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Abstract

Given a frame for a subspaceW of a Hilbert spaceH, we consider a class of oblique dual frame sequen
These dual frame sequences are not constrained to lie inW . Our main focus is on shift-invariant frame sequen
of the form{φ(· − k)}k∈Z in subspaces ofL2(R); for such frame sequences we are able to characterize the
shift-invariant oblique dual Bessel sequences. Given frame sequences{φ(·− k)}k∈Z and{φ1(·− k)}k∈Z, we present
an easily verifiable condition implying thatspan{φ1(· − k)}k∈Z contains a generator for a shift-invariant dual
{φ(· − k)}k∈Z; in particular, the exact statement of this result implies the somewhat surprising fact that there
unique conventional dual frame that is shift-invariant. As an application of our results we consider frame se
generated by B-splines, and show how to construct oblique duals with prescribed regularity.
 2004 Published by Elsevier Inc.
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1. Introduction

Let H be a separable Hilbert space, and suppose that{fk}∞
k=1 is a frame for a subspaceW ⊆ H, i.e.,

that{fk}∞
k=1 ⊂ W and that there exist constantsA,B > 0 such that

A‖f ‖2 �
∞∑

k=1

∣∣〈f,fk〉
∣∣2 � B‖f ‖2, ∀f ∈W.

* Corresponding author.
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Further, letS be the frame operator for{fk}∞
k=1, i.e.,

S :H → H, Sf =
∞∑

k=1

〈f,fk〉fk.

Denoting the pseudo-inverse ofS by S†, standard frame theory tells us that eachf ∈W has a represen
tation

f =
∞∑

k=1

〈f,S†fk〉fk.

It is well known [14] how to characterize all Bessel sequences{gk}∞
k=1 belonging toW , such that

f =
∞∑

k=1

〈f,gk〉fk, ∀f ∈ W. (1)

As observed by Li and Ogawa [18], (1) might hold under much weaker restrictions on{fk}∞
k=1 and

{gk}∞
k=1; in fact, it is not necessary that these sequences belong toW , and it is not necessary that{fk}∞

k=1
forms a frame. In case (1) holds for a givenW and some sequences{fk}∞

k=1, {gk}∞
k=1 (satisfying certain

Bessel conditions),{gk}∞
k=1 is called apseudoframefor W w.r.t. {fk}∞

k=1.
In this paper we will concentrate on the case where{fk}∞

k=1 is a frame forW and{gk}∞
k=1 is a frame for

a closed subspaceV of H; we elaborate on the motivation for our special interest in this case at the e
this section. A frame{gk}∞

k=1 for V for which (1) holds is called anoblique dual frame of{fk}∞
k=1 onV ; this

concept was first introduced in [8,9] for finite-dimensional frames, and later generalized to the in
dimensional case in [11]. The terminology oblique dual originates from the relation of these frame
oblique projections, which we discuss in Section 3. As we discuss further below, the connectio
oblique projections is what renders these class of frames particularly useful in the context of co
sampling methods.

Our focus will be on frames in shift-invariant spaces; however, to put the results in persp
we collect a few results concerning oblique duals for sequences{fk}∞

k=1 in general Hilbert spaces i
Section 3.

In Section 4, which is the central part of the paper, we specialize to shift-invariant frame seq
{φ(· − k)}k∈Z in subspaces ofL2(R) and characterize all oblique duals{φ̃(· − k)}k∈Z. We also develop
an easily verifiable condition on a functionφ1 such that there is a dual shift-invariant frame seque
belonging tospan{φ1(· − k)}k∈Z. In addition, we show that under the same direct sum condition
considered for arbitrary Hilbert spaces, there is aunique function generating such a dual. For, e.
frames generated by a B-spline, we can easily use our criterion to obtain shift-invariant duals, ge
by a function with prescribed regularity. This is possible, even for the B-splineB1 = χ[−1/2,1/2], whose
conventional dual is not even continuous.

Section 5 contains further examples of frame constructions via the results in Section 4. Fin
Appendix A we give more information on the conditionH = W ⊕ V⊥ in general Hilbert spaces.

Before proceeding to the detailed development, in the next section we collect some basic res
definitions used throughout the paper.

To conclude this introduction, we motivate our study further and relate our work to previous r
There are a variety of contexts in which the oblique dual frames are useful. One application is i
in which we are forced to do analysis and reconstruction in two different spaces. For example, w
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be given samples of a signalf ∈W , whereW ⊂ H, that can be described as inner products of the si
with a set of analysis vectors that span a subspaceV ⊂ H. In this case, we cannot reconstructf from the
given samples using standard frame theory. However, using the concept of oblique dual frames a
to reconstructf perfectly from these samples when our general conditionH = W ⊕ V⊥ is satisfied; see
[8–10]. Furthermore, iff ∈ H does not lie entirely inW , and we are constrained to use a particular
of reconstruction vectors (e.g., a particular reconstruction filter) that spanW , then the class of obliqu
duals are the unique frame vectors that result in a consistent reconstruction off , namely a reconstructio
that has the property that although, in general, is not equal tof , it nonetheless yields the same samp
There are also applications in which we may purposely choose the analysis space to be different
synthesis space, since this allows us much more freedom in the design of the analysis frame. As
in Section 4, if we (as in conventional frame theory) restrict the analysis and synthesis frame ve
lie in the same shift-invariant space, then there is a unique dual frame that is shift-invariant, so
have no freedom in choosing this frame. However, if we allow the analysis frame to lie in a dif
space, then there are infinitely many possibilities of frames that are shift-invariant, so that we hav
more freedom in the design. Our example with duals of B-splines is a concrete case, where this
useful.

The reader may argue that even more freedom would be obtained via pseudoframes. This is c
true. For a bandlimited generator, a version of Theorem 4.1 can be found in [15]; however, for g
functionsφ ∈ L2(R) it remains an open problem how to extend the results in Section 4 to the s
of pseudoframes.1 Furthermore, in the context of sampling, consistency is of prime importance, w
leads to the oblique dual frame vectors. Among the previous applications of pseudoframes, we
that they have been used to define a type of generalized multiresolution analysis in [15]; a furthe
aiming at construction of generalized frame sequences via unbounded operators, was reported
A related idea appears in the paper [1] by Aldroubi, in the context of average sampling in shift-inv
spaces.

