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Minimax MSE–Ratio Estimation With Signal
Covariance Uncertainties
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Abstract—In continuation to an earlier work, we further con-
sider the problem of robust estimation of a random vector (or
signal), with an uncertain covariance matrix, that is observed
through a known linear transformation and corrupted by additive
noise with a known covariance matrix. While, in the earlier work,
we developed and proposed a competitive minimax approach of
minimizing the worst–case mean-squared error (MSE) difference
regret criterion, here, we study, in the same spirit, the minimum
worst–case MSE ratio regret criterion, namely, the worst–case
ratio (rather than difference) between the MSE attainable using a
linear estimator, ignorant of the exact signal covariance, and the
minimum MSE (MMSE) attainable by optimum linear estimation
with a known signal covariance. We present the optimal linear
estimator, under this criterion, in two ways: The first is as a
solution to a certain semidefinite programming (SDP) problem,
and the second is as an expression that is of closed form up to
a single parameter whose value can be found by a simple line
search procedure. We then show that the linear minimax ratio
regret estimator can also be interpreted as the MMSE estimator
that minimizes the MSE for a certain choice of signal covariance
that depends on the uncertainty region. We demonstrate that in
applications, the proposed minimax MSE ratio regret approach
may outperform the well–known minimax MSE approach, the
minimax MSE difference regret approach, and the “plug–in”
approach, where in the latter, one uses the MMSE estimator
with an estimated covariance matrix replacing the true unknown
covariance.

Index Terms—Covarience uncertainties, linear estimation, mean
squared error, minimax regret, robust estimation, semidefinite
programming.

I. INTRODUCTION

THE classical solutions to the problem of optimum linear
estimation and filtering in stochastic models, dating back

to Wiener [1] and Kolmogorov [2], are well known to be sen-
sitive to the exact knowledge of the second-order statistics of
the signal and noise. However, in a wide range of practical ap-
plications, these statistics may, unfortunately, be subjected to
uncertainties. This fact has been the origin of the need for solid
theories and methodologies of designing robust estimators and
filters whose performance remains relatively insensitive and rea-
sonably good across the region of uncertainty.

The most common approach to handle such uncertainties
has been the minimax strategy, initiated by Huber [3], [4].
According to this method, an estimator is sought to minimize
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the worst–case mean-squared error (MSE) over a given un-
certainty class of spectral densities [5]–[9]. The idea of using
minimax criteria for devising robust schemes that circumvent
uncertainties has been applied in quite a few additional problem
areas in communications, signal processing, and statistics (see,
e.g., [8], [10], [11], and references therein). Recently, minimax
ideas have also been applied to several different beamforming
problems [12]–[15], [16].

In spite of the widespread use of the minimax approach, its
performance sometimes turns out to be disappointingly poor.
The reason seems to be rooted in the very definition of the min-
imax criterion, which is fundamentally pessimistic in nature:
Optimizing performance for the worst case might come at the
expense of deteriorated performance in all other cases, since in
this worst case, the conditions may be so poor that they leave
very little or no room for powerful solution strategies.

In light of this fact, to improve the performance of the or-
dinary minimax MSE approach, we have studied, in an earlier
work [17], a modified minimax criterion, which is competitive
in character. This competitive minimax criterion has been de-
rived in [17] in the context of a simple linear model. Specifi-
cally, given an observation vector, resulting from a known linear
transformation of the desired random vector (or signal) to be es-
timated and corrupted by an uncorrelated additive noise vector
with a known covariance matrix, we sought in [17] a linear es-
timator, which is robust to covariance uncertainties of the de-
sired signal, using the following approach: Rather than mini-
mizing the worst–case (total) MSE, we derived the linear esti-
mator that minimizes the worst–case difference regret, namely,
the worst–case difference between the MSE of a linear esti-
mator, ignorant of the exact signal covariance, and the MSE of
the linear optimal estimator based on the exact signal covari-
ance. The rationale was that such an estimator performs uni-
formly as closely as possible to the linear optimal estimator
across the uncertainty region, and since the minimax criterion
is applied to the difference of MSEs, rather than the total MSE,
it is not as pessimistic as the ordinary minimax approach. The
same idea was also applied in [18] for the case where the un-
known desired vector is deterministic rather than stochastic. As
we have pointed out in [17], the competitive minimax approach
is by no means new as a general concept. It has been used ex-
tensively in a variety of other problem areas, such as, universal
source coding [19], hypothesis testing [20], [21], and prediction
(see [22] for a survey and references therein).

