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ABSTRACT
This paper develops and explores applications of a linear shap-

ing transformation that minimizes the mean squared error (MSE)
between the original and shaped data,i.e., that results in an out-
put vector with the desired covariance that is as close as possible
to the input, in an MSE sense. Three applications of minimum
MSE shaping are considered, specifically matched filter detection,
multiuser detection and linear least-squares parameter estimation.

1. INTRODUCTION

Covariance shaping arises in a variety of contexts in which it is
useful to shape the covariance of a data vector either prior to sub-
sequent processing, or to control the spectral shape after process-
ing.

It is well known that the linear transformation that shapes the
covariance of a data vector is not unique. While in some applica-
tions certain conditions might be imposed on the transformation
such as causality or symmetry, there have been no general asser-
tions of optimality for various choices of a shaping transformation.

Shaping the covariance of a data vector introduces distortion
to the values of the data relative to the unshaped data. In certain
applications, it is desirable to shape the data while minimizing this
distortion,i.e., to choose the shaping transformation in an optimal
sense. In [1, 2], an optimal whitening transformation was devel-
oped and used to improve the detection performance in a multi-
signature system. The whitening transformation, referred to as the
minimum mean squared error (MMSE) whitening transformation,
is designed to minimize the mean squared error (MSE) between
the original and whitened data.

In this paper we extend the concept of MMSE whitening to
include other forms of covariance shaping. Specifically, we de-
velop and explore applications of a linear shaping transformation
that minimizes a possibly weighted MSE between the original and
shaped data,i.e., that results in an output with the desired covari-
ance that is as close as possible to the input in MSE. We refer to
such a transformation as an MMSE shaping transformation.

In Section 2 we derive the linear MMSE shaping transforma-
tion. For simplicity, we restrict our attention to the case in which
the original and output covariance matrices as well as the weight-
ing matrix are all positive definite; the more general case of non-
invertible matrices is treated in [3]. Section 3 discusses several ap-
plications of linear MMSE shaping. The first is a summary of the
use of MMSE whitening in the context of MF detection. This ap-
plication is developed and explored in considerably more detail in
[1, 3]. The second application described is to multiuser detection
in multiple access channels. The third application is to estimation
of a set of unknown deterministic parameters in a linear model.

2. OPTIMAL COVARIANCE SHAPING

Let a ∈ Cm denote a zero-mean1 random vector with positive
definite covariance matrixCa. We wish to shape the covariance
of a using a shaping transformationT to obtain the random vector
b = Ta, where the covariance matrix ofb is given byCb = c2R
for somec > 0 and positive definite covariance matrixR. Thus
we seek a transformationT such that

Cb = TCaT
∗ = c2R, (1)

for somec > 0. We refer to anyT satisfying (1) as a covariance
shaping transformation.

Given a covariance matrixCa, there are many ways to choose
a transformationT satisfying (1). Although there are an unlim-
ited number of covariance shaping transformations, no general as-
sertion of optimality is known for the outputb = Ta of these
different transformations. In particular, the vectorb may not be
“close” to the input vectora. If b undergoes some noninvertible
processing, or is used as an estimator of some unknown param-
eters represented by the dataa, then we may wish to choose the
shaping transformation in a way thatb is close toa in some sense.
For example, ifb is the input to a detector, then we may wish to
shape the covariance ofa prior to detection, but at the same time
minimize the distortion toa by choosingT so thatb is close toa.
Applications of this type are explored in Section 3.

We therefore propose a shaping transformation that is optimal
in the sense that it results in a random vectorb that is as close as
possible toa in MSE. Specifically, among all possible covariance
shaping transformations we seek the one that minimizes the MSE

εMSE = E ((a− b)∗(a− b))

= Tr (E((a− b)(a− b)∗))

= Tr(Ca) + Tr(TCaT
∗)− Tr(Ca(T∗ + T)), (2)

subject to (1). We may wish to constraint the constantc in (1), or
may choosec to minimize the MSE.

Our approach to determining the shaping transformation that
minimizes (2) is to show that this problem can be interpreted as
an MMSE whitening problem, and then rely on results obtained in
that context [1, 3].

