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ABSTRACT
We consider the problem of robust estimation of a determin-
istic bounded parameter vector x in a linear model. While in
an earlier work, we proposed a minimax estimation approach
in which we seek the estimator that minimizes the worst–case
mean-squared error (MSE) difference regret over all bounded
vectors x, here we consider an alternative approach, in which
we seek the estimator that minimizes the worst–case MSE ra-
tio regret, namely, the worst–case ratio between the MSE at-
tainable using a linear estimator ignorant of x, and the min-
imum MSE attainable using a linear estimator that knows x.
The rational behind this approach is that the value of the dif-
ference regret may not adequately reflect the estimator per-
formance, since even a large regret should be considered in-
significant if the value of the optimal MSE is relatively large.

1. INTRODUCTION

The classical least-squares estimator for estimating an un-
known parameter vector x in a linear model y = Hx + w,
where H is a known matrix and w is a noise vector, is well-
known to result, in many cases, in a large residual mean-
squared error (MSE). This observation has motivated the
search for alternative linear estimators of x, when no prior
statistics on x are available.

If x is deterministic, then the MSE of an estimator x̂ of
x will in general depend explicitly on x, and therefore can-
not be minimized directly. A possible design approach in this
case, is in the spirit of the minimax MSE approach initiated
by Huber [1], in which the estimator is chosen to minimize
the worst-case MSE over all values of x, in the region of un-
certainty [2, 3]. However, this approach is pessimistic in na-
ture, since it optimizes the performance for the worst-possible
choice of parameters, which may in turn result in a loss of per-
formance for all other cases.

To improve the performance over the minimax MSE ap-
proach, in an earlier work [4], we considered the case in
which x is known to satisfy a (possibly weighted) norm con-
straint, and developed a competitive minimax MSE estimator
that minimizes the worst-case difference regret, which is the
difference between the MSE of the linear estimator ignorant
of x, and the smallest attainable MSE with a linear estima-
tor that knows x. The motivation behind this estimator is that
such an estimator performs uniformly as close as possible to
the optimal linear estimator, in the region of uncertainty.

A possible drawback of the minimax difference regret
(MDR) estimator is that the value of the regret may not ad-
equately reflect the estimator performance, since even a large
regret should be considered insignificant if the value of the
optimal MSE is relatively large. On the other hand, if the op-
timal MSE is small, then even a small regret should be con-

sidered significant. Therefore, in this paper, instead of con-
sidering the worst-case difference regret, we suggest a mini-
max ratio regret (MRR) estimator that minimizes the worst-
case ratio between the MSE of a linear estimator that does not
know x, and the best possible MSE.

In Section 2, we show that the MRR estimator can be de-
scribed by m parameters, which are the solution to a convex
optimization problem. We then specialize the results, in Sec-
tion 3, to two special choices of the weighting matrix. In the
first choice, T = H∗C−1

w H, which may be of interest, for ex-
ample, when an unknown signal x is sent through a known
channel, and the output signal-to-noise ratio is bounded. In
the second choice, T = I, which may be of interest when
an unknown signal x is sent through a known channel, and
the power of x is bounded. In these special cases, we show
that the MRR estimator can be derived as the solution to ex-
plicit, simple, and computationally tractable convex optimiza-
tion problems. In Section 4, we present an alternative deriva-
tion of the MRR estimator, and show, that in some cases, it
leads to an (almost) closed form solution for the optimal es-
timator. Section 5 presents several examples illustrating the
performance advantage of the MRR estimator over the MDR
estimator, and other conventional linear estimators.

Proofs of theorems, which are omitted here for brevity,
can be found in [5].

2. THE MINIMAX RATIO ESTIMATOR

Consider the problem of estimating the unknown determinis-
tic parameter vector x in the linear model

y = Hx+w, (1)

where H is a known n×m matrix with full rank m, and w
is a zero-mean random vector with known covariance Cw.
We assume that x satisfies the weighted norm constraint
M≤‖x‖T≤ L for some positive definite matrix T and scalars
0 < M ≤ L, where ‖x‖2

T = x∗Tx and (·)∗ denotes the Her-
mitian conjugate.

