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ABSTRACT 2. OPTIMAL COVARIANCE SHAPING
This paper develops and explores applications of a linear shap-

ing transformation that minimizes the mean squared error (MSE) Let a € C™ denote a zero-me&mandom vector with positive
between the original and shaped date., that results in an out- definite covariance matrilC,. We wish to shape the covariance
put vector with the desired covariance that is as close as possible?f a using a shaping transformatidito obtain the random vector
to the input, in an MSE sense. Three applications of minimum P = Ta, where the covariance matrix bfis given byC, = ¢’R
MSE shaping are considered, specifically matched filter detection, for somec > 0 and positive definite covariance matiik. Thus
multiuser detection and linear least-squares parameter estimationWe seek a transformatidh such that

C, = TC,T* = °R, 1)

1. INTRODUCTION L .
for somec > 0. We refer to anyT satisfying (1) as a covariance

Covariance shaping arises in a variety of contexts in which it is Shaping transformation.
useful to shape the covariance of a data vector either prior to sub-  GIVen a covariance matric,,, there are many ways to choose
sequent processing, or to control the spectral shape after proces transformatioril’ satisfying (1). Although there are an unlim-
ing. |ted.number of covariance shaping transformations, no general as-
It is well known that the linear transformation that shapes the Sertion of optimality is known for the outpti = Ta of these
covariance of a data vector is not unique. While in some applica- 9|ﬁere,f1t transformations. In particular, the vectosmay not be
tions certain conditions might be imposed on the transformation ¢l0S€” t0 the input vectoa. If b undergoes some noninvertible
such as causality or symmetry, there have been no general asseRT0CesSIng, or is used as an estimator of some unknown param-
tions of optimality for various choices of a shaping transformation. €ters represented by the datathen we may wish to choose the
Shaping the covariance of a data vector introduces distortion SN@ping transformation in a way thais close toa in some sense.
to the values of the data relative to the unshaped data. In certaintOF xample, ifb is the input to a detector, then we may wish to
applications, it is desirable to shape the data while minimizing this Shape the covariance afprior to detection, but at the same time
distortion,i.e., to choose the shaping transformation in an optimal Minimize the distortion ta by choosindI" so thatb is close tca.
sense. In [1, 2], an optimal whitening transformation was devel- APPlications of this type are explored in Section 3. o
oped and used to improve the detection performance in a multi-_ Ve therefore propose a shaping transformation that is optimal
signature system. The whitening transformation, referred to as thel the sense that it results in a random vedidhat is as close as
minimum mean squared error (MMSE) whitening transformation, POSsible tea in MSE. Specifically, among all possible covariance
is designed to minimize the mean squared error (MSE) betweenShaping transformations we seek the one that minimizes the MSE
the original and whitened data. o emse = E((a—b)*(a—b))
In this paper we extend the concept of MMSE whitening to Tr (E((a — b)(a — b)*))
include other forms of covariance shaping. Specifically, we de-
velop and explore applications of a linear shaping transformation = Tr(Ca) + Tr(TC.T") — Tr(Cu(T" + T)), (2)
that minimizes a possibly weighted MSE between the original and
shaped datd,e., that results in an output with the desired covari-
ance that is as close as possible to the input in MSE. We refer to

such a transformation as an MMSE shaping transformation. minimizes (2) is to show that this problem can be interpreted as

_ In Sect_ion gwe derive the linear MM_SE shaping trar_wsforr_na— an MMSE whitening problem, and then rely on results obtained in
tion. For simplicity, we restrict our attention to the case in which o+ context 1, 3J.

the original and output covariance matrices as well as the weight- Leta = R"/2a, T =R~ >TR'/2, and

ing matrix are all positive definite; the more general case of non-

invertible matrices is treated in [3]. Section 3 discusses several ap- Emse = F ((5 — Ta)*(a — Ta)) . (3)
plications of linear MMSE shaping. The first is a summary of the

use of MMSE whitening in the context of MF detection. This ap- We may then express;sg as

plication is developed and explored in considerably more detail in _ o= 2

[1, 3]. The second application described is to multiuser detection ense = Euse + Tr (T- R)(Ca — ), “)
in multiple access channels. The third application is to estimation  1jf the meanE(a) is not zero, then we can always defise = a —
of a set of unknown deterministic parameters in a linear model.  E(a) so that the results hold far'.