Let ã = R1/2a, eT = R−1/2TR−1/2, and

ε̃MSE = E
�
(ã− eTã)∗(ã− eTã)

�
. (3)

We may then expressεMSE as

εMSE = ε̃MSE + Tr
�
(I−R)(Ca − c2I)

�
, (4)

1If the meanE(a) is not zero, then we can always definea′ = a −
E(a) so that the results hold fora′.
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where we used the fact thatT satisfies (1). Furthermore, with
Cã = R1/2CaR

1/2 denoting the covariance of̃a, we have thateTCã
eT∗ = R−1/2TCaT

∗R−1/2 = c2I. (5)

Therefore, for fixedc, findingT to minimizeεMSE subject to (1)
is equivalent to finding the transformationeT = R−1/2TR−1/2

to minimizeε̃MSE of (3) subject to (5). Since from (5) the covari-
ance ofeTã is proportional toI, eT is a whitening transformation.
From all possible whitening transformations we seek the one that
minimizes the MSE (3). This problem is therefore equivalent to
the MMSE whitening problem considered in [1, 3], the solution of
which is incorporated in the following theorem:

Theorem 1 (MMSE whitening [3]) Letz ∈ Cm be a zero-mean
random vector with positive definite covarianceCz. Among all
possible whitening transformations, letbT denote the whitening
transformation that minimizes the MSE,

εMSE = E ((z− h)∗(z− h)) ,

between the inputz and the outputh = Tz with covarianceCh =
c2I. Then bT = cC−1/2

z .

From Theorem 1 the optimal value ofeT, denotedbeT, isbeT = cC
−1/2
ã = c(R1/2CaR

1/2)−1/2. (6)

The optimal shaping transformation, denotedbT, is then equal tobT = cR1/2(R1/2CaR
1/2)−1/2R1/2 = c(RCa)−1/2R, (7)

where we used the fact that for any invertible matricesA andB,

AB−1/2A−1 =
�
ABA−1

�−1/2
[3].

We may further wish to choosec such that (2) is minimized.
Substitutingb = bTa into (2),c is chosen to minimize

εMSE = Tr(Ca) + c2Tr(R)− 2cTr
�
(RCa)1/2

�
. (8)

Differentiating with respect toc and equating to0, the optimal
value ofc, denoted̂c, is given by

ĉ =
Tr
�
(RCa)1/2

�
Tr(R)

. (9)

We may also consider a weighted MMSE covariance shaping
problem in which we seek a transformationT such thatb = Ta
has covarianceCb = c2R for somec > 0 and positive definite
covariance matrixR, and such that

εw
MSE = E ((a− b)∗W(a− b)) , (10)

is minimized, whereW is some positive definite Hermitian weight-
ing matrix.

To determine the weighted MMSE covariance shaping trans-
formation we note that

E ((a− b)∗W(a− b)) = E
�
(ā− b̄)∗(ā− b̄)

�
, (11)

whereā = W1/2a andb̄ = W1/2b. Thus we may first seek the

transformationbT that minimizes the MSE between the random

vectorā with covarianceCā = W1/2CaW
1/2, and the random

vector b̄ = Tā with covarianceCb̄ = TCāT = c2R, where
R = W1/2RW1/2. From (7) and (9) we have,bT = β(RCā)−1/2R

= βW1/2(RWCaW)−1/2RW1/2, (12)

whereβ = c if c is fixed andβ = ĉ if c is chosen to minimize the
MSE with

ĉ =
Tr
�
(RWCaW)1/2

�
Tr(RW)

. (13)

The weighted MMSE covariance shaping transformation is thenbT = W−1/2 bTW1/2 = β(RWCaW)−1/2RW. (14)

In the applications in Section 3 we use a weighted MMSE co-
variance shaping transformation withW = C−1

a , in which casebT = β(RCa
−1)1/2. With this choice of weighting, if the ele-

ments ofa are uncorrelated, then the weight given to each of the
errorsai−bi is inversely proportional to the variance ofai, thereby
emphasizing the contributions of the elements ofa that tend to be
more reliable. Note that this choice of weighting matrix is also
reminiscent of the Gauss-Markov weighting in least-squares esti-
mation [4].

We summarize our results in the following theorem:

Theorem 2 (MMSE shaping) Let a ∈ Cm be a zero-mean ran-
dom vector with positive definite covarianceCa. Among all possi-
ble shaping transformations, letbT denote the shaping transforma-
tion that minimizes the weighted MSE given by (10) between the
input a and the outputb = Ta with covarianceCb = c2R for
some positive definite covarianceR. ThenbT = β(RWCaW)−1/2RW,

where

1. if c is specified thenβ = c;

2. if c is chosen to minimize (10) thenβ = ĉ given by (13).