Note that the discussion in [9], [11] focused on the minimal oblique dual frame, i.e., the ob
dual frame resulting in minimal-norm coefficients. Our approach here is more general, focusing
flexibility we obtain compared to conventional frame theory.

2. Definitions and basic results

Given closed subspacesW andV such thatH = W ⊕ V⊥ (a direct sum, not necessarily orthogona
the oblique projection ofH onW alongV⊥ is defined by

EWV⊥(w + v⊥) = w, w ∈W, v⊥ ∈ V⊥.

The definition implies thatR(EWV⊥) = W andN (EWV⊥) = V⊥, whereR(·) andN (·) denote the rang
space and the null space, respectively, of the corresponding transformation. The orthogonal proje
H onto a subspaceW will be denoted byPW .

Note thatEWV⊥2 = EWV⊥ . On the other hand,anyprojectionP (i.e., a bounded linear operator onH
for which P 2 = P ) leads to a decomposition ofH; in fact, as proved in, e.g., [12, Proposition 38.4],

H = R(P ) ⊕N (P ).

1 This problem was solved by the authors shortly before the present article went to press.
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That is, there is a one-to-one correspondence between the considered type of decomposition oH and
projections onH. Thus, our results obtained via the splitting assumptionH = W ⊕ V⊥ could as well be
formulated starting with a projection.

The assumptionH = W ⊕ V⊥ will play a crucial role throughout the paper. Lemma 2.1 (belo
proved by Tang [19, Theorem 2.3], deals with this condition, and relies on the concept of the
between two subspaces. The angle fromV to W is defined as the unique numberθ(V,W) ∈ [0, π/2] for
which

cosθ(V,W) = inf
f ∈V ,‖f‖=1

‖PWf ‖.

Lemma 2.1. Given closed subspacesV,W of a separable Hilbert spaceH, the following are equivalent:

(i) H =W ⊕ V⊥;
(ii) H = V ⊕W⊥;

(iii) cosθ(V,W) > 0 andcosθ(W,V) > 0.

Further comments concerning the conditionH = W ⊕ V⊥ are in Appendix A. As a consequence
Lemma 2.1, the oblique projectionEVW⊥ is also well defined in our setting. Straightforward calculat
gives that the adjoint operator associated to the bounded operatorEWV⊥ is

EWV⊥∗ = EVW⊥. (2)

In Section 4 we consider frames of translates. Defining the translation operator acting on func
L2(R) by Tkf (x) = f (x − k), x ∈ R, k ∈ Z, these frames have the form{Tkφ}k∈Z for someφ ∈ L2(R).
For the sake of convenience, we will frequently refer to such a frame as beingshift-invariant. Theorem 2.2
(below) states conditions onφ in order for {Tkφ}k∈Z to be a frame for its closed linear span ({Tkφ}k∈Z

cannot be a frame for all ofL2(R), cf. [7]). Before stating the theorem, we need some further definiti
Forf ∈ L1(R) we denote the Fourier transform by

Ff (γ ) = f̂ (γ ) =
∞∫

−∞
f (x)e−2πixγ dx.

As usual, the Fourier transform is extended to a unitary operator onL2(R).
For a sequencec = {ck} ∈ �2, we define the discrete-time Fourier transform as the function inL2(0,1)

given by

Fc(γ ) =
∑
k∈Z

cke−2πikγ .

Note that the discrete-time Fourier transform is 1-periodic.
The pre-frame operatorT associated with a frame{Tkφ}k∈Z is given by

T :�2 → H, T {ck} =
∑
k∈Z

ckTkφ,

and its adjoint is given by

T ∗ :H → �2, T ∗f = {〈f,Tkφ〉} .

k∈Z
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The discrete-time Fourier transform acting on the adjoint of the pre-frame operator is

FT ∗f =
∑

k

f̂ (· + k)φ̂(· + k), f ∈ L2(R). (3)

The Fourier transform acting on the pre-frame operator is

FT {ck} = F
∑
k∈Z

ckTkφ = φ̂(·)Fc(·), c ∈ �2. (4)

Givenφ ∈ L2(R), let

Φ(γ ) =
∑
k∈Z

∣∣φ̂(γ + k)
∣∣2,

and

N (Φ) = {
γ : Φ(γ ) = 0

}
.

The theorem below is basically due to Benedetto and Li [2,3], with some technical assum
removed by various authors (see [5] for details).

Theorem 2.2. Letφ ∈ L2(R). For anyA,B > 0, the following characterizations hold:

(i) {Tkφ}k∈Z is a Bessel sequence with boundB if and only if

Φ(γ ) � B a.e.γ ∈ [0,1].
(ii) {Tkφ}k∈Z is an orthonormal sequence if and only if

Φ(γ ) = 1 a.e.γ ∈ [0,1].
(iii) {Tkφ}k∈Z is a Riesz sequence with boundsA, B if and only if

A � Φ(γ ) � B a.e.γ ∈ [0,1].
(iv) {Tkφ}k∈Z is a frame sequence with boundsA, B if and only if

A � Φ(γ ) � B a.e. on
{
γ : Φ(γ ) 
= 0

}
.

In case{Tkφ}k∈Z is a frame sequence, we have

W := span{Tkφ}k∈Z =
{∑

k∈Z

ckTkφ: {ck} ∈ �2

}
. (5)

A space of this type is said to beshift-invariant.

3. The oblique dual frames on V

As already mentioned, our focus is on frames in shift-invariant spaces. However, to put the re
perspective, we first collect a few results concerning sequences in general Hilbert spaces.
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Throughout the section we will consider a Bessel sequence{fk}∞
k=1 belonging to a Hilbert spaceH,

and let

W = span{fk}∞
k=1.

The Bessel assumption implies that the pre-frame operator associated with{fk}∞
k=1 is bounded; we denot

it by T .
Our first lemma relates our setup to classical frame theory. The actual content of the lemma

the idea of stating the lemma in this form comes from the paper [17].

Lemma 3.1. Assume that{fk}∞
k=1 and {gk}∞

k=1 are Bessel sequences inH, and letV = span{gk}∞
k=1.

Assume thatH = W ⊕ V⊥. Then the following are equivalent:

(i) f = ∑∞
k=1〈f,gk〉fk, ∀f ∈ W ;

(ii) EWV⊥f = ∑∞
k=1〈f,gk〉fk , ∀f ∈H;

(iii) EVW⊥f = ∑∞
k=1〈f,fk〉gk , ∀f ∈H;

(iv) 〈EVW⊥f,g〉 = ∑∞
k=1〈f,fk〉〈gk, g〉, ∀f,g ∈H;

(v) 〈EWV⊥f,g〉 = ∑∞
k=1〈f,gk〉〈fk, g〉, ∀f,g ∈H.