We estimate x using a linear estimator so that x̂ = Gy for
some m×n matrix G. We would like to design an estimator
x̂ of x to minimize the MSE, which is given by

E(‖x̂−x‖2) = Tr(GCwG∗)+x∗(I−GH)∗(I−GH)x.
(2)

Since the MSE depends explicitly on the unknown x, we can-
not choose an estimate to directly minimize the MSE (2).

To develop a competitive estimator, we consider a min-
imax ratio criterion, in which the estimator is obtained by
minimizing the worst-case ratio between the MSE of a lin-
ear estimator x̂ = Gy of x, and the smallest possible nonzero

1257



MSE attainable using any estimator of the form x̂ = G(x)y
where x is assumed to be known, so that G can depend ex-
plicitly on x. Since we are restricting ourselves to estimators
of the form x̂ = Gy, even in the case in which x is known,
we cannot in general achieve zero MSE (unless x = 0).

It was shown in [4] that for known x the optimal estimator
is given by x̂ = G(x)y, where

G(x) =
1

1+x∗H∗C−1
w Hx

xx∗H∗C−1
w , (3)

and the smallest possible MSE is

MSEo =
x∗x

1+x∗H∗C−1
w Hx

. (4)

Thus, we seek the matrix G that is the solution to the problem

min
G

max
M2≤x∗Tx≤L2

E(‖Gy−x‖2)
MSEo , (5)

where MSEo is given by (4).
For analytical tractability, we restrict our attention to

weighting matrices T such that T and H∗C−1
w H have the

same eigenvector matrix. Thus, if H∗C−1
w H has an eigende-

composition H∗C−1
w H = VΣV∗ where V is a unitary matrix

and Σ is a diagonal matrix, then T = VΛV∗ for some diago-
nal matrix Λ. Theorem 1 below establishes the general form
of the solution to (5) for any such T.

Theorem 1 Let x denote the unknown deterministic vector in
the model y =Hx+w, where H is a known n×m matrix with
rank m, and w is a zero-mean random vector with covariance
Cw. Let H∗C−1

w H = VΣV∗ where V is a unitary matrix and
Σ is an m×m diagonal matrix with diagonal elements σi > 0
and let T = VΛV∗ where Λ is an m×m diagonal matrix with
diagonal elements λi > 0. Then the solution to the problem

min
x̂=Gy

max
M≤‖x‖T≤L

E(‖x̂−x‖2)
minx̂=G(x)y E(‖x̂−x‖2)

has the form

x̂ = VDV∗(H∗C−1
w H)−1H∗C−1

w y,

where D is an m×m diagonal matrix with diagonal elements
di which are the solution to the convex optimization problem

(Γ) : min
γ ,di

{
γ : max

s∈S

{
m

∑
i=1

(1−di)2si− γ ∑m
i=1 si

1+∑m
i=1 σisi

}
+

m

∑
i=1

d2
i

σi
≤ 0

}
,

(6)
with

S =

{
s ∈Rm,s≥ 0

∣∣∣∣∣
m

∑
i=1

λisi = M2 or
m

∑
i=1

λisi = L2

}
. (7)

Theorem 1 reduces the problem of minimizing the ratio
regret to the simpler optimization problem (6). As we show
in Sections 3.1 and 3.2, for certain choices of T, the problem
can be further simplified. In Section 4 we consider a gen-
eral method for solving (6) that exploits its connection with a
related convex optimization problem. We then demonstrate,
in Section 4.1, that in some cases this approach can lead to
further insight into the MRR estimator.

3. MRR ESTIMATOR FOR SOME CHOICES OF T

3.1 MRR Estimator For T = H∗C−1
w H

We first consider the case in which T = H∗C−1
w H, so that

the eigenvalues λi of T are equal to the eigenvalues σi of
H∗C−1

w H. The MRR estimator in this case is given by the
following theorem.