A possible drawback of the difference regret method is that
the value of the regret may not adequately reflect the estimator
performance, since even a large regret should be considered in-
significant if the value of the optimal MSE is relatively large. On
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the other hand, if the optimal MSE is small, then even a small
regret should be considered significant. Therefore, instead of
considering the worst-case difference regret, we suggest devel-
oping a minimax ratio estimator that minimizes the worst-case
ratio between the MSE of a linear estimator that does not know
the exact signal covariance but knows only that it lies in a spec-
ified uncertainty set and the best possible MSE as a function
of the unknown covariance. Generally speaking, the rationale
is that, as before, such an estimator performs uniformly as close
as possible to the linear optimal estimator across the uncertainty
region, but where now, the MSE is measured in decibels. This
makes sense as one might expect the relative loss in MSE per-
formance to be scale–invariant.

In this paper, we study robust linear estimation for the same
linear model under the criterion of minimax ratio–regret, rather
than the difference–regret. We present the optimal linear esti-
mator, under this new criterion, in two ways: The first repre-
sentation is as a solution to a certain semidefinite programming
(SDP) problem. This is practically meaningful since SDP pro-
grams are efficiently executable using standard software pack-
ages. The second representation is as an analytical expression,
which is of closed form up to a single parameter whose value can
be found by a simple line search procedure. We also show that
the linear minimax ratio regret estimator (or, for short, the min-
imax ratio estimator) can be interpreted as the minimum MSE
(MMSE) estimator corresponding to a certain choice of signal
covariance that depends on the uncertainty region. We demon-
strate that in applications, the proposed minimax MSE ratio–re-
gret approach may outperform the ordinary MSE approach, the
minimax MSE difference–regret approach, and the “plug–in”
approach, where in the latter, one uses the MMSE estimator with
an estimated covariance matrix replacing the true unknown co-
variance.

In our development, we assume explicitly that the linear
model matrix is known exactly. In [17], we consider a minimax
MSE estimator for the case in which the model matrix is also
subjected to uncertainty. However, developing the minimax
regret estimator for this case appears to be a much more difficult
problem. We note that the problem of estimating a random
vector comprised of independent random variables that is
observed through an unknown linear transformation is known
as the independent component (or factor) analysis problem, or
the blind source separation problem, and has received consid-
erable attention in the literature (see, e.g., [23]–[25]). Blind
source separation methods attempt to extract the input vector
from the observations by exploiting the fact that the inputs are
independent and are therefore typically nonlinear methods that
involve higher order statistics.

The outline of this paper is as follows. In Section II, we for-
mulate the problem. In Section III, we present the problem as
an SDP. In Section IV, the alternative, closed–form solution is
derived, and finally, in Section V, performance is demonstrated
through several examples.

II. PROBLEM FORMULATION

In the sequel, we denote vectors in by boldface lowercase
letters and matrices in by boldface uppercase letters. The

matrix denotes the identity matrix of the appropriate dimen-
sion, denotes the Hermitian conjugate of the corresponding
matrix, and denotes an estimated vector. The cross-covari-
ance matrix between the random vectors and is denoted by

, and the covariance matrix of is denoted by .
Consider the problem of estimating the unknown random pa-

rameters in the linear model

(1)

where is a known matrix with rank , is a zero-
mean, length- random vector with covariance matrix , and

is a zero-mean, length- random vector with known positive
definite covariance , uncorrelated with . We assume that
we only have partial information about the covariance .

We seek to estimate using a linear estimator so that
for some matrix . We would like to design an estimator

of to minimize the MSE, which is given by

Tr Tr Tr

Tr Tr Tr

Tr Tr (2)

If is known, then the linear estimator minimizing (2) is the
MMSE estimator [26]

(3)

An alternative form for , that is sometimes more convenient,
can be obtained by applying the matrix inversion lemma [27] to

, resulting in

(4)

Substituting (4) into (3), the MMSE estimator can be ex-
pressed as

(5)

If is unknown, then we cannot implement the MMSE esti-
mator (3). In this case, we may choose an estimator to optimize
a worst-case performance measure over all covariance matrices
in the region of uncertainty. To reflect the uncertainty in our
knowledge of the true covariance matrix, we consider an un-
certainty model that resembles the “band model” widely used
in the continuous-time case [6], [8], [28], [29] and is the same
as the model considered in [17]. Specifically, we assume that

and have the same eigenvector matrix1 and that
each of the non-negative eigenvalues , of
satisfies

(6)

where and are known.

