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Abstract

Given a frame for a subspad® of a Hilbert space, we consider a class of oblique dual frame sequences.
These dual frame sequences are not constrained to ). i@ur main focus is on shift-invariant frame sequences
of the form{¢ (- — k)}xez in subspaces af?(R); for such frame sequences we are able to characterize the set of
shift-invariant oblique dual Bessel sequences. Given frame sequighncesk) }rez and{¢1(- — k) }xez, We present
an easily verifiable condition implying th&parig1(- — k)}xez contains a generator for a shift-invariant dual of
{¢(- — k)}rez; in particular, the exact statement of this resmiplies the somewhat surprising fact that there is a
unique conventional dual frame that is shift-invariant. As an application of our results we consider frame sequences
generated by B-splines, and show how to construct oblique duals with prescribed regularity.
0 2004 Published by Elsevier Inc.
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1. Introduction

Let H be a separable Hilbert space, and suppose{th&l , is a frame for a subspad®’ C H, i.e.,
that{ f;};2, C W and that there exist constams B > 0 such that

9]

AlFIP <Y K f fd P < BIFIR  Yfew.

k=1
* Corresponding author.
E-mail addressesole.christensen@mat.dtu.dk (O. Christensen), yonina@ee.technion.ac.il (Y.C. Eldar).

1063-5203/$ — see front matter 2004 Published by Elsevier Inc.
doi:10.1016/j.acha.2003.12.003



O. Christensen, Y.C. Eldar / Appl. Comput. Harmon. Anal. 17 (2004) 48—-68 49
Further, letS be the frame operator fdrf;};2,, i.e.,

StH—H, Sf=) (f fofe

k=1

Denoting the pseudo-inverse 8fby ST, standard frame theory tells us that egthk WV has a represen-
tation

f= Z (f. S ) f
=1
It is well known [14] how to characterize all Bessel sequerige} ; belonging to)V, such that
F=) (f8)fee VfeW. (1)
k=1

As observed by Li and Ogawa [18], (1) might hold under much weaker restrictiorig;$fi, and
{gx}32,; infact, it is not necessary that these sequences beloyig, nd it is not necessary thaf, };2;
forms a frame. In case (1) holds for a givévt and some sequenceg )i ;, {gk}ie, (satisfying certain
Bessel conditions),g.};2 , is called goseudoframéor W w.r.t. { fi}22 ;.

In this paper we will concentrate on the case wHgfig2 , is a frame fonV and{g,};2 , is a frame for
a closed subspadeof H; we elaborate on the motivation for our special interest in this case at the end of
this section. A framég, } 72, for V for which (1) holds is called aablique dual frame of f;}7 ; onV; this
concept was first introduced in [8,9] for finite-dimensional frames, and later generalized to the infinite-
dimensional case in [11]. The terminology oblique dual originates from the relation of these frames with
obligue projections, which we discuss in Section 3. As we discuss further below, the connection with
obligue projections is what renders these class of frames particularly useful in the context of consistent
sampling methods.

Our focus will be on frames in shift-invariant spaces; however, to put the results in perspective,
we collect a few results concerning oblique duals for sequefifg$c, in general Hilbert spaces in
Section 3.

In Section 4, which is the central part of the paper, we specialize to shift-invariant frame sequences
{¢(- — k)}xez in subspaces af2(R) and characterize all oblique dudls(- — k)}xcz. We also develop
an easily verifiable condition on a functiaih such that there is a dual shift-invariant frame sequence
belonging toSpari¢.(- — k)}rez. IN addition, we show that under the same direct sum condition we
considered for arbitrary Hilbert spaces, there igréque function generating such a dual. For, e.qg.,
frames generated by a B-spline, we can easily use our criterion to obtain shift-invariant duals, generated
by a function with prescribed regularity. This is possible, even for the B-sline x;_1/2,1/2;, whose
conventional dual is not even continuous.

Section 5 contains further examples of frame constructions via the results in Section 4. Finally, in
Appendix A we give more information on the conditidh= W & V* in general Hilbert spaces.

Before proceeding to the detailed development, in the next section we collect some basic results and
definitions used throughout the paper.

To conclude this introduction, we motivate our study further and relate our work to previous results.
There are a variety of contexts in which the oblique dual frames are useful. One application is in cases
in which we are forced to do analysis and reconstruction in two different spaces. For example, we may



50 O. Christensen, Y.C. Eldar / Appl. Comput. Harmon. Anal. 17 (2004) 48—68

be given samples of a signdle W, whereWW C H, that can be described as inner products of the signal
with a set of analysis vectors that span a subspaceH. In this case, we cannot reconstryctrom the

given samples using standard frame theory. However, using the concept of oblique dual frames allows us
to reconstructf perfectly from these samples when our general conditior W @ V+ is satisfied; see

[8-10]. Furthermore, iff € H does not lie entirely iV, and we are constrained to use a particular set

of reconstruction vectors (e.g., a particular reconstruction filter) that ¥patinen the class of oblique

duals are the unigue frame vectors that result in a consistent reconstrucfionarhely a reconstruction

that has the property that although, in general, is not equAl tbnonetheless yields the same samples.
There are also applications in which we may purposely choose the analysis space to be different than the
synthesis space, since this allows us much more freedom in the design of the analysis frame. As we show
in Section 4, if we (as in conventional frame theory) restrict the analysis and synthesis frame vectors to
lie in the same shift-invariant space, then there is a unique dual frame that is shift-invariant, so that we
have no freedom in choosing this frame. However, if we allow the analysis frame to lie in a different
space, then there are infinitely many possibilities of frames that are shift-invariant, so that we have much
more freedom in the design. Our example with duals of B-splines is a concrete case, where this is very
useful.