In case the equivalent conditions are satisfied,{gk}∞
k=1 is an oblique dual frame of{fk}∞

k=1 on V , and
{fk}∞

k=1 is an oblique dual frame of{gk}∞
k=1 onW . Furthermore,{fk}∞

k=1 and{PWgk}∞
k=1 are dual frames

for W (in the sense of classical frame theory), and{gk}∞
k=1 and{PVfk}∞

k=1 are dual frames forV .

Proof. The equivalence between (i) and (ii) is clear. Now, letU denote the pre-frame operator associa
with {gk}∞

k=1. In terms of the pre-frame operatorsT , U , (ii) means thatT U ∗ = EWV⊥ ; via (2), this is
equivalent to

UT ∗ = EVW⊥, (6)

which is identical to the statement in (iii). It is also clear that (iii) implies (iv) and that (ii) implies (v)
prove that (iv) implies (iii) we fixf ∈H and note that

∑∞
k=1〈f,fk〉gk is well defined as an element inH

because{fk}∞
k=1 and{gk}∞

k=1 are Bessel sequences. Now the assumption in (iv) shows that〈
EVW⊥f −

∞∑
k=1

〈f,fk〉gk, g

〉
= 0, ∀g ∈H,

and (iii) follows. In the same way we can show that (v) implies (ii).
In case the equivalent conditions are satisfied, (iv) and the fact thatEVW⊥f = f for f ∈ V shows that

‖f ‖2 =
∞∑

k=1

〈f,fk〉〈gk, f 〉 =
∞∑

k=1

〈f,PVfk〉〈gk, f 〉, ∀f ∈ V.

Using Cauchy–Schwarz’ inequality and that{gk}∞
k=1 (respectively{PVfk}∞

k=1) is a Bessel sequence, w
obtain that{PVfk}∞

k=1 (respectively{gk}∞
k=1) satisfies the lower frame condition for allf ∈ V , i.e., both

are frames forV . That they are dual frames in the classical sense follows from (iii). The proof of{fk}∞
k=1

and{PWgk}∞
k=1 being frames forW is similar. Now the statement about the relevant frames being ob

duals follows from the definition. �
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The following theorem characterizes the oblique dual frames onV . After completing the paper w
became aware that a more general result for pseudoframes has been obtained independently
Ogawa [18].

Theorem 3.2. Let {fk}∞
k=1 be a frame for a subspaceW ⊆ H, and letV be a closed subspace such th

H = W ⊕ V⊥. Then the oblique dual frames of{fk}∞
k=1 onV are precisely the families

{gk}∞
k=1 =

{
EVW⊥S†fk + hk −

∞∑
j=1

〈S†fk, fj 〉hj

}∞

k=1

, (7)

where{hk}∞
k=1 ⊂ V is a Bessel sequence.

For completeness, a proof of Theorem 3.2 is given in Appendix B.
Given the setup in Theorem 3.2 and consideringf ∈H, it is proved in [11] that among all coefficien

{ck}∞
k=1 ∈ �2 for which

EWV⊥f =
∞∑

k=1

ckfk,

the coefficients with minimal�2-norm are{ck}∞
k=1 = {〈f,EVW⊥S†fk〉}∞

k=1; the sequence{EVW⊥S†fk}∞
k=1

is the oblique dual frame resulting from Theorem 3.2 if we chooseh = 0. In contrast to the prese
paper, [9,11] concentrate on this particular dual.

In case we have obtained the reconstruction formula (1) for any Bessel sequence{gk}∞
k=1, i.e., an

expansion of the pseudoframe type in [18], we now show how to find an oblique dual frame of{fk}∞
k=1

on an arbitrary closed subspaceU for whichH = W ⊕ U⊥. The result shows that having reconstruct
with respect to one family of analysis vectors (namely,{gk}∞

k=1) immediately delivers a whole class
analysis vectors leading to reconstruction.

Proposition 3.3. Assume that{fk}∞
k=1 and{hk}∞

k=1 are Bessel sequences inH, and that

f =
∞∑

k=1

〈f,hk〉fk, ∀f ∈W.

LetU be any closed subspace ofH for whichH = W ⊕U⊥. Then{EUW⊥hk}k∈Z is an oblique dual frame
of {fk}k∈Z onU .

Proof. We have that

f =
∑
k∈Z

〈EWU⊥f,hk〉fk =
∑
k∈Z

〈f,EUW⊥hk〉fk, ∀f ∈W.

In addition, for anyf ∈ U⊥, 〈f,EUW⊥hk〉 = 0 so that
∑

k∈Z
〈f,EUW⊥hk〉fk = 0. Thus,

EWU⊥f =
∑
k∈Z

〈f,EUW⊥hk〉fk, ∀f ∈H. (8)

Denoting the pre-frame operators of{fk}∞
k=1 and{hk}∞

k=1 by T andV , respectively, we have from (8) th
T V ∗ = EWU⊥ , or equivalently,

V T ∗ = EUW⊥ .
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This can be expressed as

EUW⊥f =
∑
k∈Z

〈f,fk〉EUW⊥hk, ∀f ∈H;

in particular,

f =
∑
k∈Z

〈f,fk〉EUW⊥hk, ∀f ∈ U .

For anyf ∈ U we then have that

‖f ‖2 =
∑
k∈Z

〈f,fk〉〈EUW⊥hk, f 〉. (9)

Using Cauchy–Schwarz’ inequality on (9) now yields that{EUW⊥hk}∞
k=1 satisfies the lower fram

condition onU ; thus, it is a frame forU , and we obtain the conclusion.�

4. Frame sequences in shift-invariant spaces

In this section we consider frames in shift-invariant spaces. Assuming that{Tkφ}k∈Z is an overcomplete
frame forW (see (5)), general frame theory tells us that there exist infinitely many different choic
sequences{gk}k∈Z ⊂W such that

f =
∑
k∈Z

〈f,gk〉Tkφ, ∀f ∈W. (10)

However, Corollary 4.4 (below) states that if we want{gk}k∈Z to consist of integer translates of a sing
function, so thatgk = Tkφ̃ for someφ̃ ∈ W , then φ̃ is unique. That is, standard frame theory does n
give us any freedom in the choice of the dual if we want the shift-invariant structure. This motivat
rest of the results in this section: in fact, we prove thatinfinitely many choices of̃φ are possible if we do
not requireφ̃ to belong toW .