1If the eigenvalues ofH C H andC have geometric multiplicity 1, then
H C H and C have the same eigenvector matrix if and only if they com-
mute [27].
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The assumption that and have the same eigen-
vector matrix is made for analytical tractability. In practice,
there are many cases where this assumption is satisfied exactly
or approximately, for example, if is proportional to the
identity matrix, or if and are proportional to the identity
matrix. Another case is when and are circulant
matrices, in which case, both matrices are diagonalized by
a Fourier transform matrix. The circulant model is used in
a variety of different signal processing applications, such as
image restoration [30] and cyclic convolution filterbanks [31].
If is a stationary random vector and represents convolution
of with some filter, then both and will be Toeplitz
matrices and are, therefore approximately diagonalized by a
Fourier transform matrix so that in this general case, and

approximately have the same eigenvector matrix
[32]. We note that, although in our derivations we assume
that and have the same eigenvector matrix, our
proposed estimator can still be applied if this assumption is
violated. Specifically, as we show in Section IV the ratio regret
estimator can be viewed as an MMSE estimator matched to
a certain choice of signal covariance, which can therefore be
implemented, regardless of whether or not the eigenvector
matrices are the same. This point is illustrated in the examples
in Section V.

In our development, we explicitly assume that the joint eigen-
vector matrix of and is given. In practice, if the
eigenvalues of have geometric multiplicity one, then
we choose the eigenvector matrix of to be equal to the eigen-
vector matrix of . In the case in which the eigenvector
matrix of is not uniquely specified, e.g., in the case
in which is proportional to , as in one of the ex-
amples in Section V, we may resolve this ambiguity by esti-
mating the eigenvector matrix of from the data. Specifically,
given an observation vector and assuming that the noise co-
variance is equal to , we may estimate as

. Here, is an estimate
of (see Section V), and denotes the matrix in which the
negative eigenvalues of are replaced by 0. This estimate can
be regarded as the analog for finite-length processes of the spec-
trum estimate based on the spectral subtraction method for infi-
nite-length processes [33], [34]. For general , a similar esti-
mate can be obtained by first whitening the observation vector.

The model (6) is reasonable when the covariance is estimated
from the data. Specifically, denoting by ,

for , (6) can equivalently be expressed as

(7)

so that each of the eigenvalues of lies in an interval of length
around some nominal value , which we can think of as an

estimate of the th eigenvalue of from the data vector . The
interval specified by may be regarded as a confidence interval
around our estimate and can be chosen to be proportional to
the standard deviation of the estimate .

Given , a straightforward approach to estimating is
to use an MMSE estimate corresponding to the estimated co-
variance. However, as demonstrated in [17] and in Section V,
by taking an uncertainty interval around into account, and

seeking a competitive minimax estimator in this interval, we can
further improve the estimation performance.

To develop a competitive estimator, we consider a minimax
ratio criterion, in which the estimator is obtained by minimizing
the worst-case ratio between the MSE of a linear estimator that
does not know the exact signal covariance but only that it lies
in a predefined uncertainty region and the best possible MSE
as function of the unknown covariance. In Section III, we show
that the minimax ratio estimator can be formulated as an SDP.
In Section IV, we use the necessary and sufficient conditions for
optimality of an SDP to develop more insight into the minimax
ratio estimator. Specifically, we show that the minimax ratio es-
timator is an MMSE estimator matched to a covariance matrix
that depends on a single parameter that can be found using a
simple line search algorithm, for example, using the bisection
method. In the examples in Section V, we demonstrate that the
minimax ratio estimator can improve the performance over the
minimax MSE estimator and the minimax regret estimator of
[17] for low SNR values.

III. MINIMAX RATIO ESTIMATOR

We seek the linear estimator that minimizes the worst-case
ratio , which is defined as the ratio between the MSE
using an estimator , and the smallest possible MSE at-
tainable with an estimator of the form , assuming
that the true covariance is , which we denote by MSE .

If the true covariance matrix is equal to , then the MMSE
estimator is given by (3), and the resulting optimal MSE is

MSE Tr Tr
(8)

From (4) and (5), we have that
so that (8) can be written in

the equivalent form

MSE Tr

Tr (9)

which will be more convenient for our derivations. Throughout
the paper, we assume that for at least one value of , so
that MSE for all in the region of uncertainty.

