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Abstract—We develop a uniform Cramér–Rao lower bound
(UCRLB) on the total variance of any estimator of an unknown
vector of parameters, with bias gradient matrix whose norm is
bounded by a constant. We consider both the Frobenius norm
and the spectral norm of the bias gradient matrix, leading to two
corresponding lower bounds.

We then develop optimal estimators that achieve these lower
bounds. In the case in which the measurements are related to
the unknown parameters through a linear Gaussian model,
Tikhonov regularization is shown to achieve the UCRLB when
the Frobenius norm is considered, and the shrunken estimator
is shown to achieve the UCRLB when the spectral norm is
considered. For more general models, the penalized maximum
likelihood (PML) estimator with a suitable penalizing function
is shown to asymptotically achieve the UCRLB. To establish the
asymptotic optimality of the PML estimator, we first develop
the asymptotic mean and variance of the PML estimator for
any choice of penalizing function satisfying certain regularity
constraints and then derive a general condition on the penalizing
function under which the resulting PML estimator asymptotically
achieves the UCRLB. This then implies that from all linear and
nonlinear estimators with bias gradient whose norm is bounded
by a constant, the proposed PML estimator asymptotically results
in the smallest possible variance.

Index Terms—Asymptotic optimality, biased estimation, bias
gradient norm, Cramér–Rao lower bound, penalized maximum
likelihood, Tikhonov regularization.

I. INTRODUCTION

E STIMATION theory arises in a vast variety of areas in
science and engineering including, for example, commu-

nication, economics, signal processing, seismology, and control.
A common approach to developing well-behaved estimators
in overparameterized estimation problems is to use regulariza-
tion techniques, which where first systematically studied by
Tikhonov [1], [2]. In general, regularization methods measure
both the fit to the observed data and the physical plausibility
of the estimate. In many cases, the use of regularization can
reduce the variance of the resulting estimator at the expense
of increasing the bias so that the design of such estimators
is typically subject to a tradeoff between variance and bias.

Biased estimation methods are used extensively in a variety
of different signal processing applications. Examples include
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regularization methods in image restoration [3], where the bias
corresponds to spatial resolution, smoothing techniques in time
series analysis [4], [5], and spectrum estimation [6], [7].

We consider the class of estimation problems in which we
seek to estimate an unknown deterministic parameter vector
from some given measurements , where the relationship be-
tween and is described by the joint probability density
function (pdf) of characterized by .

It is well known that the total variance of any unbiased
estimator of is bounded by the Cramér–Rao lower bound
(CRLB) [8]–[11]. In the case in which the measurements
are related to the unknowns through a linear Gaussian
model, the maximum likelihood (ML) estimate of , which is
given by the value of that maximizes , achieves the
CRLB. Furthermore, when is estimated from independent
identically distributed (iid) measurements, under suitable
regularity assumptions on the pdf , the ML estimator is
asymptotically unbiased and achieves the CRLB [9], [10], [12].

Since the estimators resulting from regularization methods
are typically biased, their variance cannot be bounded by the
CRLB. The total variance of any estimator with a given bias is
bounded by the biased CRLB [13], which is an extension of the
CRLB for unbiased estimators. It turns out that the biased CRLB
does not depend directly on the bias but only on the bias gradient
matrix, which makes intuitive sense. Indeed, any constant bias
is removable, even if it is very large and, therefore, should not
effect the performance of the estimator.

Given a desired bias gradient, the biased CRLB serves as
a bound on the smallest attainable variance. However, in ap-
plications, it may not be obvious how to choose a particular
bias gradient. In such cases, it would be useful to have a lower
bound on the smallest attainable variance using any estimator
whose bias gradient belongs to a suitable class. A bound of this
form was first developed by Hero et al. [14], [15]. Specifically,
they consider the problem of estimating a scalar function of
a deterministic vector parameter. To quantify the fundamental
tradeoff between bias and variance, they propose the uniform
CRLB (UCRLB), which is a bound on the smallest attainable
variance that can be achieved using any estimator with bias gra-
dient whose norm is bounded by a constant. In the case of a
linear Gaussian model, they show that the UCRLB is achiev-
able using a linear estimator. For a Poison model, the UCRLB
is shown to be approximately achievable asymptotically. How-
ever, for more general models, the UCRLB is not shown to be
achievable.

In this paper, we extend the results of [14] and [15] in two
ways. First, we derive a UCRLB for vector parameters. Second,
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we develop a class of estimators that asymptotically achieve the
UCRLB when estimating an unknown vector from iid vector
measurements.

In the case in which it is desired to estimate an unknown
vector , we may use the results in [14] and [15] to obtain
bounds on the variance of the estimation error in each of the in-
dividual components to be estimated, subject to a constraint on
the norm of the individual bias gradients. However, in many con-
texts, it is of interest to bound the total variance that is achiev-
able in estimating the vector , subject to a constraint on the
total bias gradient norm, rather than bounds on the individual
variances subject to individual constraints. In order to obtain re-
sults on the total variance, in Sections III and IV, we extend the
UCRLB to vector parameters. Specifically, we derive bounds
on the total variance of any estimator of with bias gradient
matrix whose norm is bounded by a constant. We consider two
different matrix norms which lead to two lower bounds; in Sec-
tion III, we consider the Frobenius norm corresponding to an
average bias gradient measure, and in Section IV, we consider
the spectral norm corresponding to a worst-case bias gradient
measure. As we show in Section II, these measures characterize
the (possibly weighted) average and worst-case variation of the
bias, respectively, over an ellipsoidal region around the true pa-
rameters .