Forφ ∈ L2(R), we let

W = span{Tkφ}k∈Z, (11)

and denote the orthogonal projection ofL2(R) ontoW by PW .
Given two Bessel sequences{Tkφ}k∈Z and{Tkφ̃}k∈Z, the following theorem provides a necessary a

sufficient condition on the generators such that{Tkφ̃}k∈Z is a dual of{Tkφ}k∈Z.

Theorem 4.1. Letφ, φ̃ ∈ L2(R), and assume that{Tkφ}k∈Z and{Tkφ̃}k∈Z are Bessel sequences. Then
following are equivalent:

(i) f = ∑
k∈Z

〈f,Tkφ̃〉Tkφ, ∀f ∈W ;

(ii)
∑

k∈Z
φ̂(γ + k)

ˆ̃
φ(γ + k) = 1 a.e. on{γ : Φ(γ ) 
= 0}.

If the conditions are satisfied, then{Tkφ}k∈Z and{PWTkφ̃}k∈Z are dual frames forspan{Tkφ}k∈Z.
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Proof. First, consider an arbitrary functionf ∈ L2(R) for which γ �→ ∑
k∈Z

|f̂ (γ + k)|2 is bounded.
Then Cauchy–Schwarz’ inequality implies that[

γ �→
∑
k∈Z

f̂ (γ + k)
ˆ̃
φ(γ + k)

]
∈ L2(0,1).

Now observe that

F
∑
k∈Z

〈f,Tkφ̃〉Tkφ(γ ) =
∑
k∈Z

∞∫
−∞

f̂ (µ)
ˆ̃
φ(µ)e2πikµ dµφ̂(γ )e−2πikγ

=
∑
k∈Z

1∫
0

∑
n∈Z

f̂ (µ + n)
ˆ̃
φ(µ + n)e2πikµ dµφ̂(γ )e−2πikγ

= φ̂(γ )
∑
n∈Z

f̂ (γ + n)
ˆ̃
φ(γ + n). (12)

Assuming that (i) holds and lettingf = φ, it follows that:∑
k∈Z

φ̂(γ + k)
ˆ̃
φ(γ + k) = 1 a.e. on

{
γ : φ̂(γ ) 
= 0

}
.

Using the above calculation withγ replaced byγ + m for somem ∈ Z (and using the periodicity o

γ �→ ∑
k∈Z

φ̂(γ + k)
ˆ̃
φ(γ + k)) we even arrive at∑

k∈Z

φ̂(γ + k)
ˆ̃
φ(γ + k) = 1 a.e. on

{
γ : φ̂(γ + m) 
= 0

}
, ∀m ∈ Z.

This proves (ii). On the other hand, assuming (ii), our calculation (12) shows that form ∈ Z,

F
∑
k∈Z

〈Tmφ,Tkφ̃〉Tkφ(γ ) = φ̂(γ )
∑
n∈Z

FTmφ(γ + n)
ˆ̃
φ(γ + n)

= φ̂(γ )
∑
n∈Z

φ̂(γ + n)e−2πim(γ+n) ˆ̃φ(γ + n)

= φ̂(γ )e−2πimγ = FTmφ(γ ).

Thus, (i) holds for all functionsTmφ, m ∈ Z, and hence for any finite linear combination of such functio
By continuity of the mapf �→ ∑

k∈Z
〈f,Tkφ̃〉Tkφ, (i) therefore holds for allf ∈ span{Tkφ}k∈Z.

That {Tkφ}k∈Z and {PWTkφ̃}k∈Z are dual frames forspan{Tkφ}k∈Z follows by standard frame
theory. �

The results in Section 3 have immediate consequences for frames of translates. In pa
Proposition 3.3 gives a principle for obtaining an oblique dual frame in a spaceV for which L2(R) =
W ⊕V⊥; we now prove that ifV is shift-invariant, then this oblique dual frame is shift-invariant as w
In Proposition 4.8 we consider the conditionL2(R) = W ⊕ V⊥ in more detail.
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Corollary 4.2. Assume that the setup and the equivalent conditions in Theorem4.1 are satisfied. Then
given any closed subspaceV such thatL2(R) = W ⊕ V⊥, the sequence{EVW⊥Tkφ̃}k∈Z is an oblique
dual frame of{Tkφ}k∈Z onV ; in caseV is shift-invariant this sequence is shift-invariant, in fact,

EVW⊥Tk = TkEVW⊥.

Proof. That {EVW⊥Tkφ̃}k∈Z is an oblique dual frame of{Tkφ}k∈Z on V follows from Proposition 3.3
thus, all we have to prove is that shift-invariance ofV implies thatEVW⊥Tk = TkEVW⊥ . Now, given
f ∈ L2(R), f = v + w⊥ for somev ∈ V , w⊥ ∈W⊥,

TkEVW⊥f = Tkv.

It is easy to see that sinceW is shift-invariant, then alsoW⊥ is shift-invariant. Thus,

EVW⊥Tkf = EVW⊥Tkv + EVW⊥Tkw
⊥ = Tkv. �

A related result (for pseudoframe decompositions, but with orthogonal projections instead of g
projections) is stated in [18], as a step towards a construction of a class of shift-invariant duals.

Assuming that{Tkφ}k∈Z is a frame sequence, we now search for conditions on a functionφ1 which
imply that the subspace

V := span{Tkφ1}k∈Z (13)

contains a functioñφ generating an oblique dual{Tkφ̃}k∈Z of {Tkφ}k∈Z. Theorem 4.3 below gives suc
conditions.

Theorem 4.3. Letφ,φ1 ∈ L2(R), and assume that{Tkφ}k∈Z and{Tkφ1}k∈Z are frame sequences. If the
exists a constantA > 0 such that∣∣∣∣∑

k∈Z

φ̂(γ + k)φ̂1(γ + k)

∣∣∣∣ � A a.e. on
{
γ : Φ(γ ) 
= 0

}
, (14)

then the following holds:

(i) There exists a functioñφ ∈ V such that

f =
∑
k∈Z

〈f,Tkφ̃〉Tkφ, ∀f ∈ span{Tkφ}k∈Z; (15)

(ii) One choice of̃φ ∈ V satisfying(15) is given in the Fourier domain by

ˆ̃
φ(γ ) =

{
φ̂1(γ )∑

k∈Z
φ̂(γ+k)φ̂1(γ+k)

on {γ : Φ(γ ) 
= 0},
0 on {γ : Φ(γ ) = 0}.