3. APPLICATIONS

In this section we consider applications of MMSE shaping to matched
filter (MF) detection, multiuser detection, and least-squares (LS)
parameter estimation. In all the applications, we assume that a
weighted MMSE transformation is used withW = C−1

a .

3.1. Matched Filter Detection

A generic and well studied problem is that of detecting in the pres-
ence of additive noise, which one from a set of known signals has
been received. When the additive noise is white and Gaussian, the
receiver which maximizes the probability of correct detectionPD

is a MF demodulator comprised of a bank of correlators with cor-
relating signals equal to the transmitted set, followed by a detector
which chooses as the detected signal the one for which the output
of the correlator is maximum [5]. If the noise is not Gaussian, then
the MF detector does not necessarily maximizePD. The problem
then is to design a simple linear receiver that does not depend on
the noise distribution, and that leads to improved performance over
MF detection for non-Gaussian noise.
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Fig. 1. Mean PD using the OMF and MF detectors in Beta-
distributed noise, as a function of SNR. The vertical lines indicate
the standard deviation of the correspondingPD.

To try and improve the performance over the MF receiver, we
propose optimally shaping the output vector of the MF prior to
detection using an MMSE shaping transformation, and basing the
detection on the shaped vector. In the special case in which the
shaping transformation is chosen as a whitening transformation,
the resulting receiver is referred to as the orthogonal MF (OMF)
receiver [1]. Simulations presented in [1, 3] show that when the
noise is non-Gaussian this approach can in fact lead to improved
performance over conventional MF detection in many cases.

In Fig. 1 we plot the mean and standard deviation ofPD for the
OMF and MF detectors as a function of SNR for transmitted con-
stellations of13 signals, in Beta-distributed noise with parameters
a = b = 0.1. The signals have dimension13 and the samples of
the signals are mutually independent zero-mean Gaussian random
variables with variance1/

√
13, scaled to have norm1. The results

in the figure were obtained by generating500 realizations of sig-
nals. For each signal realization, we determinedPD by recording
the number of successful detections over500 noise realizations.

Preliminary simulations demonstrate that in a variety of cases
choosing the output covariance to be non-diagonal can further im-
prove the performance of the modified receiver over the MF re-
ceiver. An interesting direction for future research is to design
an optimality criterion for choosing the desired output covariance
based on knowledge of the transmitted signals.

3.2. Multiuser Detection

In a manner similar to the MF detection problem, MMSE shaping
can also be used to improve the performance in a multiuser com-
munication system. In this context, the background noise is inher-
ently non-Gaussian since it is comprised of additive white noise
and multiple access interference (MAI) from other users.

The received signaly in a CDMA system is modelled asy =
SAx + w, whereS is the matrix of columnssi with si being
the signature vector of theith user,A is the diagonal matrix with
diagonal elementsAi > 0 with Ai being the received amplitude
of theith user’s signal,x is the data vector with componentsxi ∈
{1,−1} with xi being theith user’s transmitted symbol, andw
is a noise vector whose elements are independentCN (0, σ2). We
assume for simplicity that the vectorssi are linearly independent.

Based on the observed signaly, we design a receiver to detect the
information transmitted by each user. We restrict our attention to
linear receivers that do not require knowledge ofAi or σ2.

A linear multiuser receiver of this form is the decorrelator [6],
which cross-correlatesy with each of the columnsvi of V =
S(S∗S)−1, to yield the outputsai = v∗i y. The ith users’ bit is
then detected aŝxi = sgn(ai). The decorrelator optimally rejects
the MAI but does not compensate for the white noise. Indeed, the
covarianceCa of the noise component in the vector outputa of
the decorrelator is given by

Ca = σ2V∗V = σ2(S∗S)−1, (15)

so that the decorrelator tends to enhance the noise on the channel.
To improve the performance of the decorrelator receiver, we pro-
pose a modified receiver, which we refer to as the covariance shap-
ing multiuser (CSMU) receiver, that consists of optimally shap-
ing the noise component in the output of the decorrelator prior to
detection, using a weighted MMSE shaping transformation with
scalingσ2.

From (15) and Theorem 2 it follows that the CSMU receiver
cross-correlates the received vectory with each of the columnsqi

of Q = SR(S∗SR)−1/2. The ith users’ bit is then detected as
x̂i = sgn(q∗i y). The choice of shapingR can be tailored to the
specific set of signatures.

