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ABSTRACT

We consider the problem of estimating a deterministic parameter
vectorx from observationsy = Hx + w, whereH is known
andw is additive noise. We seek an estimator whose estimation
error is within given limits, for as wide a range of conditions as
possible. The error limit is a design choice, and is generally lower
than the error provided by the well-known least-squares (LS) esti-
mator. We develop estimators guaranteeing the required error for
as large a parameter set as possible, and for as large a noise level
as possible. We discuss methods for finding these estimators, and
demonstrate that in many cases, the proposed estimators outper-
form the LS estimator.

1. INTRODUCTION

Consider the problem of estimating an unknown deterministic pa-
rameter vectorx based on measurementsy = Hx+w, whereH is
a known linear transformation andw is zero-mean random noise.
We would like to design a linear estimatorx̂ close tox in terms
of the mean-squared error (MSE). However, since the MSE is a
function of the unknown vectorx, it cannot be directly minimized.
A common approach is to choose the minimum MSE estimator
among all linearunbiasedestimators, in which case the MSE does
not depend on the value ofx. This approach yields the (weighted)
least-squares (LS) estimator [9]. Yet an unbiased estimator does
not necessarily guarantee low MSE. Indeed, for any bounded set
U , a linear biased estimator exists whose MSE is lower than the
MSE of the LS estimator, forall x in U [3]. Several techniques are
aimed at improving the MSE by introducing a bias [10, 13].

Estimator design is based on varioussystem properties, such
as the noise covariance. If the values of these system properties
are not known exactly, one may seek the estimator minimizing
the worst-case error among all possible values. Thisminimaxap-
proach was first introduced in the context of uncertain noise statis-
tics [7], and has since been applied in a variety of estimation prob-
lems [8]. For example, we may seek thebounded parameter set
estimator, which minimizes the worst-case error for any parameter
x in a given parameter setU . Various error measures may be used,
including the worst-case MSE [11, 5] and the worst-case regret [6].

The minimax approach requires specification of system prop-
erty bounds; like the system properties themselves, the bounds
may not be known in advance. In some cases, bounds can be esti-
mated from the measurementsy, but the resulting estimator is gen-
erally nonlinear, and thus requires greater computational complex-
ity. We propose an alternative approach, which is suitable when
requirements on the maximum estimation error are more readily
available than system property bounds. For example, in commu-

nication systems, a minimum SNR may be required for data trans-
mission to be possible. For such cases, following the philosophy
of information-gap decision theory [1, 2], we propose amaximum
estimation errorapproach, in which an estimator is designed to
guarantee the required error for the widest range of system prop-
erties possible. This approach can be applied to different system
properties. In Section 2, we study the case of uncertain param-
eter sets, while Section 3 deals with uncertain noise levels. We
conclude with a discussion in Section 4.

2. MAXIMUM PARAMETER SET ESTIMATION

In this section, we define the maximum parameter set (MPS) esti-
mator, provide methods for its calculation, and compare its perfor-
mance with the LS estimator.

2.1. Definition

Let x be an unknown deterministic vector inCn and letw be a
zero-mean random vector inCm whose covarianceCw is known.
SupposeH is a known full-rankm × n matrix, and lety =
Hx + w. An estimatorx̂ is a function ofy which returns an
n-vector close tox in some sense. For example, the least-squares
(LS) estimator [9] is given by

x̂LS = (H∗C−1
w H)−1H∗C−1

w y, (1)

whereP∗ denotes the Hermitian conjugate ofP.
The following system properties, selected by the designer, are

used to construct the MPS estimator:
1) An error functionε(x̂,x), such as the MSEE‖x− x̂‖2, which
quantifies the degree to whicĥx misrepresents a specific valuex.
2) A maximum errorεm which defines the error value required for
successful operation of the system.
3) A class of parameter sets{UL ⊆ Cn : L ≥ 0} which define
feasible values ofx under varying parameter set boundsL. We
assume that the sets are nested, i.e.,UL1 ⊆ UL2 for L1 ≤ L2. For
regularity, we also require that the parameter sets grow linearly
with L, i.e.,UL =

{
x : 1

L
x ∈ U1

}
; this implies that the parame-

ter sets are centered on the origin, an assumption which we adopt
without loss of generality.