In Sections III-A and V, we show that the estimator achieving
the vector UCRLB can result in a smaller total variance than the
estimator achieving the scalar UCRLB of [15] so that by treating
the parameters to be estimated jointly, we can reduce the total
variance in the estimation.

To establish the fact that the UCRLB is achievable, in
Section V, we consider the case in which the measurements

are related to the unknown parameters through a linear
Gaussian model and derive linear estimators of that achieve
the UCRLB. In particular, we show that among all estimators
with bias gradient matrix whose Frobenius norm is bounded by
a constant, the ridge estimator proposed by Hoerl and Kennard
[16] (also known as Tikhonov regularization [2]), with an
appropriate regularization factor, minimizes the total variance.
We also show that among all estimators with bias gradient
matrix whose spectral norm is bounded by a constant, the
shrunken estimator proposed by Mayer and Willke [17] with
an appropriate shrinkage factor minimizes the total variance.

An important question is whether the UCRLB is achievable
for more general, and not necessarily Gaussian, models. In Sec-
tion VI, we consider the case of estimating from iid mea-
surements and develop a class of penalized maximum likeli-
hood (PML) estimators that asymptotically achieve the UCRLB.
Thus, we establish that asymptotically, the UCRLB is achiev-
able in many cases.

The PML estimator was first proposed by Good and Gaskins
[18], [19] as a modification of the ML estimator and is given by
the value that maximizes a penalized likelihood function. This
approach is equivalent to the maximum a posteriori (MAP)
method in Baysian estimation if we interpret the penalizing
factor as the log-likelihood of the prior pdf of . Note,
however, that the analysis of the PML and MAP estimators
is fundamentally different; whereas, in the Baysian approach,
the unknown parameters are assumed to be random, in the

PML approach, the unknown parameters are deterministic
but unknown. Therefore, performance measures such as MSE
average the performance over both the noise and the parameters
in the Baysian approach, whereas in the PML approach, the
performance is only averaged over the noise but not over the
parameters, which are assumed to be fixed.

The PML method has been widely used in many engineering
applications; see, e.g., [20]–[24]. We may interpret the PML ap-
proach as a method for obtaining biased estimators where the
tradeoff between variance and bias depends on the penalizing
function. Although various penalizing functions have been pro-
posed for a variety of problems, no general assertions of opti-
mality properties for the various choices of the penalizing func-
tions are known. A possible approach is to choose the penalizing
function to achieve an optimal bias-variance tradeoff in some
sense.

In Section VI, we consider estimation of a vector parameter
from iid measurements and develop the asymptotic bias and co-
variance of any PML estimator with a penalizing function that
satisfies certain regularity constraints. Using these asymptotic
results, we develop a condition on the penalizing function such
that the resulting PML estimator achieves the UCRLB. In Sec-
tion VII, we consider an example illustrating the asymptotic op-
timality properties of the PML estimator.

In the sequel, we denote vectors in ( arbitrary) by bold-
face lowercase letters and matrices in by boldface upper-
case letters. denotes the identity matrix of appropriate dimen-
sion, denotes the Hermitian conjugate of the corresponding
matrix, and denotes an estimated vector or matrix. The th
column of the matrix is denoted by , the th element
of is denoted by , and the th component of a vector

is denoted by . The true value of an unknown vector pa-
rameter is denoted by , and the true value of an unknown
scalar parameter is denoted by . denotes the
gradient of the function evaluated at the point and is
a row vector with elements equal to . The gra-
dient of a vector is a matrix, with th element
equal to , i.e., the derivative of the th component
of the vector with respect to . Using the notation in
[25], denotes “asymptotically distributed according to,” and

denotes the Gaussian distribution with mean and
variance . The matrix inequality means that

is non-negative (postive) definite].

II. BIASED CRAMÉR–RAO LOWER BOUND

We consider the problem of estimating an unknown deter-
ministic parameter vector from given measurements

, where the relationship between and is described
by the pdf of and is characterized by .

Under suitable regularity conditions on (see, e.g.,
[8], [10]), the covariance of any unbiased estimator of is
bounded by the CRLB. A similar bound is also given for the
covariance of a biased estimator, which is known as the biased
CRLB [13]. Specifically, let denote an arbitrary estimator of

with bias

(1)
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and covariance

(2)

Then, the covariance must satisfy

(3)

where is the Fisher information matrix defined by

(4)

and is assumed to be nonsingular,1 and is the bias gradient
matrix defined by

(5)

For a given bias gradient , the total variance that is achiev-
able using any linear or nonlinear estimator with this bias gra-
dient is bounded below by Tr , where the total variance

is the sum of the variances in es-
timating the individual components of . Typically, in esti-
mation problems, there are two conflicting objectives that we
would like to minimize: We would like to choose an estimator
to achieve the smallest possible total variance and the smallest
possible bias. However, generally, minimizing the bias results
in an increase in variance and vice versa. To quantify the best
achievable performance of any estimator of taking both the
bias and the total variance into account, we choose to minimize
the total variance

Tr Tr (6)

subject to a constraint on the bias gradient matrix . Note that
is invariant to a constant bias term so that in effect, it charac-

terizes the part of the bias that cannot be removed.