Theorem 2 Let x denote the unknown deterministic vector in
the model y =Hx+w, where H is a known n×m matrix with
rank m, and w is a zero-mean random vector with covariance
Cw. Let H∗C−1

w H = VΣV∗ where V is a unitary matrix
and Σ is an m×m diagonal matrix with diagonal elements
σ1 ≥ . . .≥ σm > 0. Then the solution to the problem

min
x̂=Gy

max
M≤‖x‖T≤L

E(‖x̂−x‖2)
minx̂=G(x)y E(‖x̂−x‖2)

with T = H∗C−1
w H is given by

x̂ = VDV∗(H∗C−1
w H)−1H∗C−1

w y,

where D is an m×m diagonal matrix with diagonal elements
di that are the solution to

min
γ ,di,y,z





γ :

L2y+∑m
i=1

d2
i

σi
≤ 0

1
σi

(
(1−di)2− γ

1+L2

)
≤ y, 1≤ i≤ m

L2y+∑m
i=1

d2
i

σi
≤ 0

1
σi

(
(1−di)2− γ

1+L2

)
≤ y, 1≤ i≤ m

M2z+∑m
i=1

d2
i

σi
≤ 0

1
σi

(
(1−di)2− γ

1+M2

)
≤ z, 1≤ i≤ m





.

3.2 MRR Estimator For T = I

Theorem 3 below considers the MRR estimator for T = I.

Theorem 3 Let x denote the unknown deterministic vector in
the model y =Hx+w, where H is a known n×m matrix with
rank m, and w is a zero-mean random vector with covariance
Cw. Let H∗C−1

w H = VΣV∗ where V is a unitary matrix
and Σ is an m×m diagonal matrix with diagonal elements
σ1 ≥ . . .≥ σm > 0. Then the solution to the problem

min
x̂=Gy

max
M≤‖x‖≤L

E(‖x̂−x‖2)
minx̂=G(x)y E(‖x̂−x‖2)

has the form

x̂ = VDV∗(H∗C−1
w H)−1H∗C−1

w y,

where D is an m×m diagonal matrix with diagonal elements
di that are the solution to

min
γ ,di,µ,λ ,ζ ,η





γ :

−2L
√µγ + µ +L2λ +∑m

i=1
d2

i
σi
≤ 0

(1−di)2 +σiµ ≤ λ , 1≤ i≤ m
µ ≥ 0

−2M
√

ζ γ +ζ +M2η +∑m
i=1

d2
i

σi
≤ 0

(1−di)2 +σiζ ≤ η , 1≤ i≤ m
ζ ≥ 0.





.
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If in addition M = L, then the elements di are given by

di =
{

1−
√

λ −σiµ , i≤ k;
0, i≥ k +1,

with k = argminγi,µ = µk and λ = λk. Here γi,µi,λi,1≤ i≤
m are the optimal solutions to the problem (Γi) given by

(Γi) : min
γ ,µ ,λ





γ :
−2L

√µγ + µ +L2λ +∑i
j=1

(
1−
√

λ−σ j µ
)2

σ j
≤ 0

σ1µ ≤ λ ≤ 1+σiµ
µ ≥ 0

if i < m then λ ≥ 1+σi+1µ





.

4. ALTERNATIVE DERIVATION

In this section, we develop further insight into the MRR es-
timator, by developing an alternative formulation of the es-
timator. In particular, we show that the MRR estimator of
Theorem 1 with di given as the solution to the problem (Γ) of
(6), can be determined by first solving the simpler problem

(Φ) : min
t,di

{
t : max

s∈S

{
m

∑
i=1

(1−di)2si− γ ∑m
i=1 si

1+∑m
i=1 σisi

}
+

m

∑
i=1

d2
i

σi
≤ t

}
,

(8)
where S is given by (7) and γ ≥ 1 is fixed. Note, that (Φ) is
equivalent to

min
di

{
max
s∈S

{
m

∑
i=1

(1−di)2si− γ ∑m
i=1 si

1+∑m
i=1 σisi

}
+

m

∑
i=1

d2
i

σi

}
,

(9)
which has one less variable than the problem (Γ) of (6).