(iii) There is a unique functioñφ ∈ V such that(15) is satisfied, if and only if

N (Φ) = N (Φ1);
if this condition is satisfied,{Tkφ̃}k∈Z is a frame forV and an oblique dual of{Tkφ}k∈Z onV .



58 O. Christensen, Y.C. Eldar / Appl. Comput. Harmon. Anal. 17 (2004) 48–68

at
tions in

e

e in
ue

ng

ue

ft-
s some

plines.
sing the

an find
Proof. First, we note that the assumption of{Tkφ}k∈Z and{Tkφ1}k∈Z being frame sequences implies th
the sum in (14) is bounded above (use Cauchy–Schwarz’ inequality and Theorem 2.2). The func
V = span{Tkφ1}k∈Z have the formφ̃ = ∑

k∈Z
hkTkφ1 for some{hk} ∈ �2, or, in the Fourier domain,

ˆ̃
φ(γ ) = H(γ )φ̂1(γ ) (16)

for someH ∈ L2(0,1). The functionφ̃ satisfies the conditions in Theorem 4.1 if and only if

H(γ )
∑
k∈Z

φ̂(γ + k)φ̂1(γ + k) = 1 on
{
γ : Φ(γ ) 
= 0

}
.

Any functionH satisfying this is bounded below and above on{γ : Φ(γ ) 
= 0}; extending it in an arbitrary
way to a function inL2(0,1) yields a functionφ̃ ∈ V satisfying (15).

The assumption (14) further implies that

N (Φ1) ⊆N (Φ).

If N (Φ) = N (Φ1), then (16) shows that̂̃φ(γ ) = 0 on {γ : Φ(γ ) = 0}, no matter howH is chosen
on this set. Thus, in this case there is a unique functionφ̃ fulfilling the requirements, namely, the on
given in (16). On the other hand, ifN (Φ1) is a proper subspace ofN (Φ), different choices ofH on

N (Φ)\N (Φ1) will lead to different values for the functioñ̂φ(γ ) becauseφ̂1(γ ) 
= 0 onN (Φ)\N (Φ1);
thus, in this case, there exist several choices of a functionφ̃ satisfying (15). �

In Proposition 4.8 we will show that the conditions leading to a unique oblique dual fram
Theorem 4.3 are equivalent toL2(R) = W ⊕ V⊥, i.e., the condition we used in our analysis of obliq
duals in general Hilbert spaces.

It follows from Theorem 4.3 that there is a unique function inW which generates a dual frame havi
the shift-invariant structure:

Corollary 4.4. Let φ ∈ L2(R) and assume that{Tkφ}k∈Z is a frame sequence. Then there is a uniq
functionφ̃ ∈ span{Tkφ}k∈Z such that

f =
∑
k∈Z

〈f,Tkφ̃〉Tkφ, ∀f ∈ span{Tkφ}k∈Z,

namely,φ̃ = S†φ.

Corollary 4.4 is surprising in light of the fact that an overcomplete frame sequencespan{Tkφ}k∈Z

always has several dual frames belonging toW ; it shows that the additional wish of having shi
invariance removes the freedom. This is exactly where Theorem 4.3 comes in handy: it gives u
freedom back by allowing generatorsφ̃ /∈W .

It is well known how to construct biorthogonal bases of compactly supported wavelets via B-s
Using the pseudoframe approach, Li [16] has been able to find smoother duals, without increa
support and the length of the associated filters.

Our approach immediately shows that for shift-invariant frames generated by B-splines we c
oblique duals of arbitrary smoothness, however, with increased support.
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Example 4.5. The B-splines are defined inductively byB1 = χ[−1/2,1/2] and

Bn+1(x) = Bn ∗ B1(x), n ∈ N.

The Fourier transform ofBn is given by

FBn(γ ) =
(

sinπγ

πγ

)n

.

It is well known that{TkBn}k∈Z is a Riesz sequence for anyn ∈ N. For anym ∈ N,∑
k∈Z

FBn(γ + k)FBn+2m(γ + k) =
∑
k∈Z

(
sinπ(γ + k)

π(γ + k)

)2(m+n)

;

by the fact that{TkBn+m}k∈Z is a Riesz sequence, the infimum of this function is strictly positive. T
by Theorem 4.3 there exists for anym ∈ N a unique functionφ̃ ∈ span{TkBn+2m}k∈Z, which generates
an oblique dual frame of{TkBn}k∈Z. That is, for an arbitrary splineBn, we can find an oblique dua
frame, for which the generator has prescribed smoothness. In contrast, the classical dual of{TkB1}k∈Z is
generated byB1 itself, which is not even continuous.

In Figs. 1 and 2 we plot the generator of the oblique dual frame of{TkB1}k∈Z corresponding tom = 1
andm = 3, respectively.

In the remaining part of this section we investigate the conditionL2(R) = W ⊕ V⊥ versus (14). The
reader may have observed that in the general theory, the conditionL2(R) = W ⊕ V⊥ played the major
role, while (14) was used for frames of translates. Our purpose is to relate these conditions. Be
do so in Proposition 4.8, we need some preparation.

Fig. 1. The generator of the oblique dual of{TkB1}k∈Z corresponding tom = 1.
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If
Fig. 2. The generator of the oblique dual of{TkB1}k∈Z corresponding tom = 3.

As before, we denote the pre-frame operator for{Tkφ}k∈Z by T ; whenever{Tkφ1}k∈Z is known to be
a Bessel sequence, we denote its pre-frame operator byV . We continue to define the spacesW , V as in
(11) and (13).

Lemma 4.6. Let φ,φ1 ∈ L2(R), and assume that{Tkφ}k∈Z and {Tkφ1}k∈Z are frame sequences.
L2(R) = W ⊕ V⊥, thenV ∗T mapsR(T ∗) bijectively ontoR(V ∗).

