estimator is developed in [22] and is designed
to minimize the worst-case MSE over all possible values of
such that , i.e., it is the solution to the problem

(85)

TABLE II
RELATIVE ERROR FOR THE DATA SETS OF TABLE I

and is given by

(86)

where Tr is the variance of the least-
squares estimator.

In Table II, we report the relative error cor-
responding to the four estimators for each of the four data sets.
As can be seen in Fig. 2, for the first data set, where the matrix

is perfectly conditioned, all of the methods work reasonably
well. In contrast, for data sets number 2–4, where is poorly
conditioned, the performance of the least-squares, minimax, and
Wiener estimators are severely degraded. The surprising result
is that even though the matrix is ill-conditioned, the minimax
regret estimator works pretty well, as can be seen from the re-
sults of Table II, as well as in Figs. 3 and 4.

In Figs. 3 and 4, we plot the original image, the observations,
and the estimated image for data sets 2 and 3. Since the error
in the least-squares estimate is so large, we do not show the
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Fig. 3. Data set number 2.

Fig. 4. Data set number 3.

resulting image. In the images, the “more red” the image, the
larger the signal value at that point.

VII. CONCLUSION

We considered the problem of estimating an unknown deter-
ministic parameter vector in the linear model ,
where is known to be bounded so that for some
weighting matrix . We developed a new linear estimator based
on minimizing the worst-case regret, which is the difference be-
tween the MSE of the estimator and the best possible MSE at-
tainable with a linear estimator that knows . As we demon-

strated, the minimax regret approach can significantly increase
the performance over the traditional least-squares method, even
in cases where the least-squares estimator, as well as other linear
estimators, turn out to be completely useless.

There are, of course, examples where the minimax regret, as
well as all other linear estimators, will perform poorly, in which
case, one may need to consider nonlinear estimators.

In our development of the minimax regret, we assumed that
and have the same eigenvector matrix. An interesting
direction for future research is to develop the minimax regret
estimator for more general classes of weighting matrices , as
well as in the presence of uncertainties in . It is also of interest
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to consider the minimax regret estimator for the case in which
the noise covariance is subject to uncertainties.
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