A. Bias Gradient Matrix

To develop a meaningful constraint on , following [15], we
first show that the norm of the bias gradient matrix is a measure
of the sensitivity of the bias to changes in over a neigh-
borhood of .

Using a Taylor expansion, to the first-order approximation,
we have that

(7)

where . Therefore, the squared norm of the bias
variation at a point in the neighborhood of
is approximately given by

(8)

Let

(9)

be the set of vectors that lie in the ellipsoidal region around
defined by , where is an arbitrary positive definite

1This assumption is made to simplify the derivations.

weighting matrix. Then, the maximal variation of the bias norm
over the region is

(10)

where , and denotes the spectral norm
of the matrix [26], i.e., the largest singular value of .
The worst-case variation occurs when is chosen
to be a unit-norm vector in the direction of the eigenvector
corresponding to the largest eigenvalue of .
It follows from (10) that the spectral norm is
approximately equal to the largest variation in the norm of
the bias over the ellipsoid and is therefore a reasonable
worst-case bias measure.

To develop an average bias measure, instead of choosing to
be in the direction of the worst-case eigenvector, we may choose

, where , are the eigenvectors
of , and are arbitrary coefficients satisfying

so that . For this choice of

(11)

where are the eigenvalues of . Denoting by
the diagonal matrix with diagonal elements , we can ex-

press of (11) as

Tr Tr (12)

where is the matrix of eigenvectors , and
. If follows from (12) that the weighted

Frobenius norm Tr of is a measure of the average
variation in the norm of the bias over the ellipsoid and is
therefore a reasonable average bias measure. More generally,
we can consider the weighted Frobenius norm Tr for
an arbitrary non-negative definite matrix as an average bias
measure.

We conclude that the weighted spectral norm and the
weighted Frobenius norm of measure the worst-case and
average variation, respectively, in the bias norm over an
ellipsoidal region around and therefore represent reasonable
measures of bias. Motivated by these observations, in our
development, we consider the following two measures of bias
gradient: an average bias gradient measure corresponding to a
weighted squared Frobenius norm

Tr (13)

where now, is an arbitrary non-negative definite weighting
matrix, and a worst-case bias gradient measure corresponding
to a weighted squared spectral norm

(14)

for some non-negative definite matrix .
In Section III, we develop the UCRLB with an average bias

constraint, and in Section IV, we develop the UCRLB with
a worst-case bias constraint. Which bound to use in practice
depends strongly on the specific application. For example, in
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the context of image restoration, the bias gradient norm can
be viewed as a measure of the geometric resolution of the
estimator [15], [27]. In applications, we may wish to constraint
the average geometric resolution, in which case, the UCRLB
with average bias constraint is appropriate, or we may wish
to constraint the worst-case geometric resolution, in which
case, the UCRLB with worst-case bias constraint should be
considered.

III. UCRLB WITH AVERAGE BIAS CONSTRAINT

We first consider the problem of minimizing of (6)
subject to

Tr (15)

If Tr , then we can choose , which results
in .

We next consider the case Tr . To find the optimal
, we form the Lagrangian

Tr Tr (16)

where from the Karush–Kuhn–Tucker (KKT) conditions [28],
we must have . Since is strictly convex, it has a unique
minimum, which can be determined by setting the derivative of

to 0.
Differentiating2 with respect to and equating to 0

(17)

so that the minimum of is given by with

(18)

where we used the Matrix Inversion Lemma [26].
If , then , which violates the constraint

(15). Therefore, , which, from the KKT conditions, im-
plies that (15) must be satisfied with equality. Thus, the optimal

is given by (18), where is chosen such
that

Tr

Tr (19)

If is positive definite, then

Tr Tr (20)

so that is chosen such that

Tr (21)

We now show that there is a unique satisfying (19). To
this end, let

Tr (22)

2In our derivations, we use the following derivative: For any Hermitian A,
@Tr(BAB )=@B = 2BA.

so that any satisfying (19) is a root of . We can immedi-
ately verify that is monotonically decreasing in . Since

Tr and for ,
there exists exactly one for which .

We conclude that the total variance of any estimator of
with bias gradient satisfying (15) with Tr is

bounded by

Tr Tr

Tr

(23)

where is given by (19).
If is positive definite, then

Tr Tr (24)

where is given by (21).
We summarize our results in the following theorem.
Theorem 1: Let denote an unknown deterministic param-

eter vector, let denote measurements of , and let
denote the pdf of characterized by . Let denote the Fisher
information matrix and denote the bias gradient matrix de-
fined by (4) and (5), respectively, and let be a non-nega-
tive Hermitian weighting matrix. Then, the total variance

defined by (6) of any estimator of with bias gradient
matrix such that Tr Tr satisfies

Tr

where is chosen such that

Tr

If, in addition, is positive definite, then

Tr

where is chosen such that

Tr

A. Comparison with the Scalar UCRLB

In Section II, we developed a lower bound on the total vari-
ance attainable using an arbitrary estimator of with average
bias gradient bounded by a constant by treating the unknowns to
be estimated jointly. Alternatively, we can obtain a lower bound
on the total variance by using the scalar UCRLB of Hero et al.
[14], [15] to bound the variance in estimating each of the in-
dividual components of . We now show that in general, the
UCRLB of Theorem 1 on the total variance is lower than the
bound on the total variance resulting from the scalar UCRLB.
This implies that if the UCRLB is achievable, as it is, for ex-
ample, in the case of a linear Gaussian model (see Section V),
then we can obtain a lower variance when estimating the param-
eters jointly subject to a joint constraint than by estimating each
of the components individually subject to individual constraints.