Proof. First, assume thatV ∗T c = 0 for somec ∈R(T ∗). Then

T c ∈W ∩N (V ∗) = W ∩R(V )⊥ = W ∩ V⊥ = {0},
so that

c ∈N (T ) ∩R(T ∗) =N (T ) ∩N (T )⊥ = {0}.
HenceV ∗T is injective. To prove thatV ∗T mapsR(T ∗) ontoR(V ∗), let c ∈ R(V ∗). Then there exists
an elementh = w + v⊥ ∈ L2(R), w ∈W , v⊥ ∈ V⊥, with V ∗h = V ∗w = c. Since{Tkφ}k∈Z is a frame for
W we can find a sequenced ∈R(T ∗) such thatT d = w. Hence,V ∗T d = c and the range ofV ∗T equals
R(V ∗). �
Lemma 4.7. If φ ∈ L2(R) and{Tkφ}k∈Z is a frame sequence, then

R(T ∗) = {
c ∈ �2: Fc = 0 onN (Φ)

}
.
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Proof. If c ∈R(T ∗), thenck = 〈y,Tkφ〉 for somey ∈ L2(R). By (3),

Fc(γ ) =
∑
k∈Z

ŷ(γ + k)φ̂(γ + k). (17)

It is clear thatFc = 0 onN (Φ). Conversely, ifc ∈ �2 andFc(γ ) = 0 on {γ : Φ(γ ) = 0}, we can define
y ∈ L2(R) by

ŷ(γ ) =
{

Fc(γ )φ̂(γ )∑
k∈Z

|φ̂(γ+k)|2 on {γ : Φ(γ ) 
= 0},
0 on{γ : Φ(γ ) = 0},

then

FT ∗y(γ ) =
∑
k∈Z

ŷ(γ + k)φ̂(γ + k) = Fc(γ ),

i.e.,c = T ∗y ∈R(T ∗). �
Given two sequencesc,d ∈ �2, we define the convolutionc ∗ d by

c ∗ d =
{∑

m∈Z

cmdk−m

}
k∈Z

.

Proposition 4.8. Letφ,φ1 ∈ L2(R), and assume that{Tkφ}k∈Z and{Tkφ1}k∈Z are frame sequences. Th
the following are equivalent:

(i) L2(R) =W ⊕ V⊥;
(ii) N (Φ) = N (Φ1) and there exists a constantA > 0 such that

A �
∣∣∣∣∑
k∈Z

φ̂(γ + k)φ̂1(γ + k)

∣∣∣∣ on
{
γ : Φ(γ ) 
= 0

}
. (18)

Proof. First, we prove (i)⇒ (ii). Given c, let e = V ∗T c. Then

ek =
〈∑
m∈Z

cmTmφ,Tkφ1

〉
=

∑
m∈Z

cm〈φ,Tk−mφ1〉,

so thate = c ∗ d, wheredk = 〈φ,Tkφ1〉. From (3),

Fd =
∑
k∈Z

φ̂(· + k)φ̂1(· + k).

Thus,

FV ∗T c =Fc Fd = Fc
∑
k∈Z

φ̂(· + k)φ̂1(· + k). (19)

From Lemma 4.6 we have thatFV ∗T c mapsR(T ∗) bijectively ontoFR(V ∗); now the characterizatio
of R(T ∗) (Lemma 4.7) shows thatN (Φ) ⊆ N (Φ1). However, due to Lemma 2.1 we can interchange
roles ofW andV ; thus we also have thatN (Φ1) ⊆ N (Φ). The existence of the lower bound in (18) a
follows from (19).
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For the proof of (ii)⇒ (i), from Lemma 2.1, it is sufficient to show that

cosθ(W,V) > 0 and cosθ(V,W) > 0.

We first estimate

cosθ(V,W) = inf
f ∈V , ‖f ‖=1

‖PWf ‖.

Any f ∈ V can be expressed asf = ∑
k ckTkφ1 so thatf̂ (γ ) = Fc(γ )φ̂1(γ ). Assuming that‖f ‖ = 1,

and denoting the characteristic function for the complement ofN (Φ) by χN (Φ)c , we have that

1=
∫ ∣∣Fc(γ )φ̂1(γ )

∣∣2 dγ =
1∫

0

∣∣Fc(γ )
∣∣2 ∑

k

∣∣φ̂1(γ + k)
∣∣2 dγ

=
1∫

0

χN (Φ)c

∣∣Fc(γ )
∣∣2 ∑

k

∣∣φ̂1(γ + k)
∣∣2 dγ.

It is well known (see [4]) that

FPWf =
{

φ̂(·)
∑

k f̂ (·+k)φ̂(·+k)∑
k |φ̂(·+k)|2 outsideN (Φ),

0 onN (Φ).

Thus, outsideN (Φ),

FPWf = Fc(·)φ̂(·)
∑

k φ̂1(· + k)φ̂(· + k)∑
k |φ̂(· + k)|2 .

It follows that

‖PWf ‖2 = ‖FPWf ‖2 =
∫

γ /∈N (Φ)

∣∣Fc(γ )φ̂(γ )
∣∣2 |∑k φ̂1(γ + k)φ̂(γ + k)|2

|∑k |φ̂(γ + k)|2|2 dγ

=
1∫

0

∣∣χN (Φ)c(γ )Fc(γ )
∣∣2 |∑k φ̂1(γ + k)φ̂(γ + k)|2∑

k |φ̂(γ + k)|2 dγ.

OutsideN (Φ) = N (Φ1), the frame condition implies thatΦ andΦ1 are bounded above and below. Th

‖PWf ‖2 =
1∫

0

χN (Φ)c(γ )
∣∣Fc(γ )

∣∣2 ∑
k

∣∣φ̂1(γ + k)
∣∣2 |∑k φ̂1(γ + k)φ̂(γ + k)|2∑

k |φ̂(γ + k)|2 ∑
k |φ̂1(γ + k)|2 dγ

� ess inf
γ /∈N (Φ)

|∑k φ̂1(γ + k)φ̂(γ + k)|2∑
k |φ̂(γ + k)|2 ∑

k |φ̂1(γ + k)|2
1∫

0

∣∣χN (Φ)c(γ )Fc(γ )
∣∣2 ∑

k

∣∣φ̂1(γ + k)
∣∣2

= ess inf
γ /∈N (Φ)

|∑k φ̂1(γ + k)φ̂(γ + k)|2∑ ˆ 2
∑ ˆ 2

,

k |φ(γ + k)| k |φ1(γ + k)|
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so that

cosθ(V,W) � ess inf
γ /∈N (Φ)

|∑k φ̂1(γ + k)φ̂(γ + k)|2∑
k |φ̂(γ + k)|2 ∑

k |φ̂1(γ + k)|2 .