The reader may argue that even more freedom would be obtained via pseudoframes. This is certainly
true. For a bandlimited generator, a version of Theorem 4.1 can be found in [15]; however, for general
functions¢ € L2(R) it remains an open problem how to extend the results in Section 4 to the setting
of pseudoframes.Furthermore, in the context of sampling, consistency is of prime importance, which
leads to the oblique dual frame vectors. Among the previous applications of pseudoframes, we mention
that they have been used to define a type of generalized multiresolution analysis in [15]; a further study,
aiming at construction of generalized frame sequences via unbounded operators, was reported in [17].
A related idea appears in the paper [1] by Aldroubi, in the context of average sampling in shift-invariant
spaces.

Note that the discussion in [9], [11] focused on the minimal oblique dual frame, i.e., the oblique
dual frame resulting in minimal-norm coefficients. Our approach here is more general, focusing on the
flexibility we obtain compared to conventional frame theory.

2. Definitionsand basic results

Given closed subspace® andV such thati{ = W @ V* (a direct sum, not necessarily orthogonal),
the oblique projection of{ on}V alongV+ is defined by

Ewypi(w+ UL) =w, wewW, vieVt

The definition implies thaR (Eyyy1) =W andN (Eyy1) = V4, whereR(-) and A (-) denote the range
space and the null space, respectively, of the corresponding transformation. The orthogonal projection of
‘H onto a subspackV will be denoted byP)y.
Note thatEy 12 = Ejy1. On the other handiny projection P (i.e., a bounded linear operator #h
for which P2 = P) leads to a decomposition &f; in fact, as proved in, e.g., [12, Proposition 38.4],

H=R(P)®N(P).

1 This problem was solved by the authors shortly before the present article went to press.
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That is, there is a one-to-one correspondence between the considered type of decompakitemof
projections orf{. Thus, our results obtained via the splitting assumptioa WV @ V+ could as well be
formulated starting with a projection.

The assumptiori{ =W @ V* will play a crucial role throughout the paper. Lemma 2.1 (below),
proved by Tang [19, Theorem 2.3], deals with this condition, and relies on the concept of the angle
between two subspaces. The angle fidro )V is defined as the unique numtsE), W) € [0, /2] for
which

cosf(V, W)= inf P .
VW= inf 1P

Lemma 2.1. Given closed subspac#s WV of a separable Hilbert spacH, the following are equivalent

() H=W o V+;
(i) H=V oW,
(iii) cosO(V, W) > 0andcostW, V) > 0.

Further comments concerning the conditiin= YV @ V+ are in Appendix A. As a consequence of
Lemma 2.1, the oblique projectiafiy»,,. is also well defined in our setting. Straightforward calculation
gives that the adjoint operator associated to the bounded opéhator is

Eyy1™ = Eywye. 2
In Section 4 we consider frames of translates. Defining the translation operator acting on functions in
L?(R) by Ti f (x) = f(x — k), x € R, k € Z, these frames have the forfifi.¢ )iz for somegp € L2(R).
For the sake of convenience, we will frequently refer to such a frame as $gfivgnvariant Theorem 2.2
(below) states conditions ap in order for{T;¢}icz to be a frame for its closed linear spafip}iez
cannot be a frame for all df?(R), cf. [7]). Before stating the theorem, we need some further definitions.
For f € L'(R) we denote the Fourier transform by

Fro)=fo)= f £ dr

As usual, the Fourier transform is extended to a unitary operatdr@R).
For a sequence= {c;} € £2, we define the discrete-time Fourier transform as the functidif (0, 1)
given by

Fely) =) ae .
keZ

Note that the discrete-time Fourier transform is 1-periodic.
The pre-frame operatdf associated with a fram@¢} <z is given by

T:—>H, Tla)=) alis,
keZ

and its adjoint is given by
T "H— % T*f={{fTp)},,
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The discrete-time Fourier transform acting on the adjoint of the pre-frame operator is

FT'f =Y fC+(-+k, feLl’R). 3)
k
The Fourier transform acting on the pre-frame operator is
FTiay=F) alip=9p()Fc(), cel’. 4)
keZ

Giveng € L%(R), let
D(y)=Y |p(y +k)

keZ

2

and
N(@)={y: &(y)=0}.

The theorem below is basically due to Benedetto and Li [2,3], with some technical assumptions
removed by various authors (see [5] for details).