When the true covariance matrix is unknown, the best pos-
sible MSE cannot be attained. For every possible choice of the
covariance in the region of uncertainty, we can define the
ratio between the MSE attainable with an arbitrary linear es-
timator and the best possible MSE attainable MSE , as-
suming that is the true covariance matrix. We then seek to
minimize this worst-case ratio in the region of uncertainty.

Thus, we seek the matrix that is the solution to the problem

(10)

where

MSE
Tr Tr

Tr
(11)



1338 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL 2005

which can alternatively be expressed as

(12)
subject to

Tr Tr

Tr
(13)

The constraint (13) is equivalent to

Tr Tr

Tr

(14)
or

Tr Tr

Tr (15)

Thus, the problem of (10) is equivalent to (12) subject to (15).
We now show that the problem of (12) and (15) can be for-

mulated as a convex semidefinite programming (SDP) problem
[35]–[37], which is the problem of minimizing a linear func-
tional subject to linear matrix inequalities (LMIs), i.e., matrix
inequalities in which the matrices depend linearly on the un-
knowns. (Note that even though the matrices are linear in the un-
knowns, the inequalities are nonlinear since a positive semidef-
inite constraint on a matrix reduces to nonlinear constraints on
the matrix elements.) The main advantage of the SDP formu-
lation is that it readily lends itself to efficient computational
methods. Specifically, by exploiting the many well-known algo-
rithms for solving SDPs [36], [35], e.g., interior point methods,
[37], [38] which are guaranteed to converge to the global op-
timum, the optimal estimator can be computed very efficiently
in polynomial time. Using principles of duality theory in vector
space optimization, the SDP formulation can also be used to de-
rive optimality conditions.

After a description of the general SDP problem in Sec-
tion III-A, in Section III.B, we show that our minimax problem
can be formulated as an SDP. In Section IV, we use the SDP
formulation to develop more insight into the minimax ratio
estimator.

A. Semidefinite Programming

A standard SDP is the problem of minimizing

(16)
subject to

(17)
where

(18)

Here, is the vector to be optimized, denotes the th
component of , is a given vector in , and are given
matrices in the space of Hermitian matrices.2

2Although typically in the literature, the matrices F are restricted to be real
and symmetric, the SDP formulation can be easily extended to include Her-
mitian matrices F ; see, e.g., [39]. In addition, many of the standard software
packages for efficiently solving SDPs, for example, the Self-Dual-Minimization
(SeDuMi) package [40], [41], allow for Hermitian matrices.

The constraint (17) is an LMI, in which the unknowns
appear linearly. Indeed, any constraint of the form
where the matrix depends linearly on can be put in the form
of (17).

The problem of (16) and (17) is referred to as the primal
problem. A vector is said to be primal feasible if and
is strictly primal feasible if . If there exists a strictly
feasible point, then the primal problem is said to be strictly fea-
sible. We denote the optimal value of by .

An SDP is a convex optimization problem and can be solved
very efficiently. Furthermore, iterative algorithms for solving
SDPs are guaranteed to converge to the global minimum. The
SDP formulation can also be used to derive necessary and suf-
ficient conditions for optimality by exploiting principles of du-
ality theory. The essential idea is to formulate a dual problem of
the form for some linear functional whose max-
imal value serves as a certificate for . That is, for all feasible
values of , i.e., values of that satisfy a certain set
of constraints, and for all feasible values of , ,
so that the dual problem provides a lower bound on the optimal
value of the original (primal) problem. If, in addition, we can
establish that , then this equality can be used to develop
conditions of optimality on .

The dual problem associated with the SDP of (16) and (17) is
the problem of maximizing

Tr (19)
subject to

Tr (20)

(21)

where . A matrix is said to be dual feasible if it
satisfies (20) and (21) and is strictly dual feasible if it satisfies
(20) and . If there exists a strictly feasible point, then the
dual problem is said to be strictly feasible.

For any feasible and , we have that

Tr

Tr Tr Tr (22)

so that as required, . Furthermore, it can be shown
that if either the primal or the dual problem are strictly feasible,
then , and is an optimal primal point if and only if
is primal feasible, and there exists a dual feasible such
that

(23)

Equation (23), together with (17), (20), and (21), constitute a
set of necessary and sufficient conditions for to be an optimal
solution to the problem of (16) and (17) when either the primal
or the dual are strictly feasible.