We conclude that cosθ(V,W) > 0 if

ess inf
γ /∈N (Φ)

∣∣∣∣∑
k

φ̂1(γ + k)φ̂(γ + k)

∣∣∣∣2 > 0.

The fact that cosθ(W,V) > 0 follows by symmetry. �

5. Further examples

Given a frame sequence{Tkψ}k∈Z, Theorem 4.1 can be used to generate new pairs of frames and
oblique duals. Let us illustrate this with some examples.

Example 5.1. Assume thatψ ∈ L2(R) and that{Tkψ}k∈Z is a frame sequence. LetH , H̃ be a pair of
measurable 1-periodic functions, which are bounded and bounded below. Defineφ, φ̃ ∈ L2(R) via

φ̂(γ ) = H(γ )ψ̂(γ ),
ˆ̃
φ(γ ) = H̃ (γ )ψ̂(γ ).

Then{Tkφ}k∈Z and{Tkφ̃}k∈Z are frame sequences, spanning the same space as{Tkψ}k∈Z; in fact,

φ =
∑
k∈Z

akTkψ, φ̃ =
∑
k∈Z

ãkTkψ for some{ak}, {ãk} ∈ �2.

Since∑
k∈Z

φ̂(γ + k)
ˆ̃
φ(γ + k) = H(γ )H̃(γ )

∑
k∈Z

∣∣ψ̂(γ + k)
∣∣2, (20)

we see that (ii) in Theorem 4.1 is satisfied if

H(γ )H̃(γ ) = 1√∑
k∈Z

|ψ̂(γ + k)|2
on

{
γ :

∑
k∈Z

∣∣ψ̂(γ + k)
∣∣2 
= 0

}
.

This leads to several choices of a frame sequence{Tkφ}k∈Z and a corresponding oblique dual{Tkφ̃}k∈Z.
The special choice

H(γ ) = H̃ (γ ) = 1√∑
k∈Z

|ψ̂(γ + k)|2
on

{
γ :

∑
k∈Z

∣∣ψ̂(γ + k)
∣∣2 
= 0

}

leads to the case whereφ andφ̃ are equal to the generator of the canonical tight frame associated
span{Tkψ}k∈Z.

We can also generate frame sequences in other spaces thanspan{Tkψ}k∈Z.
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Example 5.2. With the assumptions in Example 5.1, defineφ, φ̃ by

φ̂(2γ ) = H(γ )ψ̂(γ ),
ˆ̃
φ(2γ ) = H̃ (γ )ψ̂(γ ).

Then

φ(x) =
∑
k∈Z

akψ(2x − k), φ̃(x) =
∑
k∈Z

ãkψ(2x − k) for some{ak}, {ãk} ∈ �2.

As before,{Tkφ}k∈Z and{Tkφ̃}k∈Z are Bessel sequences, and∑
k∈Z

φ̂(γ + k)
ˆ̃
φ(γ + k) =

∑
k∈Z

H

(
γ + k

2

)
ψ̂

(
γ + k

2

)
H̃

(
γ + k

2

)
ψ̂

(
γ + k

2

)

= H

(
γ

2

)
H̃

(
γ

2

)∑
k∈Z

∣∣∣∣ψ̂(
γ

2
+ k

)∣∣∣∣2

+ H

(
γ

2
+ 1

2

)
H̃

(
γ

2
+ 1

2

)∑
k∈Z

∣∣∣∣ψ̂(
γ

2
+ 1

2
+ k

)∣∣∣∣2. (21)

Again, it is easy to chooseH , H̃ satisfying (ii) in Theorem 4.1. This leads to frame expansion
span{Tkφ}k∈Z, which is now a subspace of

span
{
ψ(2 · −k)

}
k∈Z

;
the oblique dual we construct this way belongs tospan{Tkφ̃}k∈Z, which is in general another subspace
span{ψ(2 · −k)}k∈Z.

The frame decompositions obtained via Example 5.2 take place in subspaces ofspan{ψ(2 · −k)}k∈Z

for the given functionψ ; it might not be so easy to control which space we obtain the decompositio
However, in an important special case, we obtain decompositions in the spacespan{Tkψ}k∈Z; namely, if
ψ = φ is a function for which{Tkφ}k∈Z is a Riesz sequence and which satisfies a scaling equation

φ̂(2γ ) = H(γ )φ̂(γ )

for a 1-periodic functionH . The simplest example is as follows:

Example 5.3. Consider the translated B-splineφ = χ[0,1]. Then

φ̂(γ ) = e−πiγ sinπγ

πγ
;

thus,

φ̂(2γ ) = H(γ )φ̂(γ ) with H(γ ) = e−πiγ cosπγ.

Also, since{Tkφ}k∈Z forms an orthonormal sequence,

Φ(γ ) =
∑
k∈Z

∣∣φ̂(γ + k)
∣∣2 = 1 a.e.

Using the calculation (21) now leads to
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ved the
∑
k∈Z

φ̂(γ + k)
ˆ̃
φ(γ + k) = e−πiγ /2 cos

πγ

2
H̃

(
γ

2

)
+ eπi(γ+1)/2 cos

(
π

γ + 1

2

)
H̃

(
γ

2
+ 1

2

)

= eπiγ /2 cos
πγ

2
H̃

(
γ

2

)
− ieπiγ /2 sin

πγ

2
H̃

(
γ

2
+ 1

2

)
.

The choiceH̃ = H leads toφ̃ = φ, which is the generator of the canonical dual of the orthonor
sequence{Tkφ}k∈Z. However, the above calculation shows that other choices ofH̃ are possible, which
make (ii) in Theorem 4.1 satisfied. They lead to oblique duals of{Tkφ}k∈Z having the form{Tkφ̃}k∈Z, and
these duals belong to the subspace{∑

k∈Z

ckφ(2 · −k): {ck} ∈ �2

}
.

Similar examples are possible with splines of higher order; we leave the easy calculations to the
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Appendix A. The condition H = W ⊕ V⊥

Given closed subspacesW , V of the Hilbert spaceH such thatH = W ⊕ V⊥, it follows from
Lemma 2.1 that

W ∩ V⊥ = {0}, V ∩W⊥ = {0}. (A.1)

On the other hand, (A.1) is not enough forH =W ⊕ V⊥ to hold, as the following example shows:

Example A.1. Let {ek}∞
k=1 be an orthonormal basis forH, and let

V = span{e2k−1 − e2k}∞
k=1,

W = span{e2k + e2k+1}∞
k=1.