We define theparameter robustnesŝL(x̂) of an estimator̂x as
the maximum boundL for which the maximum error is assured,

L̂(x̂) = max{L : ε(x̂,x) ≤ εm, ∀x ∈ UL}. (2)

A maximum parameter set (MPS) estimatorx̂UP (among estima-
tors of classE) maximizes the parameter robustnessL̂,

x̂UP = arg max
x̂∈E

L̂(x̂). (3)



By comparison, aminimax(or bounded parameter set) esti-
matorx̂M minimizes the worst-case error in a given parameter set
U (among estimators of classE):

x̂M = arg min
x̂∈E

max
x∈U

ε(x̂,x). (4)

2.2. Minimax and MPS Estimators

The MPS estimator maximizes the parameter robustnessL defined
by the known value ofε, while the minimax estimator minimizes
the worst-case errorε within a range defined by the known value of
L. Thus, for an appropriate choice of system properties, minimax
estimators may be MPS estimators, and vice versa. Indeed, this
occurs for many (though not all) cases of interest.

This similarity notwithstanding, minimax and MPS estimators
differ qualitatively in the type of information on which their design
is based. The minimax estimator requires that a bound on the un-
certain parameterx be stated, while the MPS estimator requires
knowledge of the maximum error under which the system still op-
erates correctly. Thus, proper choice of an estimator depends on
the nature of information available to the designer.

The relation between minimax and MPS estimators is formal-
ized by means of theworst-case error functione(L), defined as

e(L) = max
x∈UL

ε(x̂M(L),x), (5)

wherex̂M(L) is a minimax estimator for the parameter setUL; see
Figure 1. For MPS estimators,e(L) represents a trade-off between
performance and parameter robustness: modest performance re-
quirements (largeεm) can be guaranteed for a large parameter set
UL, while stringent requirements are only guaranteed for a small
parameter set.

We now describe several cases in which MPS estimators are
minimax estimators. In such cases, known results regarding min-
imax estimators are used to efficiently find MPS estimators. We
first show that when the error function of interest is the MSE and
linear estimators are considered, minimax and MPS estimators are
equivalent. Proofs of this and other propositions appear in [3].

Proposition 1. Let{UL : L ≥ 0} be a class of parameter sets, let
ε(x̂,x) = E‖x− x̂‖2, and letE be the class of linear estimators.
For anyL, an estimator̂x ∈ E is a linear minimax estimator over
UL if, and only if, it is a linear MPS estimator with maximum error
εm equal to the worst-case errore(L) of (5).

Thus, finding an MPS estimator for a given maximum error
εm is equivalent to finding a minimax estimator whose worst-case
error isεm. This can be accomplished using a line search, in which
minimax estimators for different setsUL are calculated until an es-
timator with the required worst-case error is found. Alternatively,
when a closed form is known for the minimax estimator ofUL,
one can find a closed form for the MPS estimator as well. This is
demonstrated by the following proposition, in which the parameter
sets are spherical.

Proposition 2. Letε(x̂,x) = E‖x− x̂‖2 and define the spherical
parameter setsUL = {x : ‖x‖ ≤ L}. Let x̂LS be the LS esti-
mator (1), and letε0 = Tr((H∗C−1

w H)−1) be the MSE of̂xLS.
Among the class of linear estimators, an MPS estimator is

x̂UP =

{
(εm/ε0)x̂LS, εm < ε0

x̂LS, εm ≥ ε0.
(6)

The more general case of ellipsoidal parameter sets is con-
sidered in the following proposition. While a closed form is not
known for this case, efficient optimization algorithms may be used
to calculate the MPS estimator.

Proposition 3. Let ε(x̂,x) = E‖x − x̂‖2 and define the ellip-
soidal parameter setsUL = {x : x∗Tx ≤ L2}, for some posi-
tive definite matrixT. Among linear estimators, an MPS estimator
x̂UP = Gy may be found by solving the quasiconvex problem

min
G,λ,z

z/λ (7)

s.t.





[
z + εm g∗

g I

]
º 0

[
λI T−1/2(I−GH)∗

(I−GH)T−1/2 I

]
º 0

whereg is the vector obtained by stacking the columns ofGC
1/2
w ,

andP º 0 indicates thatP is positive semidefinite.