B. Semidefinite Programming Formulation of the Estimation
Problem

In Theorem 1 below, we show that the problem of (12) and
(15) can be formulated as an SDP. The remainder of this section
is devoted to the proof of the theorem.
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Theorem 1: Let denote the unknown parameters in the
model , where is a known matrix with
rank , is a zero-mean random vector uncorrelated with
with covariance , and is a zero-mean random vector with
covariance . Let , where is a unitary
matrix and is an diagonal matrix with diagonal ele-
ments , and let , where is an
diagonal matrix with diagonal elements .
Then, the solution to the problem

has the form

where is an diagonal matrix with diagonal elements
that are the solution to the semidefinite programming problem

(24)

subject to (25), shown at the bottom of the page, where
, and .

Proof: We prove Theorem 1 in three stages. First, we show
that the optimal has the form

(26)

for some matrix . We then show that must be a diag-
onal matrix. Finally, we develop an expression for the diagonal
elements of . The first two parts of the proof are similar to the
proof of [17, Th. 3].

We begin by showing that the optimal has the form given
by (26). To this end, note that the ratio of (11) de-
pends on only through and Tr . Now, for any
choice of

Tr

Tr Tr

Tr (27)

where

(28)

is the orthogonal projection onto the range space of
. In addition, since

. It follows then that any choice
of can be replaced by , with

Tr Tr and , implying that
is always at least as good as in the sense of reducing the

ratio regret. Since , we conclude that
when seeking the optimal matrix , it is sufficient to confine
attention to matrices that satisfy

(29)

Substituting (28) into (29), we have

(30)

for some matrix . Denoting and using
the fact that , (30) reduces to (26).

We now show that must be a diagonal matrix. Since
, , and is given by (30), we have

that

Tr Tr

Tr

Tr Tr

Tr (31)

Therefore, the problem of (12) and (15) reduces to finding
that minimizes subject to

(32)

Clearly, is strictly convex in . Therefore, for any

(33)

so that is also strictly convex in , and consequently, our
problem has a unique global minimum. Let be any diagonal
matrix with diagonal elements equal to . Then, using the re-
lations and the fact that for any diagonal matrix

, , we can show that (see
also [17]). Since has a unique minimizer, we conclude that
the matrix that minimizes satisfies for any
diagonal matrix with diagonal elements equal to , which in
turn implies that must be a diagonal matrix.

(25)
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Denote by , , and the diagonal elements of , , and
, respectively. Then, we can express as

(34)

Our problem can now be formulated as

(35)

subject to

(36)

(37)

Expressing (36) as

(38)

we develop a solution to our problem by first considering each
of the constraints (38), where for brevity, we omit the index .

Let , where . Then, the condition
is equivalent to the condition , where

, so that (38) can be written as

(39)

which in turn is equivalent to the following implication:

(40)
where

(41)

We now rely on the following lemma [42, p. 23].
Lemma 1— -procedure: Let and

be two quadratic functions of ,
where and are symmetric, and there exists a satisfying

. Then, the implication

holds true if and only if there exists an such that

Combining (40) with Lemma 1, it follows immediately that (38)
is equivalent to (42), shown at the bottom of the page. Note that
if (42) is satisfied, then , which implies that

.
We can express (42) as

(43)

where

(44)
and

(45)

To treat the constraint (43), we rely on the following lemma [27,
p. 472].

Lemma 2: Let

be a Hermitian matrix. Then, with , if and only if
, where is the Schur complement of in and is

given by .
The proof of the theorem then follows from applying Lemma

2 to (43).

IV. ALTERNATIVE DERIVATION OF THE

MINIMAX RATIO ESTIMATOR

In Theorem 1, we showed that the minimax ratio estimator
can be formulated as an SDP. In this section, we develop further
insight into the minimax ratio estimator, using the SDP opti-
mality conditions. Specifically, we show that the minimax ratio
estimator can be expressed in terms of a single parameter, which
is a solution to a nonlinear equation, and be found using a simple
line search algorithm.