To develop a lower bound on the total variance of any
estimator of with bias gradient Frobenius norm that is
bounded by a constant using the scalar UCRLB, denote by
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the bias in estimating the th component of
and by the corresponding bias gradient.

The scalar UCRLB minimizes

(25)

for each , subject to the constraint that

(26)

for some non-negative definite matrix , where .
The total variance in estimating using any estimator with
bias gradient vectors satisfying (26) is then bounded by

(27)

which can equivalently be expressed as

Tr

(28)

where is the matrix with rows , subject to

(29)

In contrast, the vector UCRLB is obtained by minimizing (28)
subject to

(30)

Note that any matrix satisfying (29) also satisfies (30);
however, the reverse implication is not true. Therefore, we have
immediately that the vector UCRLB is no larger than the bound
on the total variance resulting from the scalar UCRLB. In the
case in which the vector UCRLB is achievable, this implies that
a lower total variance may be achieved by treating the parame-
ters to be estimated jointly, as we demonstrate in the context of
a concrete example in Section V.

IV. UCRLB WITH WORST-CASE BIAS CONSTRAINT

We now consider the problem of minimizing of (6)
subject to

(31)

for some non-negative definite matrix . In Section IV-A, we
consider the case in which is a positive definite matrix that
has the same eigenvector matrix as . As we will show, in this
case, there is a closed-form solution for the optimal bias gradient
matrix . In Section IV-B, we consider an arbitrary weighting

. In this case, the optimal can be found as a solution to a
semidefinite programming problem (SDP) [29]–[31], which is a
convex optimization problem that can be solved very efficiently,
e.g., using interior point methods [31], [32].

A. UCRLB with and Jointly Diagonalizable

We first consider the problem of minimizing of (6) sub-
ject to (31), where is positive definite and is jointly diagonal-
izable with . Specifically, let have an eigendecomposition

, where is a unitary matrix, and is
a diagonal matrix with diagonal elements , and let ,

denote the columns of . Then, we assume that
has the form for some .

We first note that we can express (31) as

(32)

If , where is the largest eigenvalue
of , then we can choose , which results in .

We next consider the case in which . In (32),
we have infinitely may constraints on the matrix so that the
problem is hard to solve. Instead, we first consider the simpler
problem of minimizing subject to a finite subset of the
constraints (32), i.e., we consider (32) for a finite set of choices

. With and denoting the minimum attainable total vari-
ance subject to (32) and a subset of (32), respectively, we have
immediately that . Thus, our approach is to first find
the optimal that achieves the minimum total variance and
then show that this optimal also satisfies (32) so that .

Thus, we now consider minimizing subject to

(33)

Since , the constraints (33) become

(34)

To find the optimal , we form the Lagrangian

Tr (35)

where, from the KKT conditions, . Differentiating with
respect to and equating to 0

(36)

so that

(37)

Let denote the set of indices for which . Since
, the set is not empty. If for some , then

(38)

which violates the th constraint of (34). Therefore, for all ,
, and (34) is satisfied with equality, which implies that

(39)
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For , the choice does not violate the constraints
(34) so that we may choose or , which implies
that . We can immediately verify that

is minimized for so that

(40)

Substituting (39) and (40) into (37)

(41)

where is the orthogonal projection onto the
space spanned by the eigenvectors of corresponding to eigen-
values .

We conclude that the optimal that minimizes the total vari-
ance subject to (33) is , where

(42)

For this choice of bias gradient

(43)

Since for , , we have that ,
and

(44)

so that (32) is satisfied. Therefore, also minimizes the
total variance subject to (32).

Thus, the total variance of any estimator of with bias
gradient satisfying (32) with is bounded by

Tr Tr

Tr (45)

where we used the fact that , , and all commute.
In the special case in which , all the eigenvalues of ,

which are equal to 1, are larger than , which is constrained to
be smaller than . Thus, , and

Tr Tr (46)

B. UCRLB with Arbitrary

We now consider the problem of minimizing of (6)
subject to (31) for an arbitrary non-negative definite matrix .
This problem can equivalently be expressed as

(47)

subject to

Tr (48)

(49)

If , where denotes the largest eigenvalue of
, then we can choose , which results in . We next

consider the case in which .
As we now show, the problem of (47) subject to (48) and

(49) can be formulated as a standard SDP [29]–[31], which is
the problem of minimizing a linear functional subject to linear
matrix inequality (LMI) constraints, i.e., matrix constraints in
which the matrices involved depend linearly on the unknowns
to be optimized. By exploiting the many well-known algorithms
for solving SDPs [29], [30], e.g., interior point methods3 [31],
[32], the optimal can be computed very efficiently in polyno-
mial time. In addition, SDP-based algorithms are guaranteed to
converge to the global optimum.