Theorem 2.2. Let¢ € L?(R). For any A, B > 0, the following characterizations hald

() {Ti¢}iez is a Bessel sequence with bouRdf and only if

d(y)<B a.e.yel0]1]

(i) {Tr¢}rez is an orthonormal sequence if and only if
d(y)y=1 a.e.yel01]

(i) {Ty¢p}iez is a Riesz sequence with bourtisB if and only if
AL P(y)<B ae.yel01]

(iv) {Ti¢}iez is aframe sequence with bounds B if and only if
A< ®(y)<B ae.on{y: &(y)#0}.

In case{T;¢}icz is a frame sequence, we have

W .=SpaTip}icz = {chTk¢3 {Ck}EEZ}- %)

keZ
A space of this type is said to tshift-invariant

3. Theobliquedual frameson V

As already mentioned, our focus is on frames in shift-invariant spaces. However, to put the results in
perspective, we first collect a few results concerning sequences in general Hilbert spaces.
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Throughout the section we will consider a Bessel sequé¢lige®; belonging to a Hilbert spack,
and let

W = Spai fi )2

The Bessel assumption implies that the pre-frame operator associatggjth is bounded; we denote
itby T.

Our first lemma relates our setup to classical frame theory. The actual content of the lemma is new;
the idea of stating the lemma in this form comes from the paper [17].

Lemma 3.1. Assume that fi}2, and {g«};2, are Bessel sequences H, and let) = Sparigi}2 .
Assume that{ = W @ V+. Then the following are equivalent

() fF=>0afo8) fi VfEW;

(i) Ewyif =) o1 (f ) fi, Vf €M,

(i) Eywif =3 20(f fdgn, Vf €H;

(IV) (EVWif’g> = thil(f, fk)(gkag>1vf’g GH;
(V) (EWVif’g> :Z]ti]_(f’ gk)(fkvg>vvf’g eH.

In case the equivalent conditions are satisfigg,}7 ; is an oblique dual frame off;}2, onV, and
{fe}32, is an oblique dual frame dfg, )2, onW. Furthermoref fi}72 ; and { Pygi }7o, are dual frames
for W (in the sense of classical frame thepraind{g.};>, and{ Py fi};2, are dual frames fob/.

Proof. The equivalence between (i) and (ii) is clear. Nowedenote the pre-frame operator associated
with {gi}22,. In terms of the pre-frame operators U, (i) means thatf U* = Eyyy1; via (2), this is
equivalent to

UT* = Eywye, (6)

which is identical to the statement in (iii). It is also clear that (iii) implies (iv) and that (ii) implies (v). To
prove that (iv) implies (iii) we fixf € H and note thap_;-, (f. fx)g« is well defined as an element
becausd f; )32, and{g.};>, are Bessel sequences. Now the assumption in (iv) shows that

<EVWLf_Z<f’ fk)gk’g>:0’ VgGH,

k=1

and (iii) follows. In the same way we can show that (v) implies (ii).
In case the equivalent conditions are satisfied, (iv) and the facEthgt f = f for f € V shows that

LFIP = 4f folge £) =Y (f Pufid(ge. f), VeV
k=1 k=1

Using Cauchy-Schwarz’ inequality and tHgk )2, (respectively{ Py fi}32,) is a Bessel sequence, we
obtain that{ Py fi}32, (respectively{g;}z2,) satisfies the lower frame condition for gfle V, i.e., both

are frames fol. That they are dual frames in the classical sense follows from (iii). The prdgf§F ,
and{ Py g}, being frames fodV is similar. Now the statement about the relevant frames being oblique
duals follows from the definition. O
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The following theorem characterizes the obliqgue dual frame¥® oAfter completing the paper we
became aware that a more general result for pseudoframes has been obtained independently by Li and
Ogawa [18].

Theorem 3.2. Let { f;}72, be a frame for a subspade) € H, and letV be a closed subspace such that
H =W & V. Then the oblique dual frames pf;}2>, onV are precisely the families

00 o0

(edp2y = Evwe ST+ b= Y (ST fio fidhy ¢ (7
j=1 k=1
where{h;}32, C V is a Bessel sequence.

For completeness, a proof of Theorem 3.2 is given in Appendix B.
Given the setup in Theorem 3.2 and considering H, it is proved in [11] that among all coefficients
{cx}22, € £2 for which

o
Eywyif =) ccfe
k=1
the coefficients with minimad2-norm are{c;}2°; = {( f, Eyw1 ST £i)}22,; the sequenceEyyy. ST 122,
is the oblique dual frame resulting from Theorem 3.2 if we chapse 0. In contrast to the present
paper, [9,11] concentrate on this particular dual.

In case we have obtained the reconstruction formula (1) for any Bessel sequgligs, i.e., an
expansion of the pseudoframe type in [18], we now show how to find an oblique dual frajyig f;
on an arbitrary closed subspageor which H =V @ U+. The result shows that having reconstruction
with respect to one family of analysis vectors (namédy,}° ;) immediately delivers a whole class of
analysis vectors leading to reconstruction.