To this end, we first show that the minimax ratio estimator,
which is the solution to the problem

Tr Tr

Tr (46)

can be determined by first solving the problem

Tr Tr

Tr (47)

(42)
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where is fixed. Specifically, let denote the optimal
value of in problem of (47), and let be the minimal value
of such that (as we show below in Proposition
2, such a always exists). Then, denoting by the optimal
in the problem with , we now show that and are
the optimal solutions to the problem of (49). Since and
are feasible for with , they are also feasible for . Now,
suppose, conversely, that there exists a feasible and
for . It then follows that , but since is decreasing
in and , we have that , from which we
conclude that , which is a contradiction since is the
minimal value for which .

In Proposition 2 below, we show that is continuous and
strictly decreasing in if for at least one value of , be-
cause in this case, Tr for all

. Since and for
(again, because Tr ), we con-
clude that there is a unique such that . Therefore, we
can find by a simple line search, as we discuss further in the
paragraph following Proposition 2.

A. Solution to Problem

Since the minimax ratio can be found using the solution of
problem , we first consider this problem. Following the proof
of Theorem 1, we have immediately that the optimal in
problem has the form

(48)

where is a diagonal matrix with diagonal elements that are
the solution to

(49)

subject to

(50)
Noting that

(51)

our problem can be formulated as

(52)

subject to

(53)

The constraints (53) are the same as the constraints (36), which,
in turn, where shown in the proof of Theorem 1 to be equivalent
to the LMIs in (25). Thus, to solve , we need to develop a
solution to the problem

(54)

subject to (55), shown at the bottom of the next page, which,
using Lemma 2, can be equivalently expressed as

where and are defined by (44) and (45), respectively.
The problem of (54) and (55) for the special case in which

was considered in [17], in which it was shown that the
solution is given by the smallest value of such that there exists
a triplet satisfying . For , the smallest
value of and the corresponding values of and such that
there exists a triplet satisfying are given by
(56) below. As we show in Proposition 1, this solution is also
optimal for the problem (54) and (55), as long as is smaller
than a threshold.

Proposition 1: The solution of

subject to (55), is given by

(56)
for , where

(57)

and by

(58)

for .
Proof: See the Appendix.

(55)
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From Proposition 1, it follows that the solution to the problem
of (47) is given by

(59)

where is the diagonal matrix with diagonal elements

(60)

with

(61)

and , where we have (62), shown at the
bottom of the page.

B. Minimax Ratio Estimator

To develop an alternative expression for the minimax ratio
estimator, we now relate the solutions of problems and of
(47) and (46), respectively. To this end, we first establish the re-
quired properties of , which were outlined at the beginning
of the section.

Proposition 2: Let , where is given
by (62). Then, we have the following.

1) is continuous.
2) If for some , then is strictly decreasing in

, and there is a unique such that .
Proof: For , is quadratic in , and for

, is linear in . Therefore, in both of these intervals,
is continuous. We can also immediately verify that

is continuous at .
We now consider the monotonicity property of . Suppose

first that . In this case, is linear in for
and is strictly decreasing. Next, suppose that .

Then, for , is a quadratic function in , which we
denote by , with an extremum point at

(63)

If , then has a minimum at . Con-
sequently, is decreasing for any . Since, as we
now show, , is decreasing for . To prove
that , we must have that

(64)

or, equivalently

(65)

which is clearly satisfied. If, on the other hand,
, then has a maximum at , and is strictly

decreasing for .
For , is strictly decreasing as long as . If

, then for all .
We conclude that is strictly decreasing in if for some

, . Since (unless , , in
which case, there is no uncertainty) and for ,
it follows that in this case, there is a unique value such that

.
From Proposition 2, it follows that the solution to the original

problem is also given by (59) and (60), with chosen as the
minimal value such that . Since is
continuous and strictly decreasing in such that , we
can find the minimal value of satisfying by a simple
line search. Specifically, we may start by choosing . For
each choice of , we compute . If ,
then we increase , and if , we decrease ,
continuing until . Assuming that for
some (which is our standing assumption), this is the optimal
value of . Due to the continuity and monotonicity properties of

, the algorithm is guaranteed to converge.
We summarize our results in the following theorem.
Theorem 2: Let denote the unknown parameters in the

model , where is a known matrix with
rank , is a zero-mean random vector with covariance
uncorrelated with , and is a zero-mean random vector with
covariance . Let , where is a unitary
matrix, and is an diagonal matrix with diagonal ele-
ments , and let , where is an
diagonal matrix with diagonal elements .
Then, the solution to the problem

is given by

where is an diagonal matrix with diagonal elements

(66)

with

(67)

and is the unique value such that ,
where is given by (62).