To formulate our problem as an SDP, let vec
, where vec denotes the vector obtained by

stacking the columns of . With this notation, our problem re-
duces to minimizing (47) subject to the constraints

(50)

The constraints (50) are not in the form of LMIs because of the
terms and in which the elements of do not
appear linearly. To express these inequalities as LMIs, we rely
on the following lemma [26, p. 472]:

Lemma 1 (Schur’s Complement): Let

be a Hermitian matrix. Then, with , if and only
if , where is the Schur complement of in and
is given by

Using Lemma 1, we can express the constraints (50) as

(51)

which are LMIs in and .
We conclude that the problem of minimizing of (6)

subject to (31) is equivalent to the SDP problem of (47) subject
to (51).

We summarize our results in the following theorem.
Theorem 2: Let denote an unknown deterministic

parameter vector, let denote measurements of , and let
denote the pdf of characterized by . Let denote

the Fisher information matrix and denote the bias gradient
matrix defined by (4) and (5), respectively, let denote an
arbitrary nonnegative definite matrix, and let denote the
largest eigenvalue of . Then, the total variance

3Interior point methods are iterative algorithms that terminate once a prespec-
ified accuracy has been reached. A worst-case analysis of interior point methods
shows that the effort required to solve an SDP to a given accuracy grows no faster
than a polynomial of the problem size. In practice, the algorithms behave much
better than predicted by the worst-case analysis, and in fact, in many cases the
number of iterations is almost constant in the size of the problem.
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of any estimator of with bias gradient matrix such that
satisfies ,

where is the solution to the semidefinite programming
problem

subject to

where vec .
If for some , where are the

eigenvectors of , then

Tr

where is the orthogonal projection onto the
space spanned by the eigenvectors of corresponding to eigen-
values , where is the set indices for which .
If, in addition, , then

Tr

Note from Theorems 1 and 2 that as we expect, the two
UCRLB bounds coincide for the scalar case.

Theorems 1 and 2 characterize the smallest possible total vari-
ance of any estimator with bias gradient matrix whose norm is
bounded by a constant. However, the theorems do not guarantee
that there exists estimators achieving these lower bounds. In
Section V, we show that for the case of a linear Gaussian model,
both lower bounds are achievable using a linear estimator. In
Section VI, we consider more general, not necessarily Gaussian
models, and develop a class of estimators that asymptotically
achieve the UCRLB.

V. OPTIMAL ESTIMATORS FOR THE LINEAR GAUSSIAN MODEL

We now consider the class of estimation problems repre-
sented by the linear model

(52)

where is a deterministic vector of unknown parame-
ters, is a known matrix with rank , and is
a zero-mean Gaussian random vector with positive definite co-
variance .

For the model (52), the Fisher information matrix is given by
[25]

(53)

Let denote the optimal gradient bias that minimizes
subject to (15) or (32) so that is given by (18) or (42) with
given by (53). Then, the total variance of any linear or nonlinear
estimator of is bounded by

Tr Tr (54)

We now derive a linear estimator of that achieves
the bound (54). Let

(55)

The bias of this estimator is so that the bias
gradient matrix is

(56)

and therefore satisfies (15) or (32). The total variance of
is

Tr Tr

Tr (57)

so that this estimator achieves the lower bound (54).
Note that from (55)–(57), it follows that the estimator of the

form

(58)

achieves the biased CRLB for estimators with bias gradient .
Thus, in the case of a linear Gaussian model, the biased CRLB
is always achieved by a linear estimator.

We conclude that among all estimators with bias gradient
satisfying Tr Tr for some non-negative
Hermitian matrix , the estimator that results in the smallest
possible total variance is , where is given by (55)
with . Thus

Tr
Tr

(59)
where the regularization parameter is chosen
such that Tr

.
In the case in which is invertible, we have

Tr
Tr

(60)
where is chosen such that

Tr

The estimator of (60) is equal to the ridge estimator pro-
posed by Hoerl and Kennard [16] (also known as Tikhonov
regularization [2]) and is widely used for solving inverse prob-
lems [33] and ill-conditioned least-squares problems [34]. We
therefore conclude that the ridge estimator has a strong optimal
property: Among all linear and nonlinear estimators of in
the linear Gaussian model (52) with bounded average weighted
bias gradient, the ridge estimator minimizes the total variance.
A similar result was obtained in [15] for the scalar case.

It follows from our results that Tikhonov regularization also
minimizes the total variance among all linear estimators with
average bias gradient bounded by a constant for any noise
distribution.

Similarly, among all estimators with bias gradient satis-
fying for all such that

, where is a positive definite matrix that commutes
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with and with eigenvalues , and ,
the estimator that results in the smallest possible total variance
is , where is given by (55) with . Thus,
we have (61), shown at the bottom of the page, where is an
orthogonal projection onto the space spanned by the eigenvec-
tors of corresponding to eigenvalues .

The estimator of (61) with is equal to the shrunken
estimator proposed by Mayer and Willke [17], which is simply a
scaled version of the least-squares estimator. We therefore con-
clude that the shrunken estimator also has a strong optimality
property: Among all linear and nonlinear estimators of in the
linear Gaussian model (52) with bounded worst case bias gra-
dient, the shrunken estimator minimizes the total variance. For
more general choices of , the estimator of (61) can be viewed
as a generalization of the shrunken estimator.

We note that the shrunken estimator of (61) also minimizes
the worst-case bias gradient among all linear estimators in the
case in which the noise vector is not necessarily Gaussian.