Proposition 3.3. Assume that fi )72, and {h;};2, are Bessel sequences’y and that

f=Y (fh)fe YfeW.

k=1
Letl be any closed subspaceZiffor whichH = W @ UL. Then{ E; /. by }iez is an oblique dual frame
of { fibkez ONU.
Proof. We have that

f= (Ewye [ 1) fi=Y_(fs Eywrhid fe, Vf €W,

keZ keZ
In addition, for anyf € U+, (f, Eypyrhi) =0 so that) ", ,(f, Eyyrhy) fi = 0. Thus,
Ewysr f =Y _(f Epwrhi) fe. VfeH. ®)
keZ

Denoting the pre-frame operators{g )2, and{i;};2, by T andV, respectively, we have from (8) that
TV* = Eyyyt, Or equivalently,

VT* = Eype.
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This can be expressed as

Eyws f =Y_(f: ) Eywrhe, Vf eH;

keZ
in particular,
f=>_Af f)Euwrhi, Vf €.
keZ

For any f € U we then have that

LFIP = 4 f ) B f). ©)

keZ

Using Cauchy—Schwarz’ inequality on (9) now yields th#,,. k)72, satisfies the lower frame
condition onl/; thus, it is a frame fot/, and we obtain the conclusion.O

4. Frame sequencesin shift-invariant spaces

In this section we consider frames in shift-invariant spaces. Assumingfilygt. 7 is an overcomplete
frame for)V (see (5)), general frame theory tells us that there exist infinitely many different choices of
sequences$g; ez C YV such that

f=) _(f80Tcp, VfeWw. (10)

keZ

However, Corollary 4.4 (below) states that if we wégt} ..z to consist of integer translates of a single
function, so thaig;, = T¢ for someg € W, then¢ is unique That is, standard frame theory does not
give us any freedom in the choice of the dual if we want the shift-invariant structure. This motivates the
rest of the results in this section: in fact, we prove ihéihitely many choices of are possible if we do
not requireg to belong toWy.

For¢ € L?(R), we let

W = SpaiTip}iez, (11)

and denote the orthogonal projectionIcf(R) ontoW by Pyy.
Given two Bessel sequencghi¢licz and{Ty¢}iez, the following theorem provides a necessary and
sufficient condition on the generators such #¥t}.cz is a dual of{ Ty ¢} icz.

Theorem 4.1. Letg, ¢ € L%(R), and assume thd@y ¢}z and {T$} ez are Bessel sequences. Then the
following are equivalent

() f=>(f Td) Tk, Vf eW;

(i) Yuen (v +K)d(y +k) =1ae. onfy: d(y) #0).

If the conditions are satisfied, théfl,¢}ccz and { Py Tid}rez are dual frames fospan Ti¢}iez.
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Proof. First, consider an arbitrary functiofi € L2(R) for which y D iez | f(y + k)|? is bounded.
Then Cauchy-Schwarz’ inequality implies that

[y > 3 Fr +d(y + k)} € L*(0,1).

keZ
Now observe that

FY S THTd() =) / P ()5 A (y)e2miky

keZ keZ_oo
1

- Z / Z f(r“ + ”);’(M + n)e K dug (y)e 2Tk

keZ 0 nez

=N Y 7 +md(y +n). (12)

nez

Assuming that (i) holds and letting = ¢, it follows that:

S 6 +0d(y +b) =1 ae.onfy: $(z)#0}.

keZ

Using the above calculation with replaced byy + m for somem € Z (and using the periodicity of

YD ke d(y + k)¢ (y + k)) we even arrive at

S b+ +h =1 ae. onfy: dy +m)#0}. Vm e L.
keZ

This proves (ii). On the other hand, assuming (i), our calculation (12) shows that4df,

FY T, Td Tip ) = 30 S FTd (v +md(y +n)

keZ nez

=3 by +me 2y 1)

nez
=d()e " = FTp(y).
Thus, (i) holds for all function§;,,¢, m € Z, and hence for any finite linear combination of such functions.

By continuity of the mapf — >, _,(f, Td) T, (i) therefore holds for allf € SpariTi¢}icz.

That {Ti¢p}ez, and {PwTidlrez, are dual frames forsparZip)iez follows by standard frame
theory. O

The results in Section 3 have immediate consequences for frames of translates. In particular,
Proposition 3.3 gives a principle for obtaining an oblique dual frame in a spdoe which L2(R) =
W @ V+; we now prove that il is shift-invariant, then this oblique dual frame is shift-invariant as well.
In Proposition 4.8 we consider the conditiBA(R) =W & V* in more detail.
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Corallary 4.2. Assume that the setup and the equivalent conditions in Thetrkere satisfied. Then,
given any closed subspadesuch thatL?(R) = W @ V*, the sequencgEy . Ty )iz iS an oblique
dual frame of{T;¢}icz ONV; in caseV is shift-invariant this sequence is shift-invariant, in fact,

EvwiTi = Ty Evyyr.
Proof. That{Eyyy.Ti¢}kez is an oblique dual frame offi ¢}z on V follows from Proposition 3.3;

thus, all we have to prove is that shift-invariancelimplies thatEy. Ty = Tx Eyyy1. Now, given
f eL?R), f =v+ w for somev e V, wt e W+,

TkvaLf = Tkv.
It is easy to see that sind# is shift-invariant, then als®V* is shift-invariant. Thus,
EywiTif = EywiTiv + Epyi Tiwt =Tw. O
A related result (for pseudoframe decompositions, but with orthogonal projections instead of general
projections) is stated in [18], as a step towards a construction of a class of shift-invariant duals.