subject to (1). We may wish to constraint the constaint (1), or
may choose to minimize the MSE.
Our approach to determining the shaping transformation that
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where we used the fact thal satisfies (1). Furthermore, with
C: = R'2C,R!? denoting the covariance &f we have that

©)

Therefore, for fixed:, finding T to minimizeeusg subject to (1)
is equivalent to finding the transformatidh = R~/>TR /2

to minimizeéysk Of (3) subject to (5). Since from (5) the covari-
ance ofTa is proportional tal, Tisa whitening transformation.

TC;T* =R V?*TC, TR V% = A1

From all possible whitening transformations we seek the one that

minimizes the MSE (3). This problem is therefore equivalent to
the MMSE whitening problem considered in [1, 3], the solution of
which is incorporated in the following theorem:

Theorem 1 (MMSE whitening [3]) Letz € C™ be a zero-mean
random vector with positive definite covarian€s. Among all
possible whitening transformations, |@t denote the whitening
transformation that minimizes the MSE,

emse = E ((z — h)*(z —h)),

between the input and the outpuh = Tz with covarianceC,, =
1. Then R
T =cCoY/2.

From Theorem 1 the optimal value @&, denotedT, is

T =cC;'? = ¢(RY?*C,R"?)71/2, (6)

The optimal shaping transformation, denofBgis then equal to
T — CR1/2(R1/2CQR1/2)71/2R1/2 _ c(RCa)fl/QR, @)

where we used the fact that for any invertible matridesndB,
AB Y/2A7 = (ABAY) V3],
We may further wish to choosesuch that (2) is minimized.
Substitutingb = Ta into (2), ¢ is chosen to minimize
ense = Tr(Cy) + Tr(R) — 2¢Tr ((Rca)l/Q) T
Differentiating with respect te@ and equating td, the optimal
value ofc, denoted:, is given by

Tr ((RCa)1/2>
Tr(R)

¢= ©)

We may also consider a weighted MMSE covariance shaping
problem in which we seek a transformati@hsuch thato = Ta
has covarianc€;, = ¢*R for somec > 0 and positive definite
covariance matriR, and such that

ense = E((a—b)"W(a—Db)), (10)

is minimized, wherd¥ is some positive definite Hermitian weight-
ing matrix.
To determine the weighted MMSE covariance shaping trans-

formation we note that
E((a—b)*W(a— b)) :E((é—B)*(é—B)), (11)

wherea = W'/2a andb = W'/?b. Thus we may first seek the
transformationT that minimizes the MSE between the random

vectora with covarianceC; = W'/2C,W'/2, and the random
vectorb = Ta with covarianceC; = TC,T = ¢’R, where
R = W!2RW'/2. From (7) and (9) we have,

=)

BRCa)"’R

BWY2(RWC, W) /?RW'/2, (12)

wheres = cif cis fixed and3 = ¢ if ¢ is chosen to minimize the

MSE with

r ((RWCGW)”Q)
Tr(RW)

The weighted MMSE covariance shaping transformation is then

(13)

[eB

T =W '’TW'? = gRWC, W) '?’RW.  (14)

In the applications in Section 3 we use a weighted MMSE co-
variance shaping transformation wiV = C_ !, in which case
T = B(RC,!)/2. With this choice of weighting, if the ele-
ments ofa are uncorrelated, then the weight given to each of the
errorsa; —b; is inversely proportional to the varianceaf thereby
emphasizing the contributions of the elementa difiat tend to be
more reliable. Note that this choice of weighting matrix is also
reminiscent of the Gauss-Markov weighting in least-squares esti-
mation [4].