A. Application to System Identification

We now compare the performance of the estimator achieving
the UCRLB with an average bias constraint, and that of the es-
timator achieving the scalar UCRLB, in the context of a system
identification problem.

Suppose we are given noisy measurements ,
of a filtered signal, which is obtained by filtering a causal

input sequence with a length- filter with unknown impulse
response . Thus

(62)

where denotes discrete-time convolution, and is an iid
Gaussian noise process with variance .

Denoting by , , and the length- vectors with compo-
nents , , and , respectively, and defining

. . .
. . .

(63)

we can express (62) in the form of a linear model

(64)

Our problem then is to estimate from the measurements .
Since (64) is a linear Gaussian model, the UCRLB is achiev-

able using a linear estimator. In Fig. 1, we plot the minimal
attainable total variance for any estimator with bias gradient

matrix satisfying Tr , as a function of , for
the case in which

(65)

We also plot the total variance resulting from the Tikhonov es-
timator (60), which, in our case, reduces to

(66)

where is chosen such that Tr . The
variance is computed by averaging the performance over 1000
noise realizations, where the true parameters are chosen as

(67)

and . As we expect, the Tikhonov estimator achieves
the UCRLB for all values of .

For comparison, we also plot the total variance using the
Tikhonov estimator that achieves the scalar UCRLB, which is
given by [15]

(68)

where is chosen such that . The
total variance in estimating using the scalar UCRLB where
the bias gradient norm of each of the components of is
bounded by is depicted by the dashed line in Fig. 1. We see
from Fig. 1 that by treating the parameters to be estimated
jointly, we can improve the estimation performance over indi-
vidual estimation of each of the components.

VI. ASYMPTOTIC OPTIMALITY OF THE PML ESTIMATOR

In general, there is no guarantee that an estimator exists
that achieves the UCRLB. In Section V, we showed that in the
case of a linear Gaussian model, there exists a linear estimator
achieving the UCRLB. When the average bias is considered,
the estimator takes on the form of Tikhonov regularization. It
is well known that Tikhonov regularization also maximizes the
penalized log-likelihood

(69)

where is a Gaussian distribution with mean and
covariance . When the worst-case bias is considered with
weighting , the shrunken estimator achieves the UCRLB.
We can immediately verify that the shrunken estimator also
maximizes (69), with . A similar result holds for
the case in which has the same eigenvector matrix as . Thus,
we conclude that in the case of a linear Gaussian model, the

(61)
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Fig. 1. Variance of the vector Tikhonov estimator (66) and the scalar
Tikhonov estimator (68) as a function of the squared-norm bias gradient in
comparison with the vector and scalar UCRLB. The line denotes the vector
UCRLB, os denote the performance of the vector Tikhonov estimator, the
dashed line denotes the scalar UCRLB, and the xs denote the scalar Tikhonov
estimator.

PML estimator with an appropriate choice of penalizing func-
tion achieves the UCRLB.

In this section, we demonstrate that this optimality property
of the PML estimator is more general. Specifically, we show
that the PML estimator asymptotically achieves the UCRLB for
many other statistical models. To this end, we first develop the
asymptotic bias and variance of the PML estimator for a general
class of penalizing functions. We then show that in many cases,
we can choose the penalizing function such that the PML esti-
mator asymptotically achieves the UCRLB.

A. PML Estimator

The PML estimator of , denoted , is chosen to max-
imize the penalized log-likelihood function

(70)

where is a regularization parameter, and is a pe-
nalizing function. The PML approach is equivalent to the max-
imum a posteriori method in Baysian estimation if we interpret

as the prior pdf of .
In the case in which we seek to estimate from iid

(vector) measurements , is chosen to maxi-
mize

(71)

where is a regularization parameter that may depend on .
Although many different choices of penalizing functions

have been proposed in the literature for various problems
[20]–[24], no general assertions of optimality are known for
these different choices.

In Section VI-B, we show that in many cases, the penalizing
function can be chosen such that the resulting PML
estimator achieves the UCRLB. To this end, we first derive

the asymptotic properties of the PML estimator. Specifically,
we show that under certain regularity conditions, the PML
estimator of from iid measurements is asymptotically
Gaussian, and we derive explicit expressions for the asymptotic
mean and variance.

B. Asymptotic Properties of the PML Estimator

Suppose we wish to estimate a vector from iid mea-
surements . We consider the PML estimator
that is chosen to maximize (71), where is a parameter satis-
fying for some constant as , and
is an arbitrary function of such that is
bounded for all . To develop the asymptotic properties of
the PML estimator, we make the following assumptions on the
pdf :

Assumption 1: The derivatives ,
and

exist for all and , where is an open interval
including , with

(72)

Assumption 2: For each

(73)

where for all .
Assumption 3:

(74)

Note that these assumptions are similar to the assumptions
made on in proving the asymptotic optimality of the ML
estimator [10].

Under these assumptions, we have the following theorem.
Theorem 3: Let denote an unknown deterministic param-

eter vector, let denote iid measurements of ,
and let denote the PML estimator of from the mea-
surements that maximizes the penalized log-likeli-
hood (71). Then, under Assumptions 1–3

where

cov

and

Proof: See Appendix A.