Assuming thaf T, ¢}.cz is a frame sequence, we now search for conditions on a fungtiamhich
imply that the subspace

V= SpaiTip1}iez (13)
contains a functio generating an oblique duéll;¢}icz of {Ti¢}rez. Theorem 4.3 below gives such
conditions.

Theorem 4.3. Letg, ¢1 € L?(R), and assume thdTj.¢}rez and{Ty¢1}rez are frame sequences. If there
exists a constant > 0 such that

Z(fﬁ(y + k) (y +k)‘ >A ae.on{y: d(y)#0}, (14)
keZ

then the following holds

(i) There exists a functio € V such that
f=) L) Tip, Vf €SpaiTiphez: (15)
keZ

(i) One choice of € V satisfying(15) is given in the Fourier domain by

2 $1.0) on{y: ® 0},
DY) = Tiezdy+da(y+h) tr: () #0)

0 on{y: @(y)=0}.

(iii) There is a unique functiop € V such that(15)is satisfied, if and only if
N(®) =N (@y);

if this condition is satisfied7;¢}<z is a frame forV and an oblique dual of7j¢}icz on V.
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Proof. First, we note that the assumption{@.¢ }.cz and{T;¢1}cz being frame sequences implies that
the sum in (14) is bounded above (use Cauchy—Schwarz’ inequality and Theorem 2.2). The functions in
V = SpanfTi¢1}rez have the formp =), _, hi Ty ¢1 for somefh,} € £2, or, in the Fourier domain,

$(v) = H)du(y) (16)

for someH e L?(0, 1). The functiong satisfies the conditions in Theorem 4.1 if and only if

Hp)) ¢y +kgi(y +k)=1 onfy: &(y)#0}.
keZ
Any function H satisfying this is bounded below and above{pn @ (y) # 0}; extending itin an arbitrary
way to a function inL?(0, 1) yields a functionp € V satisfying (15).
The assumption (14) further implies that

N(®1) SN (@).

If N(®) = N(®,), then (16) shows thafs(y) =0 on{y: @(y) = 0}, no matter howH is chosen
on this set. Thus, in this case there is a unique fundfidalfilling the requirements, namely, the one
given in (16). On the other hand, X'(®,) is a proper subspace of (@), different choices ofd on

N (@) \ N (@,) will lead to different values for the functi~o¢5(y) becausei(y) # 0 onN (@) \ N (®1);
thus, in this case, there exist several choices of a fungtisatisfying (15). O

In Proposition 4.8 we will show that the conditions leading to a unique oblique dual frame in
Theorem 4.3 are equivalent I(R) = W & V+, i.e., the condition we used in our analysis of oblique
duals in general Hilbert spaces.

It follows from Theorem 4.3 that there is a unique function’¥hwhich generates a dual frame having
the shift-invariant structure:

Corollary 4.4. Let ¢ € L>(R) and assume thafT;¢}.cz is a frame sequence. Then there is a unique
function¢ € Spar{T; ¢}z such that

f=) AL T T, VI €SpaTidiez,

keZ

namely,¢ = STo.

Corollary 4.4 is surprising in light of the fact that an overcomplete frame seqUETRET;¢}icz
always has several dual frames belongingty it shows that the additional wish of having shift-
invariance removes the freedom. This is exactly where Theorem 4.3 comes in handy: it gives us some
freedom back by allowing generatapsz W.

It is well known how to construct biorthogonal bases of compactly supported wavelets via B-splines.
Using the pseudoframe approach, Li [16] has been able to find smoother duals, without increasing the
support and the length of the associated filters.

Our approach immediately shows that for shift-invariant frames generated by B-splines we can find
oblique duals of arbitrary smoothness, however, with increased support.
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Example 4.5. The B-splines are defined inductively By = x;_1/2 1/2) and
B, 1(x) =B, * B1(x), neN.
The Fourier transform oB,, is given by

FB,(y) = (Siﬂny) '

Ty
It is well known that{T; B, }.<z is a Riesz sequence for any= N. For anym € N,
- sinm(y + k))z(m+")
FB,(y +k)FBiom(y +k)= _ ;
Y FBu(y + ) FByion(y +5) Z( Oy 5

keZ keZ

by the fact tha{ 7, B, ... }rcz IS @ Riesz sequence, the infimum of this function is strictly positive. Thus,
by Theorem 4.3 there exists for anye N a unique functionp € SpanT; B, 2m }rez, Which generates
an oblique dual frame ofT; B, }.cz. That is, for an arbitrary spling,,, we can find an oblique dual
frame, for which the generator has prescribed smoothness. In contrast, the classical @iugd Jof7 is
generated by, itself, which is not even continuous.