Then

V⊥ = span{e2k−1 + e2k}∞
k=1;

clearly (A.1) is satisfied, butH 
= W ⊕ V⊥ (otherwise{ek + ek+1}∞
k=1 would be a frame forH, which is

not the case, see Example 5.4.6 in [5]).

The condition forH = W ⊕ V⊥ can also be expressed using thegap. WhenV 
= {0}, the gap fromV
to W is (cf. [13])

δ(V,W) := sup
f ∈V , ‖f ‖=1

inf
g∈W

‖f − g‖.

The lemma below relates the gap to the angle used so far.
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Lemma A.2. LetV 
= {0}, W be closed subspaces ofH. Then

δ(V,W) = ∥∥(I − PW)PV
∥∥ = sinθ(V,W). (A.2)

Proof. An elementary calculation (Lemma 2.1 in [6]) shows thatδ(V,W) = ‖PW⊥PV‖; this proves the
first equality in (A.2). Now, by definition,

δ(V,W) = sup
f ∈V , ‖f ‖=1

‖f − PWf ‖ = sup
f ∈V , ‖f ‖=1

√
‖f ‖2 − ‖PWf ‖2 = sinθ(V,W). �

Expressed in terms of the gap, Lemma 2.1 states that ifδ(V,W) < 1 and δ(W,V) < 1, then
H = W ⊕ V⊥. A short direct proof of this fact goes as follows. Letf ∈H; then we can write

f = PWPVf + (I − PW)PVf + (I − PV )f.

The first and the third belong toW andV⊥, respectively; iterating the decomposition on the middle t
leads to

f = PWPVf + PWPV(I − PW)PVf + [
(I − PW)PV

]2
f + (I − PV )(I − PW)PVf + (I − PV)f

= PWPV

N∑
n=0

[
(I − PW)PV

]n
f + [

(I − PW)PV
]N+1

f + (I − PV)

N∑
n=0

[
(I − PW)PV

]n
f.

Using (A.2) and the assumptionδ(V,W) < 1, we know that[
(I − PW)PV

]N+1
f → 0 asN → ∞;

thus

f = PWPV

∞∑
n=0

[
(I − PW)PV

]n
f + (I − PV )

∞∑
n=0

[
(I − PW)PV

]n
f ∈W + V⊥.

This demonstrates thatH = W + V⊥. To show that the sum is direct, it suffices to prove t
W ∩ V⊥ = {0}. To do so, note that iff ∈W ∩ V⊥, then

f = (I − PV )PWf = · · · = [
(I − PV )PW

]N
f ;

now, lettingN → ∞ and using thatδ(W,V) < 1 leads tof = 0 as desired.

Appendix B. Proof of Theorem 3.2

Let againT denote the pre-frame operator for the given frame{fk}∞
k=1 for W .

The proof of Theorem 3.2 is based on a series of lemmas. When (6) is satisfied for a bounded
U :�2(N) → H, we say thatU is a left-inverseof T ∗ onV alongW⊥.

Lemma B.1. Let {fk}∞
k=1 be a frame forW , and letV be a closed subspace such thatH = W ⊕ V⊥.

Let {δk}∞
k=1 be the canonical orthonormal basis for�2(N). The oblique dual frames for{fk}∞

k=1 onV are
precisely the families{gk}∞

k=1 = {V δk}∞
k=1, whereV :�2(N) → V is a bounded left-inverse ofT ∗ on V

alongW⊥.



O. Christensen, Y.C. Eldar / Appl. Comput. Harmon. Anal. 17 (2004) 48–68 67

at

at

,

, Appl.
Proof. Assuming thatV :�2(N) → V is a bounded operator with range equal toV , it is well known that
the sequence{gk}∞

k=1 := {V δk}∞
k=1 is a frame forV . Note that in terms of{δk}∞

k=1,

T ∗f = {〈f,fk〉
}∞

k=1 =
∞∑

k=1

〈f,fk〉δk;

thus, ifV is a bounded left-inverse ofT ∗ onV alongW⊥, then for allf ∈ H,

EVW⊥f = V T ∗f =
∞∑

k=1

〈f,fk〉gk.

This shows that{gk}∞
k=1 is an oblique dual frame of{fk}∞

k=1 onV . For the other implication, assume th
{gk}∞

k=1 is an oblique dual frame of{fk}∞
k=1 onV . Then the pre-frame operatorU for {gk}∞

k=1 satisfies the
conditions: in fact,{gk}∞

k=1 = {Uδk}∞
k=1, and by Lemma 3.1,UT ∗ = EVW⊥ . �

Lemma B.2. Let {fk}∞
k=1 be a frame for a subspaceW ⊂ H, and letV be a closed subspace such th

H = W ⊕V⊥. The bounded left-inverses ofT ∗ onV alongW⊥, with range equal toV , are precisely the
operators having the formEVW⊥S†T + W(I − T ∗S†T ), whereW :�2(N) → V is a bounded operator
andI denotes the identity operator on�2(N).

Proof. Note that S†T T ∗ = PW , EVW⊥PW = EVW⊥ , and T ∗PW = T ∗ since N (T ∗) = W⊥; then
straightforward calculation gives that an operator of the given form is a left-inverse ofT ∗ on V along
W⊥.

On the other hand, ifU :�2(N) → V is a given left-inverse ofT ∗ on V alongW⊥, then by taking
W = U ,

EVW⊥S†T + W(I − T ∗S†T ) = EVW⊥S†T + U − UT ∗S†T = U. �
Proof of Theorem 3.2. By Lemmas B.1 and B.2 we can characterize the oblique dual frames onV as
all families of the form

{gk}∞
k=1 = {

EVW⊥S†T δk + W(I − T ∗S†T )δk

}∞
k=1, (B.1)

where W :�2(N) → V is a bounded operator, or, equivalently, an operator of the formW {cj }∞
j=1 =∑∞

j=1 cjhj , where{hk}∞
k=1 ⊂ V is a Bessel sequence. By inserting this expression forW in (B.1) we

get

{gk}∞
k=1 = {EVW⊥S†fk + Wδk − WT ∗S†T δk}∞

k=1

=
{

EVW⊥S†fk + hk −
∞∑

j=1

〈S†fk, fj 〉hj

}∞

k=1

. �
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