1924 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 7, JULY 2004

C. PML Estimator and the UCRLB

From Theorem 3, the asymptotic total variance of is

Tr (75)

and the asymptotic bias gradient is

(76)

To develop an expression for , we note that from (72)

(77)

Differentiating (77) with respect to

(78)

or, equivalently

(79)

so that

(80)

With , it follows from Theorem 1 that the
total variance of any estimate of with bias gradient such
that Tr Tr satisfies

Tr (81)

where is chosen such that

Tr Tr (82)

and

(83)

is the Fisher information from a single observation. Therefore,
if we can choose such that

Tr

Tr (84)

where is given by (82), with given by (80), then
the corresponding PML estimator achieves the UCRLB with
average bias constraint, so that asymptotically, there is no
linear or non-linear estimator with bias gradient satisfying
Tr Tr and with smaller total variance
than that of the PML estimator.

From Theorem 2, the variance of any estimate of with bias
gradient such that satisfies

Tr

Tr (85)

Thus, if we can choose such that

Tr

Tr (86)

where is given by (80), then the corresponding PML es-
timator achieves the UCRLB with worst-case bias constraint so
that asymptotically, there is no linear or nonlinear estimator with
bias gradient satisfying and with smaller
total variance than that of the PML estimator.

The conditions (84) and (86) are not very insightful. To de-
velop some intuition into the optimal choice of , we now
consider the case in which we seek to estimate a scalar from

iid measurements. In this case, the average and worst-case
UCRLB coincide so that the variance of any estimate of
with bias gradient such that
satisfies

(87)

Here

(88)

(89)

and

(90)

with

var

(91)

The asymptotic variance of the PML estimator is given from
Theorem 3 by

(92)

It thus follows that if we can choose such that

(93)
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where is given by (90), then the corresponding PML
estimator achieves the UCRLB. In Appendix B, we develop a
general condition under which (93) is satisfied, which is sum-
marized in the following theorem.

Theorem 4: Let denote an unknown deterministic pa-
rameter, let denote iid vector measurements
of , and let denote the PML estimator of from
the measurements that maximizes the penalized
log-likelihood with penalizing function . Then,
asymptotically achieves the UCRLB if and only if is
chosen such that

where is the Fisher information from a single observation
given by (88); is defined in (89); , , and are
defined in (91); and

In addition, if , then asymptotically achieves
the UCRLB if and only if is chosen such that

(94)

for some deterministic constant .
In many cases, (94) is satisfied for all so that any

such that is asymptotically optimal. For example,
suppose we are given measurements ,

, where is a known length- vector, are iid random
vectors with , and is unknown. In this example

(95)

Since , we have that

(96)

so that (94) is satisfied for all . The same conclusion holds
when estimating the mean , assuming is known. Another,
non-Gaussian example is considered in the next section.

VII. EXAMPLE

We now consider an example illustrating the PML estimator
and its asymptotic optimality.

Consider the case in which we are given scalar iid mea-
surements of an exponential random variable with
unknown mean . Thus

(97)

The PML estimate with penalizing function is given
by the value of that maximizes

(98)

for some parameter such that , as
. We seek a penalizing function that is optimal in the

sense that the resulting estimator asymptotically achieves the
UCRLB.

From (97)

(99)

so that

(100)

Therefore

(101)

and

(102)

Thus, from Theorem 4, it follows that for any choice of
such that , the resulting PML estimator asymptoti-
cally achieves the UCRLB. Note, however, that for finite values
of , the performance of the PML estimator will depend on the
specific choice of .

To compute the derivative , we note that from (100)

(103)

Differentiating (99) with respect to

(104)

so that

(105)

Combining (80), (103), and (105)

(106)

If , then from the definition of

(107)

so that

(108)

and the PML estimator is optimal.
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As an example, suppose that . The resulting PML
estimator is given by

(109)

Since and , it follows that
the estimator of (109) asymptotically achieves the UCRLB.

As another example, suppose that . In this case,
. Nonetheless, as we now show, ,

so that the resulting PML estimator is optimal.
From (107)

(110)

so that from (106)

(111)

We therefore conclude that the resulting PML estimator, which
is given by

(112)

asymptotically achieves the UCRLB.
We now compare the performance of the PML estimators of

(109) and (112) with the UCRLB, for different values of . To
this end, we need to determine the variance of the estima-
tors and the squared bias gradient . Rather than attempting
to determine these quantities analytically, we propose to esti-
mate them from the measurements. Thus, for each value of ,
and each of the estimators, we generate an estimate of the
estimator’s variance and an estimate of the squared bias
gradient .

To estimate the variance of each of the estimators, for each ,
we generate PML estimators, where each estimator
is based on iid measurements. Let denote the th
estimator. The variance is then estimated as

(113)

where is the sample mean and is given by

(114)

To estimate the squared bias gradient of the estimator, we
used the procedure detailed in [15]. Specifically, in [15], the au-

Fig. 2. Performance of the PML estimators (109) (denoted “1”) and (112)
(denoted “2”) with N = 10 in comparison with the UCRLB. The line denotes
the UCRLB, the circles denote the performance of the PML estimator 1, and the
stars denote the performance of the PML estimator 2.

thors propose to estimate the squared bias gradient of an esti-
mator of as , where

(115)
Here

(116)

and denotes the th observation used in computing the th
estimator.