In Figs. 1 and 2 we plot the generator of the oblique dual fram@a8,}..z corresponding ta = 1
andm = 3, respectively.

In the remaining part of this section we investigate the condifié(R) =)V @ V* versus (14). The
reader may have observed that in the general theory, the condifi@®) = W @ V* played the major
role, while (14) was used for frames of translates. Our purpose is to relate these conditions. Before we
do so in Proposition 4.8, we need some preparation.

Oblique dual corresponding to m=1

Fig. 1. The generator of the oblique dual{@j, B1};cz corresponding ta: = 1.
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Oblique dual corresponding to m=3

Fig. 2. The generator of the obliqgue dual{@j, B1};cz corresponding ta: = 3.

As before, we denote the pre-frame operator{ftip},cz by T; whenever{T;¢1}iez IS known to be
a Bessel sequence, we denote its pre-frame operatir. Bye continue to define the spacds V as in
(11) and (13).

Lemma 4.6. Let ¢, ¢; € L?(R), and assume thatTy¢}icz and {Tip1}icz are frame sequences. If
L?(R) =W @ V+, thenV*T mapsR(T*) bijectively ontoR(V*).
Proof. First, assume that*7Tc = 0 for somec € R(T*). Then
Tce WNN (V) =WNR(V):=WnVY+={0},
so that
ce N(T)NR(T*) = N(T) NN(T)* = {0}.

HenceV*T is injective. To prove thaV*T mapsR(T*) onto R(V*), letc € R(V*). Then there exists
an element: = w + vt € L2(R), w e W, vt € YV, with V*h = V*w = c. Since{T;¢}rez is a frame for
W we can find a sequences R(T*) such thad = w. Hence,V*T'd = c and the range oV *T equals
R(V*. O

Lemma4.7. If ¢ € L?(R) and {Ti¢}«ez iS a frame sequence, then

R(T*)={ce t* Fc=00onN(®)}.



O. Christensen, Y.C. Eldar / Appl. Comput. Harmon. Anal. 17 (2004) 48—-68 61

Proof. If ce R(T*), thenc, = (y, Ty¢) for somey € L?(R). By (3),
Fey) =) 3y +0d(y +k). (17)
keZ
It is clear thatFc =0 on N (®). Conversely, ifc € £2 andFc(y) =0 on{y: ®(y) = 0}, we can define
y € L%(R) by

_ Fendly) )
y(y)= { S iz |6+ 2 on{y: @(y) #0},
0 on{y: ®(y)=0},

then

FT*y(y) =Y 3y +(y +k) = Fcy),
keZ

ie,c=T*yeR(T*. O

Given two sequencss d € £2, we define the convolutions d by

cxd= {Zcmdk—m}

meZ keZ

Proposition 4.8. Letg, ¢1 € L(R), and assume thd@; ¢ },cz and {T;¢1 }rez are frame sequences. Then
the following are equivalent

(i) L2R)=W @V
(i) N(®)=N(P;) and there exists a constart> 0 such that

Y o +hdily +k)’ onfy: @(y) #0}. (18)

keZ

A<

Proof. First, we prove (i}= (ii). Givenc, lete= V*Tc. Then

e = <Zcme¢, Tk¢1> = cul$, Timpr),

mez meZ

so thate= c* d, whered; = (¢, Ty ¢1). From (3),
Fd=) ¢ +kdi(-+k).

keZ
Thus,

FV*Tc=FcFd=FcY ¢(+hdi(-+k). (19)
keZ
From Lemma 4.6 we have th&V*Tc mapsR(T*) bijectively ontoFR(V*); now the characterization
of R(T*) (Lemma 4.7) shows that/ (@) € NV (®,). However, due to Lemma 2.1 we can interchange the
roles ofY} andV; thus we also have thaf (®,) € N (®). The existence of the lower bound in (18) also
follows from (19).
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For the proof of (ii)= (i), from Lemma 2.1, it is sufficient to show that
cosfW,V)>0 and co®(V,W)>D0.
We first estimate

cosf(V, W) = inf P, .
V= inf P

Any f €V can be expressed g5= ), cxT¢1 SO thatf (y) = Fc(y)di(y). Assuming that] 7| = 1,
and denoting the characteristic function for the compleme 6p) by xx s, we have that

1
1= [1FednPay = [|7eo Yl + o[ dr
0 k

1

= / XN (@)¢

0
It is well known (see [4]) that

Fe) Y |uty + o) dy.
k

Sk 1(+k) 12
0 onN(®).