.
(62)
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Note that the minimax regret estimator has the same form
as the minimax ratio estimator, where is given by (66) with

.
In the special case in which is a scalar and

is a vector, we can immediately show from Theorem 2 that the
optimal estimator is

(68)

C. MMSE Interpretation of the Minimax Ratio Estimator

As we now show, we can interpret the estimator of Theorem
2 as an MMSE estimator matched to a covariance matrix

(69)

where is a diagonal matrix with diagonal elements

.
(70)

It follows from (70) that if , then is equal to the lower
bound on the uncertainty region of the th eigenvalue of .

From (5), the MMSE estimate of with covariance given
by (77) and is

(71)

Thus, the estimator of (71) is equivalent to the minimax ratio
estimator given by Theorem 2, if .
Now

(72)
so that indeed .

Since the minimax ratio estimator minimizes the MSE for
, we may view the covariance

as the “least-favorable” covariance in the ratio sense.
In [17], it was shown that the minimax regret estimator is an

MMSE estimator matched to a covariance matrix with eigen-
values

(73)

Since the optimal value of is greater than 1 (unless there is
no uncertainty), , so that the minimax ratio
estimator is matched to a covariance matrix with eigenvalues
that are strictly smaller than the eigenvalues of the covariance
matrix matched to the minimax difference regret estimator.

V. EXAMPLE OF THE MINIMAX RATIO ESTIMATOR

We now consider examples illustrating the minimax ratio es-
timator. These examples are the same as those presented in [17]
for evaluating the minimax difference regret estimator.

Consider the estimation problem in which

(74)

where is a length- segment of a zero-mean stationary first-
order AR process with components so that

(75)

for some parameter , and is a zero-mean random vector un-
correlated with with known covariance . We as-
sume that we know the model (74) and that is a segment of a
stationary process; however, its covariance is unknown.

To estimate , we may first estimate from the observa-
tions . A natural estimate of is given by

(76)

where

(77)

is an estimate of the covariance of , and denotes the
matrix in which the negative eigenvalues of are replaced
by 0. Thus, if has an eigendecomposition ,
where is a diagonal matrix with diagonal elements , then

, where is a diagonal matrix with the
th diagonal element equal to . The estimate (76) can

be regarded as the analog for finite-length processes of the spec-
trum estimate based on the spectral subtraction method for infi-
nite-length processes [33], [34].

Given , we may estimate using an MMSE estimate
matched to , which we refer to as a plug-in estimator. How-
ever, as can be seen in Figs. 1 and 2, we can further improve the
estimation performance by using the minimax ratio estimator.

To compute the minimax ratio estimator, we choose to be
equal to the eigenvector matrix of the estimated covariance ma-
trix and , where are the eigenvalues of . We
would then like to choose to reflect the uncertainty in our esti-
mate . Since computing the standard deviation of is difficult,
we choose to be proportional to the standard deviation of an
estimator of the variance of , where

(78)

We further assume that and are uncorrelated Gaussian
random vectors. In this case, the variance of is given by [17]

(79)

Since and are unknown, we substitute their esti-
mates , . Finally, to ensure that , we
choose

(80)
where is a proportionality factor.

In Fig. 1, we plot the MSE of the minimax ratio estimator
averaged over 1000 noise realizations as a function of the SNR
defined by for , , and . The
performance of the “plug-in” MMSE estimator matched to the



1344 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL 2005

Fig. 1. MSE in estimating x as a function of SNR using the minimax ratio
estimator, the minimax regret estimator, the minimax MSE estimator, and the
plug-in MMSE estimator matched to the estimated covariance matrix. The
performance of the optimal Wiener estimator is plotted for comparison.

estimated covariance matrix , the minimax MSE estimator,
and the minimax regret estimator of [17] are plotted for com-
parison. We also plot the MSE resulting from a Wiener filter
matched to the known covariance, which is the optimal MSE
attainable when is known. As can be seen from the figure,
the minimax ratio estimator can significantly increase the esti-
mation performance at low to intermediate SNR values, and in
this range, the performance of the minimax ratio estimator is
close to the optimal performance.