Let t̂(γ) denote the optimal value of t in the problem (Φ)
of (8), and let γ̂ be the unique value of γ ≥ 1 such that t̂(γ) = 0
(as we show below in Proposition 1, such a γ always exists,
and is unique). Then, denoting by d̂i the optimal value of di in
the problem (Φ) with γ = γ̂ , we now show that d̂i and γ̂ are the
optimal solutions to the problem (Γ) of (6): Since d̂i and γ̂ are
feasible for (Φ) with t = 0, they are also feasible for (Γ). Now
suppose, conversely, that there exists feasible di and γ < γ̂ for
(Γ). It then follows that t̂(γ)≤ 0. But since t̂(γ) is decreasing
in γ and γ < γ̂ , we have that t̂(γ) ≥ t̂(γ̂) = 0, from which we
conclude that t̂(γ) = 0, which is a contradiction since γ̂ is the
unique value for which t̂(γ) = 0. Therefore, to solve (Γ) we
may first solve the simpler problem (Φ), and then find γ̂ by a
simple line search, for example using bisection. Specifically,
we may start by choosing γ = 1. For each choice of γ we
compute t̂(γ). If t̂(γ) > 0, then we increase γ , and if t̂(γ) < 0,
then we decrease γ , continuing until t̂(γ) = 0. Due to the
continuity and monotonicity properties of t̂(γ), established in
Proposition 1 below, the algorithm is guaranteed to converge.

Proposition 1 Let t̂(γ) denote the optimal value of t in the
problem (Φ) of (8). Then
1. t̂(γ) is continuous in γ;
2. t̂(γ) is strictly decreasing in γ;
3. there is a unique value of γ for which t̂(γ) = 0.

Thus, instead of solving the problem (Γ) of (6), we may
solve the problem (Φ) of (8), which in some cases may pro-
vide more insight into the solution. To illustrate the possible
advantage of this approach, in the next section we consider
the case in which T = H∗C−1

w H and L = M, and show that
this approach leads to new insight into the optimal solution.

4.1 Alternative Derivation For T = H∗C−1
w H

By exploiting the connection between problems (6) and (8)
for T = H∗C−1

w H and L = M, we now show that the MRR
estimator can be expressed in terms of two parameters, which
can be found using an inner and outer line search algorithm.

Theorem 4 Let x denote the unknown deterministic vector in
the model y =Hx+w, where H is a known n×m matrix with
rank m, and w is a zero-mean random vector with covariance
Cw. Let H∗C−1

w H = VΣV∗ where V is a unitary matrix
and Σ is an m×m diagonal matrix with diagonal elements
σ1 ≥ . . .≥ σm > 0. Then the solution to the problem

min
x̂=Gy

max
‖x‖T=L

E(‖x̂−x‖2)
minx̂=G(x)y E(‖x̂−x‖2)

with T = H∗C−1
w H is given by

x̂ = VDV∗(H∗C−1
w H)−1H∗C−1

w y,

where D is an m×m diagonal matrix with diagonal elements

di =
{

0, i≤ k(ρ∗);
1−

√
ρ∗σi + γ/(L2 +1), i≥ k(ρ∗)+1.

Here ρ∗ is the unique positive root of φ(ρ) = ∑m
i=1 σiηi(ρ)−

L2, with ηi(ρ) given by

ηi(ρ) = max

[
1
σi

(
1√

ρσi + γ/(L2 +1)
−1

)
,0

]
,

k(ρ∗) =
{

0, η1(ρ∗) > 0;
max{k : ηk(ρ∗) = 0} , otherwise,

and γ is chosen such that t̂(γ) = 0, where

t̂(γ) =− γ
1+L2

m

∑
i=1

η̂i +
m

∑
i=1

η̂i

1+σiη̂i
,

with η̂i = ηi(ρ∗).