Thus, outsideV (@),

FPwf = {‘2’(')72’« [ oursiden'(e),

S b1 +R)P(-+ k)
S oG+ k)2

FPwf =Fc()é()
It follows that

213 o1y + )by +h)I? q
|3 1oy + k)22

| Py £ 112 = [ F Py £ 112 = / Fe)d»)|
yEN (@)

2| x b1y + Sy + B
Yild(y +k)?
OutsideN (@) = N (®,), the frame condition implies tha and®; are bounded above and below. Thus,

1

12w 12 = [ x| Fe0) Y Jdaer + 0
k

0

1
= /|X/\/(<1>)C(V)-7:C(J/)|
0

1Y, (v + )by + k)2 )
S DR, gy +h)I2

L n 2
> ess inf |2k 61(y + K)oy + 0

1
- : werMFem| Y |ty + b’
N Y, |¢<y+k>|22k|¢1<y+k>|20/| “’) 2 Iy 0l

Cess inf kb +0D( + B
PEN@ Y 1y + R Y by + 02
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so that

N ~ 2
cosd(V, W) >ess inf lXA:" Py + k)(/)()f + 0l .
yEN@) 3 oy + 012D, 11y + R
We conclude that caaV, W) > 0 if
‘ 2

Y b1y + by +k)| >0.
k

ess inf
yeN (P)

The fact that co8 (W, V) > 0 follows by symmetry. O

5. Further examples

Given a frame sequend&; v },<z, Theorem 4.1 can be used to generate new pairs of frames and their
oblique duals. Let us illustrate this with some examples.

Example 5.1. Assume thaty € L?(R) and that{T,v };cz is a frame sequence. Lét, H be a pair of
measurable 1-periodic functions, which are bounded and bounded below. PefireL?(R) via

PN =HWV ()., ¢ =HW)¥©»).
Then{Ty¢}iez and{Ty ¢}z are frame sequences, spanning the same spddeyak.z; in fact,

¢=> aliy. ¢=> aTy forsomela), () e >

keZ keZ
Since

2
)

S d( +0dy +0 = HOHW) S |[F (v +k) (20)

keZ keZ
we see that (ii) in Theorem 4.1 is satisfied if
1

H(y)H(y) =

- on{y: Z\@(yw)\z;ﬁo}.
Vi 0 + 02 =7

This leads to several choices of a frame sequéfigg}i. and a corresponding oblique dudke}cz.
The special choice

1

H(y)=H(y)= on{y: Z|$<y+k>|z¢0}

i Wy + 02 ez

leads to the case whegeand¢ are equal to the generator of the canonical tight frame associated with
Spai Tk Y Ykez-

We can also generate frame sequences in other spacesd, v } i<z
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Example 5.2. With the assumptions in Example 5.1, defifvgp by
b =HWI(), 6@y =HW)b»).
Then
p0) =) a2 —k). )=) ay(@x—k) forsome(a). (a2

keZ keZ

As before,{Ti¢} ez, and{Ty¢}iez, are Bessel sequences, and
A 2 +k\ ~ +k\ ~(v+k\ - +k
A T GO CO G
keZ keZ
—ulX\g(Y Y
-(3)a(5) 2 (5+)

+H<g + %)ﬁ(g + %) 3

keZ

2

2
: (21)

A LA

2 2
Again, it is easy to choosél, H satisfying (i) in Theorem 4.1. This leads to frame expansions in
spar{T.¢}ez, Which is now a subspace of

span{y (2 —k)},
the oblique dual we construct this way belongspar 7x¢} <z, which is in general another subspace of
Spary (2 —k) }rez-

The frame decompositions obtained via Example 5.2 take place in subspasesigf(2 - —k)}iez
for the given functiony; it might not be so easy to control which space we obtain the decomposition in.
However, in an important special case, we obtain decompositions in the SE&Et&; v }cz; namely, if
Y = ¢ is a function for whichT;¢}c7 is a Riesz sequence and which satisfies a scaling equation

$(2y)=Hy)d(y)
for a 1-periodic functionH. The simplest example is as follows:

Example 5.3. Consider the translated B-splige= xj0.1). Then
A sinm
by =emr =L
thus,
$(2y)=H(y)$(y) with H(y)=e"" cosry.
Also, since{T, ¢}z forms an orthonormal sequence,

o= |py +b’=1 ae.

keZ
Using the calculation (21) now leads to
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A ~ . ~ . l - 1
S0 + 0y + k) = T2 cos%H(g) + e”’(”“)/zcos(n%)H(g + E)
keZ

. ~ . ~ 1
—eiv2eost X gL ) —ierivzsinZ g (X 4 2).
2 2 2 2 2

The choiceH = H leads tog = ¢, which is the generator of the canonical dual of the orthonormal
sequencdT;¢}icz. However, the above calculation shows that other choiced afe possible, which
make (ii) in Theorem 4.1 satisfied. They lead to oblique dualgjg}z, having the form{T;¢}iz, and
these duals belong to the subspace

{ch¢(2-—k): (e} ezz}.

keZ
Similar examples are possible with splines of higher order; we leave the easy calculations to the reader.
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Appendix A. Thecondition H=W & V*

Given closed subspacéd’, V of the Hilbert space/{ such thatH = W @ V+, it follows from
Lemma 2.1 that

Wwnyt={0}, VNwt={0}. (A1)
On the other hand, (A.1) is not enough fdr= 1V @ V* to hold, as the following example shows:

Example A.1. Let {e;}2, be an orthonormal basis f@t, and let

V = Spaifex—_1 — ex ey,

W = Spaifex + exrt1)peq-
Then

V* = 5pafex—1 + eaioy;

clearly (A.1) is satisfied, but. # W & V* (otherwise{e, + e,41}:2, would be a frame fo#, which is
not the case, see Example 5.4.6 in [5]).