To demonstrate the performance advantage in using the CSMU
receiver, we consider the case in which the signature vectors are
chosen as PN sequences with norm1 and equal inner products
−1/N , and the shapingR is chosen as a circulant matrix with
[R]ii = 1 and[R]ij = ρ for i 6= j.

In Fig. 2 we plot the theoretical probability of bit error of the
CSMU receiver in the case of5 users withρ = 0.2, where the first
user, the desired user, has 4 interferers such thatAi/A1 = 0.5
for i = 2, 3, 4, 5. The corresponding curves for the decorrela-
tor, single-user MF and linear MMSE receivers [6] are plotted for
comparison. We see that the CSMU receiver performs better than
the decorrelator and the MF and performs similarly to the linear
MMSE receiver which is the optimal linear receiver that assumes
knowledge of the channel parameters.

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
ro

ba
bi

lit
y 

of
 E

rr
or

SNR [dB]

CSMU receiver
Decorrelator 
MF           
MMSE         

Fig. 2. Probability of bit error with5 users,ρ = 0.2, andAi/A1 =
0.5 for i = 2, 3, 4, 5, as a function of SNR.

In Fig. 3 we plot the probability of bit error of the CSMU re-
ceiver in the case of10 users withρ = 0.35, and with accurate
power control so thatAi = 1 for all i. Here again, the CSMU
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receiver performs better than the decorrelator and the MF and per-
forms similarly to the linear MMSE receiver.
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Fig. 3. Probability of bit error with10 users,ρ = 0.35, and accu-
rate power control, as a function of SNR.

3.3. Least-Squares Estimation

As a third application of MMSE shaping, we consider estimating
the unknown deterministic parametersx in the linear model

y = Hx + w, (16)

whereH is a knownn×m matrix with full column rank, andw is
a zero mean random vector with positive definite covarianceCw.

Many signal processing estimation problems can be represented
by the linear model (16), and consequently this problem has been
studied extensively in the literature. A common approach to esti-
mating the parametersx is to restrict the estimator̂x to be linear
in the data, and then find the linear estimator that is unbiased and
has minimum variance [4]. The resulting estimator, denotedx̂LS ,
is also the LS estimate ofx from the datay, i.e., it minimizes the
LS error(y − ŷ)∗C−1

w (y − ŷ), and is given by

x̂LS = (H∗C−1
w H)−1H∗C−1

w y = x + w̃, (17)

wherew̃ = (H∗C−1
w H)−1H∗C−1

w w is the estimation error.
Since the covariance of̃w is given by(H∗C−1

w H)−1, a diffi-
culty often encountered in this estimation problem is that the error
in the estimation can have a large variance and a covariance struc-
ture with a very high dynamic range. To control the dynamic range
and spectral shape of the covariance of the estimation error, we
propose a modification of the LS estimator based on the concept
of MMSE shaping, in which we optimally shape the covariance
of the estimation error. From Theorem 2 the resulting estimator,
referred to as the covariance shaping LS (CSLS) estimator and de-
notedx̂CSLS , is given by

x̂CSLS = ĉ(RH∗C−1
w H)1/2x̂LS

= ĉ(RH∗C−1
w H)−1/2RH∗C−1

w y, (18)

whereĉ = Tr((RH∗C−1
w H)1/2)/Tr(RH∗C−1

w H).
It can be shown that the CSLS estimator can alternatively be

derived as the estimator that minimizes the weighted total error
variance in the observations subject to a constraint on the covari-
ance of the estimation error [7]. It is also shown in [7] that the

CSLS estimator achieves the Cramer-Rao lower bound for biased
estimators. Furthermore, analysis of the MSE of both the CSLS
estimator and the LS estimator demonstrates that the covariance of
the estimation error can be chosen such that there is a threshold
SNR, below which the CSLS estimator yields a lower MSE than
the LS estimator, for all values of the unknown parametersx.

Simulations presented in [3] strongly suggest that the CSLS
estimator can significantly decrease the MSE of the estimation er-
ror over the LS estimator over a wide range of SNR values. In
Fig. 4 we illustrate the performance advantage with one simula-
tion from [3]. In this figure we plot the MSE in estimating a set of
AR parameters in an ARMA model contaminated by white noise,
using the CSLS estimator withR = I and the LS estimator, from
20 noisy observations of the channel, averaged over2000 noise
realizations, as a function of SNR.
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Fig. 4. Mean-squared error in estimating a set of AR parameters
using the LS estimator and the CSLS estimator.
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