In our example

(117)

so that

(118)
In Figs. 2–4, we plot the estimated variance of the PML es-
timators as a function of the estimated squared bias gradient
for , 20 and 30, respectively. For comparison, we also
plot the UCRLB. From the figures, it is apparent that even for
small , the UCRLB serves as a good approximation of the es-
timator’s variance, particularly for large values of bias gradient
norm. However, for small values of the squared bias gradient,
the actual variance is larger than the bound. We note that the
variance of the bias gradient estimate (118) is larger for small
bias gradients, which may partially explain the large deviation
in this regime. As we expect from our analysis, for increasing
values of , the variance of both estimators approaches that of
the UCRLB for all values of squared bias gradient, as can be
seen from Figs. 3 and 4. Note, however, that for small values of
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Fig. 3. Performance of the PML estimators (109) (denoted “1”) and (112)
(denoted “2”) with N = 20 in comparison with the UCRLB. The line denotes
the UCRLB, the circles denote the performance of the PML estimator 1, and the
stars denote the performance of the PML estimator 2.

Fig. 4. Performance of the PML estimators (109) (denoted “1”) and (112)
(denoted “2”) withN = 30, in comparison with the UCRLB. The line denotes
the UCRLB, the circles denote the performance of the PML estimator 1, and the
stars denote the performance of the PML estimator 2.

, the performance of the two estimators is different. In partic-
ular, the estimator given by (109) results in a smaller variance
than the estimator given by (112) for finite values of .

VIII. CONCLUSION

In this paper, we characterized the fundamental tradeoff be-
tween variance and bias in estimating an unknown determin-
istic parameter vector by deriving lower bounds on the minimal
achievable total variance subject to constraints on the norm of
the bias gradient matrix. In the case in which the unknown de-
terministic parameters are related to the measurements through
a linear Gaussian model, we demonstrated that the lower bounds
are achievable using linear estimators. In particular, we showed
that Tikhonov regularization minimizes the total variance from

all estimators with a bounded average bias gradient, and the
shrunken estimator minimizes the total variance from all esti-
mators with a bounded worst-case bias gradient.

We then derived the asymptotic mean and covariance of the
PML estimator when estimating an unknown vector from iid
measurements and showed that for an appropriate choice of pe-
nalizing function, the PML estimator asymptotically achieves
the UCRLB.

Although, in many cases, there are several PML estimators
that asymptotically achieve the UCRLB, as we demonstrated in
the context of a concrete example in Section VII, the perfor-
mance of these estimators differ for finite values of the number

of measurements. An interesting direction for future research,
therefore, is to analyze the performance of the PML estimator
for finite values of . Another interesting question is whether
or not there are other cases besides the linear Gaussian model,
in which the PML estimator achieves the UCRLB for all values
of . Finally, throughout the paper, we explicitly assume that
the Fisher information matrix is nonsingular. It would also be
of interest to extend the results to the case of a singular Fisher
information matrix.

APPENDIX A
PROOF OF THEOREM 3

The proof of Theorem 3 relies on the following lemma.
Lemma 2: Let denote an unknown deterministic vector,

let denote iid measurements of , let
denote the PML estimator of from the measurements

that maximizes the penalized likelihood (71), and
let be defined by (72). Then, as with
probability one.

Proof: For , we have that

(119)

Therefore

(120)

We now expand about using a Taylor
expansion. Note that Assumption 1 ensures that such a
Taylor expansion exists. By the mean value theorem, for each

(121)
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where is a point on the line segment connecting and .
By the definition of , we have that

(122)

so that from (121)

(123)

which can be expressed in vector form as

(124)

where

(125)

Here, denotes the th element of the matrix .
Now, from the strong law of large numbers, we have that

(126)

Similarly, from the strong law of large numbers and Assumption 2

(127)

with probability 1. From Lemma 2, as ,
which implies that

(128)

with probability 1. Therefore, the matrix converges to
with probability 1.

We now consider the asymptotic distribution of , which we
express as

(129)

where

(130)

and

(131)

Since the random vectors are iid, it follows from the mul-
tivariate central limit theorem [12] that is asymptotically
Gaussian. To complete the description of , we need to de-
termine its mean and covariance. From (72), it follows that

(132)

so that

(133)

In addition

(134)

Thus, we conclude that

(135)

To develop the asymptotic distribution of , we rely on the
following Lemma [35, p. 19].

Lemma 3: Let denote a sequence of random vectors that
converges in distribution to , and let denote a sequence of
random vectors that converges in probability to a finite vector .
Then, converges in distribution to .

We can express as , where
. It then follows from Lemma 3 and

(135) that

(136)

To complete the proof of Theorem 3, we rely on the fact that
if , where converges in probability to an invertible
matrix, then converges in distribution to [12, p. 465].
Since converges to

(137)

APPENDIX B
PROOF OF THEOREM 4

Using the equality

(138)
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we have that

(139)
Now, suppose that . In this case, using (139),

(93) becomes

(140)

To see when there exists an such that (140) is satisfied,
define

(141)

We have immediately that , , and
. In addition, since ,

. Therefore, (140) is equivalent to

(142)

From the Cauchy–Schwarz inequality, we have that for any
random variables and

(143)

with equality if and only if for some deterministic
constant . It follows that (142) can be satisfied if and only if

(144)

for some deterministic constant .
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