We next consider the case in which the vector is filtered
with an LTI filter with length-4 impulse response given by

(81)

Note that in this case, the eigenvector matrices of
and are no longer equal. Nonetheless, we can still imple-
ment the minimax ratio estimator by using the results of Sec-
tion IV-C. Specifically, in Section IV-C, it was shown that the
minimax ratio estimator can be formulated as an MMSE esti-
mator matched to a least-favorable covariance. Therefore, to im-
plement the estimator, we may first estimate the eigenvalues and
the eigenvector matrix of from the data and then compute
the least-favorable covariance matrix with eigenvalues given by
(78).

In Fig. 2, we plot the MSE of the minimax ratio, minimax re-
gret, plug-in, and minimax MSE estimators averaged over 1000
noise realizations as a function of the SNR for , ,
and . For comparison, we also plot the bound on the per-
formance given by the MSE of the Wiener estimator. As can be
seen, the trends in performance are similar to the previous ex-
ample.

VI. DISCUSSION—TRADING OFF RATIO REGRET AND

DIFFERENCE REGRET

As described in the Introduction, in [17], we have studied
a robust estimation problem in the same spirit, where instead

Fig. 2. MSE in estimating x from a noisy filtered version as a function of SNR
using the minimax ratio estimator, the minimax regret estimator, the minimax
MSE estimator, and the plug-in MMSE estimator matched to the estimated
covariance matrix. The performance of the optimal Wiener estimator is plotted
for comparison.

of the ratio regret , the objective function was the
difference regret

MSE (82)

Each of the two criteria and has its own
rationale, as well as its own advantages and disadvantages.
Ideally, one would wish, of course, to minimize them both at
the same time. However, since their optimum solutions are
different, in general, these minimizations are conflicting and,
therefore, cannot be achieved simultaneously. If both criteria
are of interest, nevertheless, a plausible approach would be to
seek the best possible tradeoff between them. More specifically,
it is natural to ask what is the achievable region of points in the
plane for which there exists a linear estimator such
that for every in the region of uncertainty

(83)

In this partition of the plane, between the achievable region and
the unachievable region, the most interesting part is, of course,
the boundary curve between them, as it characterizes the best
possible tradeoff. The boundary curve corresponds to the
solution of the problem

(84)

subject to

(85)

where the maximizations over are across the uncertainty re-
gion. The techniques that have been used here and in [17] can
be applied to solve this minimization problem, thus yielding the
spectrum of optimum tradeoffs between the ratio and the differ-
ence regrets, but the details are omitted due to space constraints.
As a general note, we mention that the two extreme points of
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this curve correspond, of course, to the pure difference regret
problem of [17] and the pure ratio regret problem considered in
this paper. In addition, it is easy to show that the achievability
region (and hence also the function ) is convex.

APPENDIX

In this Appendix, we prove Proposition 1. We begin
by showing that the values given by (56) are optimal for

. To this end, it is sufficient to show that
, where is the matrix in (55), that there

exists a matrix such that

Tr

Tr

Tr (86)

where

(87)

and that the dual problem is strictly feasible, i.e., there exists a
matrix satisfying

Tr

Tr

Tr (88)

Let

(89)

where

(90)

and is chosen such that . We can immediately
verify that satisfies (88). Next, we verify that .
Substituting (56) into the matrix in (55), we have (91), shown
at the bottom of the page. From Lemma 2, it follows that

if and only if , where

(92)

We must still find a satisfying (86). Solving (86) for
with given by (56) results in (93), shown at the bottom

of the page, where, for brevity, we defined

(94)

and

(95)

Since satisfies (86), the values given by (56) are optimal if, in
addition, , which implies that

(96)

or, equivalently

(97)

It is straightforward to show that (97) is satisfied for

(98)

Since

(99)

(91)

(93)
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Equation (96) is satisfied for , where is given by
(57).

We now show that for , . First, suppose
that , or equivalently, . In this case, if and
only if

(100)
or

(101)

Using the fact that , (101) can be expressed as

(102)

which is equivalent to (97) and is therefore satisfied for .
Next, suppose that . From Lemma 2, we then have

that if and only if

(103)

which is equivalent to the conditions

(104)

(105)

Now

(106)

so that (96) is satisfied. Finally

(107)

so that (105) is also satisfied, and .

We now show that for , the values given by (58) are
optimal. For these values, we have that

(108)
From Lemma 2 it then follows that if and only if

(109)

Clearly, (109) is satisfied if

(110)

or

(111)

We now show that there exists a satisfying (86).
Solving (86) for with given by (58) results in

(112)

and . Thus, the values given by (58) are optimal for
, completing the proof of the proposition.
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