We summarize our results in the following theorem:

Theorem 2 (MMSE shaping) Leta € C™ be a zero-mean ran-
dom vector with positive definite covarian€g . Among all possi-

ble shaping transformations, @ denote the shaping transforma-
tion that minimizes the weighted MSE given by (10) between the
inputa and the outpub = Ta with covarianceC, = ¢*R. for
some positive definite covarianEe Then

T = B(RWC. W) /?RW,

where
1. if cis specified thew = ¢;
2. if cis chosen to minimize (10) thgh= ¢ given by (13).

3. APPLICATIONS

In this section we consider applications of MMSE shaping to matched
filter (MF) detection, multiuser detection, and least-squares (LS)
parameter estimation. In all the applications, we assume that a
weighted MMSE transformation is used wW = C_!.

3.1. Matched Filter Detection

A generic and well studied problem is that of detecting in the pres-
ence of additive noise, which one from a set of known signals has
been received. When the additive noise is white and Gaussian, the
receiver which maximizes the probability of correct detection

is a MF demodulator comprised of a bank of correlators with cor-
relating signals equal to the transmitted set, followed by a detector
which chooses as the detected signal the one for which the output
of the correlator is maximum [5]. If the noise is not Gaussian, then
the MF detector does not necessarily maximize The problem

then is to design a simple linear receiver that does not depend on
the noise distribution, and that leads to improved performance over
MF detection for non-Gaussian noise.
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Probability of corre

SN:[dB]
Fig. 1. Mean Pp using the OMF and MF detectors in Beta-

distributed noise, as a function of SNR. The vertical lines indicate
the standard deviation of the correspondiyg.

To try and improve the performance over the MF receiver, we
propose optimally shaping the output vector of the MF prior to
detection using an MMSE shaping transformation, and basing the

detection on the shaped vector. In the special case in which the

shaping transformation is chosen as a whitening transformation
the resulting receiver is referred to as the orthogonal MF (OMF)
receiver [1]. Simulations presented in [1, 3] show that when the
noise is non-Gaussian this approach can in fact lead to improved
performance over conventional MF detection in many cases.

In Fig. 1 we plot the mean and standard deviatioipffor the
OMF and MF detectors as a function of SNR for transmitted con-
stellations of1 3 signals, in Beta-distributed noise with parameters
a = b = 0.1. The signals have dimensidi and the samples of

Based on the observed signalwe design a receiver to detect the
information transmitted by each user. We restrict our attention to
linear receivers that do not require knowledgedgfor 2.

A linear multiuser receiver of this form is the decorrelator [6],
which cross-correlateg with each of the columns; of V. =
S(S*S)~!, to yield the outputs;; = v;y. Theith users’ bit is
then detected as; = sgn(a;). The decorrelator optimally rejects
the MAI but does not compensate for the white noise. Indeed, the
covarianceC, of the noise component in the vector outpubf
the decorrelator is given by

C, =0’V*V =5%(S8"S) ", (15)

so that the decorrelator tends to enhance the noise on the channel.
To improve the performance of the decorrelator receiver, we pro-
pose a modified receiver, which we refer to as the covariance shap-
ing multiuser (CSMU) receiver, that consists of optimally shap-
ing the noise component in the output of the decorrelator prior to
detection, using a weighted MMSE shaping transformation with
scalingo?.

From (15) and Theorem 2 it follows that the CSMU receiver
cross-correlates the received vegowith each of the columng;
of Q = SR(S*SR)~'/2. Theith users’ bit is then detected as
Z; = sgn(q;jy). The choice of shapin®t can be tailored to the
specific set of signatures.