We now consider an MPS estimator which guarantees a re-
quiredregret. The regret is defined as the difference between the
estimator’s MSE and the best MSE obtainable using a linear esti-
matorx̂o = G(x)y which is a function ofx. Becausêxo is linear,
it does not achieve zero MSE. This approach is intuitively appeal-
ing as it attempts to disregard errors resulting from limitations of
linear estimators. It has been shown [6] that the regret is given by

ε(Gy,x) = Tr(GCwG∗) + x∗(I−GH)∗(I−GH)x

− x∗x
1 + x∗H∗C−1

w Hx
. (8)

For spherical parameter sets, the linear MPS regret estimator
is equivalent to the linear minimax regret estimator, as stated in
the following proposition. It follows that the MPS regret estimator
can be found as easily as the minimax regret estimator, for which
an efficient algorithm is known [6].

Proposition 4. LetUL = {x : ‖x‖ ≤ L} be a class of param-
eter sets, letε(x̂,x) be the regret(8), and consider the classE of
linear estimators. For anyL, an estimator̂x ∈ E is a minimax
regret estimator over the setUL if, and only if, it is an MPS regret
estimator with maximum errorεm equal toe(L) of (5).

As we have seen, MPS and minimax estimators are based on
different design requirements; however, results regarding minimax
estimators can often be used to find MPS estimators.

2.3. Application: Channel Estimation

As an application of the MPS estimator, we now consider the prob-
lem of preamble-based channel estimation. Specifically, we seek
to estimate the impulse response of an unknown channel using a
training sequence (preamble) transmitted along with payload data,
by comparing received symbols to the known preamble sequence.
The channel response is used in many detection algorithms, such
as maximum likelihood sequence estimation (MLSE) [12].

Let c = (c0, . . . cNc−1)
T denote an unknown channel re-

sponse of known lengthNc, and letp = (p−Nc+1, . . . pNp−Nc)
T

denote the known vector of preamble symbols of lengthNp. The
corresponding received symbols are given by

rk =

Nc−1∑

l=0

clpk−l + wk, k = 0, 1, . . . Np −Nc, (9)
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Fig. 1. Worst-case error and parameter set size.

where wk is additive white noise with varianceσ2
w. We as-

sume that the channel consists of a direct transmission element
c0 = 1 and multipath echoesc′ = (c1, . . . cNc−1)

T . Thus
r = p′ + Hc′ + w, wherep′ = (p0, . . . pNp−Nc)

T andH is
a known matrix containing preamble coefficients.

The classical approach to preamble-based channel estimation
uses the LS estimator̂c′ = (H∗H)−1H∗(r − p′) [4, 12]. This
estimator minimizes the measurement error‖r − p′ − Hĉ′‖2.
However, we are interested in minimizing the estimation error
ε = E‖c − ĉ‖2, which is correlated with bit error rates (BER)
[4]. Since the estimation error is a function of the unknown chan-
nel parameterc′, it cannot be directly minimized. The minimax
approach allows us to minimize the worst-case error among all
possible channels within a known setU . Yet, although we may
believe that‖c′‖ is generally small compared withc0, we cannot
explicitly determine a bound on‖c′‖.

The channel estimation errorεm may be viewed as an addi-
tional noise source [4], and is therefore a parameter with known
implications for the system designer. Thusεm should be a de-
sign parameter, to be chosen together with other system properties,
such as SNR requirements and error correction capabilities. The
MPS estimator can then be used to maximize the set of channels
for which εm is achieved, in order to guarantee operation for as
wide a range of channels as possible.

We consider the problem of estimating a 7-tap channel using
the 14-symbol BPSK preamble suggested in [4]. We assume the
noise variance isσ2

w = 0.1. The worst-case errors of the LS es-
timator and of various minimax MSE estimators for spherical pa-
rameter setsUL = {c′ : ‖c′‖ ≤ L} are plotted in Figure 1.
By Proposition 1, all of these estimators are also MPS estimators.
An engineer constructing a channel estimation system should use
such a plot as a design tool, as it demonstrates the tradeoff between
channel estimation error and the range of channels for which the
error is achieved. For instance, if a maximum error level of0.1
is acceptable, then clearly the optimal choice is the LS estimator,
which guarantees an MSE ofε0 < 0.1 for all channels. However,
in some cases the detector degradation provided by such an esti-
mation error may be prohibitive. An engineer may choose a lower
maximum channel estimation error while taking into consideration
the reduced set of channels for which estimation would be success-
ful. We choose a maximum error ofεm = 0.75ε0, as this value
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Fig. 2. Bit error rate for various channels.

covers most reasonable channels while substantially reducing the
worst-case error.