The condition forH = W @ V* can also be expressed using tap. WhenV # {0}, the gap fromV
to Wiis (cf. [13])

SV W)= sup inf ||f—gll.
fev, IifII=18€W

The lemma below relates the gap to the angle used so far.
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LemmaA.2. LetV # {0}, W be closed subspaces&f Then

SOV, W) =|I = Pw)Py| =sind(V, W). (A.2)
Proof. An elementary calculation (Lemma 2.1 in [6]) shows tB@?, W) = || Py, Py ||; this proves the
first equality in (A.2). Now, by definition,

SV W)= sup |If—Pwfll= sup VIfIZ—IPwfI2=sin6(V,W). O
fev, Iifi=1 feV, Iifli=1

Expressed in terms of the gap, Lemma 2.1 states thaQuf W) <1 ands(W, V) < 1, then
H =)W @& V*. A short direct proof of this fact goes as follows. Let H; then we can write

f=PwPyf+U—-Py)Pvf+U—-Py)f.

The first and the third belong %’ andV+, respectively; iterating the decomposition on the middle term
leads to

f=PwPyf+PyPy(I—Py)Pyf+[U - PW)PV]2f+(I —P)I —Py)Pyf+U—-Py)f

N N
=PwPy Y [ = PpPY]" f+[U = PP T F+ (= P)Y [ = PWPY]' L.
n=0 n=0
Using (A.2) and the assumptidt), W) < 1, we know that
[ —Py)PY] ™ f >0 asN — oo;

thus

f=PwP)) [I=PmP]" f+U =P [U-PWP] feW+VE
n=0 n=0

This demonstrates that{ = W + V*. To show that the sum is direct, it suffices to prove that
WnN Y+ ={0}. To do so, note that if ¢ WnN V+, then

f=U—P)Pwf==[U~-P)Pw] f;
now, letting N — oo and using thas (W, V) < 1 leads tof = 0 as desired.

Appendix B. Proof of Theorem 3.2

Let againT denote the pre-frame operator for the given freig;> , for W.
The proof of Theorem 3.2 is based on a series of lemmas. When (6) is satisfied for a bounded operator
U :¢*>(N) — H, we say thal/ is aleft-inverseof T* onV alongW-.

Lemma B.1. Let { /;}?°, be a frame forV, and letV be a closed subspace such that=)V & V*.
Let {8;}2°, be the canonical orthonormal basis féf(N). The oblique dual frames fdtf;}2°, onV are
precisely the familiegg,}2°, = (V8122 ,, whereV : ¢2(N) — V is a bounded left-inverse @* on V
alongWw+.
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Proof. Assuming thatV : ¢2(N) — V is a bounded operator with range equalXat is well known that
the sequencég: )2, :={V )2, is aframe for). Note that in terms of6. )2 ;,

o]

T*f ={{f. f) ooy = D_(Fs fidBi

k=1

thus, if V is a bounded left-inverse @f* onV alongW+, then for all f € H,

Evwef =VT*f = (f. fda.
k=1
This shows thafg;};2, is an oblique dual frame dff;}7>; onV. For the other implication, assume that
{gk}7241 Is an oblique dual frame dff;}72; on V. Then the pre-frame operator for {g;};° , satisfies the
conditions: in fact{g.}>, = {Ud}2,, and by Lemma 3.1/ T* = Eyyyr. O

LemmaB.2. Let { fi}72, be a frame for a subspadd’ C H, and letV be a closed subspace such that
H =W @ V*. The bounded left-inverses Bf onV along W+, with range equal td, are precisely the
operators having the forniyy,. STT + W(I — T*STT), whereW : ¢?(N) — V is a bounded operator,
and I denotes the identity operator dA(N).

Proof. Note that STTT* = Py, Eywi Py = Eyyye, and T*Py, = T* since N(T*) = W+, then
straightforward calculation gives that an operator of the given form is a left-invergé oh V along
2%

On the other hand, it/ : ¢?(N) — V is a given left-inverse of"* on V along W+, then by taking
wW=U,

Evwi ST+ WU —T*S'"T) = By STT+U —UT*S'TT=U. O

Proof of Theorem 3.2. By Lemmas B.1 and B.2 we can characterize the oblique dual fram&sam
all families of the form

(g} = {Evwi ST+ W — T*STT)5 ), (B.1)

where W : ¢2(N) — V is a bounded operator, or, equivalently, an operator of the for; 172, =
Z?‘;lcjhj, where{h;}2, C V is a Bessel sequence. By inserting this expressioriifon (B.1) we
get

(81)p2y = (Eywi ST fi + Wo = WT*STT),

9]

j=1 k=1

e¢]
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