To demonstrate the performance advantage in using the CSMU
receiver, we consider the case in which the signature vectors are
chosen as PN sequences with nornand equal inner products
—1/N, and the shapin® is chosen as a circulant matrix with
[R]” =1 and[R}ij = pfori # ]

In Fig. 2 we plot the theoretical probability of bit error of the
CSMU receiver in the case 6fusers withp = 0.2, where the first
user, the desired user, has 4 interferers suchAha#l; = 0.5
fori = 2,3,4,5. The corresponding curves for the decorrela-
tor, single-user MF and linear MMSE receivers [6] are plotted for

the signals are mutually independent zero-mean Gaussian randomgomparison. We see that the CSMU receiver performs better than

variables with variance/+/13, scaled to have normh The results

in the figure were obtained by generatif@p realizations of sig-

nals. For each signal realization, we determifigdby recording

the number of successful detections o¥@0 noise realizations.
Preliminary simulations demonstrate that in a variety of cases

choosing the output covariance to be non-diagonal can further im-

prove the performance of the modified receiver over the MF re-

ceiver. An interesting direction for future research is to design

an optimality criterion for choosing the desired output covariance

based on knowledge of the transmitted signals.

3.2. Multiuser Detection

In a manner similar to the MF detection problem, MMSE shaping
can also be used to improve the performance in a multiuser com-
munication system. In this context, the background noise is inher-
ently non-Gaussian since it is comprised of additive white noise
and multiple access interference (MAI) from other users.

The received signat in a CDMA system is modelled as =
SAx + w, whereS is the matrix of columns; with s, being
the signature vector of thih user,A is the diagonal matrix with
diagonal elementsl; > 0 with A; being the received amplitude
of theith user’s signalx is the data vector with components €
{1, -1} with z; being theith user’s transmitted symbol, ar
is a noise vector whose elements are indepen@&ff0, o%). We
assume for simplicity that the vectassare linearly independent.

the decorrelator and the MF and performs similarly to the linear
MMSE receiver which is the optimal linear receiver that assumes
knowledge of the channel parameters.

T T
—6— CSMU receiver
—¢— Decorrelator

Probabilty of Error

; ;
10 12
SNR [dB]

L
8

20

Fig. 2. Probability of bit error withb usersp = 0.2, andA; /A, =
0.5 for: = 2,3, 4,5, as a function of SNR.

In Fig. 3 we plot the probability of bit error of the CSMU re-
ceiver in the case of0 users withp = 0.35, and with accurate
power control so thatl; = 1 for all <. Here again, the CSMU
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receiver performs better than the decorrelator and the MF and per-CSLS estimator achieves the Cramer-Rao lower bound for biased

forms similarly to the linear MMSE receiver. estimators. Furthermore, analysis of the MSE of both the CSLS
estimator and the LS estimator demonstrates that the covariance of
O T the estimation error can be chosen such that there is a threshold
= o e | SNR, below which the CSLS estimator yields a lower MSE than

the LS estimator, for all values of the unknown parameters

. Simulations presented in [3] strongly suggest that the CSLS
estimator can significantly decrease the MSE of the estimation er-
e i ror over the LS estimator over a wide range of SNR values. In
] Fig. 4 we illustrate the performance advantage with one simula-
tion from [3]. In this figure we plot the MSE in estimating a set of
AR parameters in an ARMA model contaminated by white noise,
] using the CSLS estimator wifR = I and the LS estimator, from

20 noisy observations of the channel, averaged @@0 noise
realizations, as a function of SNR.

Probability of Error
5

; ; ; ;
10 12 14 16 18 20
SNR [dB]

Fig. 3. Probability of bit error with10 users, = 0.35, and accu-
rate power control, as a function of SNR. W'k

3.3. Least-Squares Estimation

As a third application of MMSE shaping, we consider estimating
the unknown deterministic parameterén the linear model

y = Hx + w, (16)

| i ; ; ; ;
-5 0 5 10 15 20 25 30 35
SNR [dB]

whereH is a knownn x m matrix with full column rank, andv is

a zero mean random vector with positive definite covariatge
Many signal processing estimation problems can be representeflig. 4. Mean-squared error in estimating a set of AR parameters

by the linear model (16), and consequently this problem has beenusing the LS estimator and the CSLS estimator.

studied extensively in the literature. A common approach to esti-

mating the parametessis to restrict the estimatak to be linear

in the data, and then find the linear estimator that is unbiased and

has minimum variance [4]. The resulting estimator, densted

is also the LS estimate of from the datay, i.e., it minimizes the

LS error(y — y)*C,'(y — ¥), and is given by
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