From Theorem 4, it follows that the MRR estimator can be
found by using two bisection algorithms. In the first, γ is fixed
and bisection is used to find the optimal ρ∗. In the second,
bisection is used to find the optimal γ satisfying t̂(γ) = 0.

5. EXAMPLES

To illustrate the MRR estimator, we consider the problem of
estimating a 2D image from noisy observations, which are
obtained by blurring the image with a 2D filter, and adding
random Gaussian noise. Specifically, we generate an image
x(z1,z2) which is the sum of m harmonic oscillations:

x(z1,z2) =
m

∑̀
=1

a` cos(ω`,1z1 +ω`,2z2 +φ`), (10)

where ω`,i = 2πk`,i/n, and k`,i ∈ Z2 are given parameters.
Clearly, the image x(z1,z2) is periodic with period n. There-
fore, we can represent the image by a length-n2 vector x, with
components {x(z1,z2) : 0≤ z1,z2 ≤ n−1}.
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(k`,1,k`,2) a` φ`

(1,1) 1.0681 2.1438
(2,1) 0.8704 3.3557
(1,2) 1.2027 4.5686
(2,2) 1.0466 1.9433
(3,2) 0.9449 5.2684

Table 1: Simulation parameters.

Estimator Relative Error
LS 5.0e8

MMX 1.000
MDR 0.843
MRR 0.120

Table 2: Relative error for the data of Table 1.

The observed image y(z1,z2) is given by

y(z1,z2)= ∑
τ1,τ2

H(τ1,τ2)x(z1−τ1−d1,z2−τ2−d2)+σw(z1,z2),

where H(z1,z2) is a blurring filter defined by

H(z1,z2) = max


1−

√
z2

1 + z2
2

ρ
,0


 , (11)

for some parameter ρ , d1 and d2 are randomly chosen shifts,
and w(z1,z2) is an independent, zero-mean, Gaussian noise
process so that for each z1 and z2, w(z1,z2) is N (0,1). By
defining the vectors y and w with components y(z1,z2) and
w(z1,z2), respectively, and defining a matrix H with the ap-
propriate elements H(z1,z2), the observations y can be ex-
pressed in the form (1).

In Fig. 1 we consider the case in which m = 5, n = 128,
σ = 0.5, L = ‖x‖, and nρ =

√
2. The values of k`,i,a` and

φ` are given in Table 1. To estimate the image x(z1,z2) from
the noisy observations y(z1,z2) we consider 4 different esti-
mators: The least-squares (LS) estimator, the MRR estimator
of Theorem 3, the MDR estimator of [4], and the minimax
MSE estimator (MMX), which is designed to minimize the
worst-case MSE over all x∗x≤ L2, and is given by [3]

x̂ =
L2

L2 +Tr
(
(H∗C−1

w H)−1
) (H∗C−1

w H∗)−1H∗C−1
w y.

(12)
In Table 2 we report the relative error ε = ‖x̂−x‖/‖x‖

corresponding to the 4 estimators. The surprising result is that
even though in this example the matrix H is ill-conditioned,
the MRR estimator works pretty well, as can be seen from the
results of Table 2, as well as in Fig. 1. Since the error in the
LS estimate is so large, we do not show the resulting image.
In the images, the “more red” the image, the larger the signal
value at that point. As can be seen from the results of Table 2,
as well as in Fig. 1, the MRR estimator outperforms the MDR
estimator in all of the examples. We observed similar trends
in the behavior for different values of the noise variance. In
Table 3 we report the relative errors for different values of σ .

Observations, σ = 0.50 True signal

Ratio Regret, ε = 0.120 Difference Regret, ε = 0.843

Figure 1: Comparison of the minimax regret estimators.

σ Estimator Relative Error
MMX 1.00

1.5 MDR 0.92
MRR 0.31
MMX 1.00

5 MDR 0.96
MRR 0.69

Table 3: Relative error for different values of σ .
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