To compare the performance of LS and MPS estimators, the
transmitter, channel and receiver were simulated. Channels with
multipath power‖c′‖2 between 0 and 2 were used. The channel
was estimated using both the LS estimator (1) and the MPS esti-
mator (6), and each of the channel estimates was used for MLSE
detection of payload data. The bit error rate obtained by the two
estimators is plotted in Figure 2. For comparison, a null estimator
is also plotted; this “estimator” assumes thatc′ = 0.

These results demonstrate that in terms of BER, MPS esti-
mation outperforms standard LS estimation for a range of chan-
nels. The MPS estimator maintains a BER level around 0.6% in
the measured channel range, while the LS estimator results in BER
levels above 1% for many common channels.

The LS estimator has modest estimation error requirements,
but achieves them for all values ofc, while the null estimator
can be viewed as an estimator requiring zero estimation error, and
achieves this requirement only forc′ = 0. With various values
of εm, MPS estimators provide a continuum of choices between
these two extremes. An intermediate choice ofεm generally out-
performs both extremes.

3. MAXIMUM NOISE LEVEL ESTIMATION

In the previous section, we assumed that the noise covariance
E(ww∗) is known. In practice, this is rarely the case, and the co-
variance itself must often be estimated from measurements. In this
section we consider the case whereE(ww∗) = σ2Cw, for some
unknown deterministicnoise levelσ2, and some known covariance
matrixCw. This is appropriate, for example, when the noise vari-
ables are independent and identically distributed, in which case
Cw = I andσ2 is the noise variance. The estimation techniques
used so far require complete knowledge of the noise covariance;
thus they cannot be applied to this problem, unless noise parame-
ters are estimated from measurements, which increases computa-
tional complexity and may be unreliable.

As an alternative approach, we propose to estimatex for as
large a range of noise levels as possible, while maintaining error
requirements. To this end, we define an error functionεσ2(x̂,x),



such as the MSE or the regret, and require some level of perfor-
manceεσ2(x̂,x) ≤ εm to be satisfied over a known rangex ∈ U .
Thenoise robustnesŝσ2 of an estimator̂x is defined as the maxi-
mumσ2 for which the performance requirement is satisfied,

σ̂2(x̂) = max{σ2 : εσ2(x̂,x) ≤ εm, ∀x ∈ U}. (10)

The maximum noise level (MNL) estimatorx̂UN (among a class
of estimatorsE) is the estimator maximizing the noise robustness
among all estimators inE , for givenU , εσ2(x̂,x) andεm,

x̂UN = arg max
x̂∈E

σ̂2(x̂). (11)

We then have the following proposition, which states that MNL
estimators are also minimax estimators.

Proposition 5. Suppose the error functionε of interest is continu-
ous inσ2. Then, an MNL estimator̂xUN within a class of estima-
tors E is a minimax estimator for the parameter setU , with noise
levelσ2

1 = σ̂2(x̂UN).

It follows that the MNL estimator can be found if an algo-
rithm for finding the minimax estimator is known. This is done by
searching among all noise levels for the unique minimax estimator
with the appropriate worst-case error, which leads to the following
proposition.

Proposition 6. LetU = {x : ‖x‖ ≤ L} and letεσ2(x̂,x) be the
MSE. For a given maximum errorεm, a linear MNL estimator is

x̂UN =

{
(1− εm/L2)x̂LS, L2 > εm

0, L2 ≤ εm,
(12)

wherex̂LS is the LS estimator(1).

It is instructive to compare the closed forms obtained for the
MPS estimator (6) and the MNL estimator (12), when spherical pa-
rameter sets are used. Both are shrunken least-squares estimators
[10], and can thus be viewed as a compromise between the least-
squares estimator and the zero estimator. Whenεm is increased,
an increase in either the parameter set or noise level is allowed.
However, a larger parameter set is achieved by an estimator closer
to the LS estimator (which provides constant error for allx); while
a larger noise level is achieved by an estimator closer to the zero
estimator (which provides zero error for the nominal valuex = 0).
Thus, increasing the maximum allowed error has opposite effects,
depending on whether the goal is to increase the parameter robust-
ness or the noise robustness.

4. DISCUSSION

In many estimation problems, it is possible to define the maximum
allowed estimation errorεm. In some applications, the MSE pro-
vided by the LS estimator is acceptable; in these cases, the LS
estimator is optimal, as it guarantees this MSE for any value of the
parameters. However, when the required error is smaller than the
error obtained by the LS estimator, the requirements may still be
obtained for some parameter values. In these cases we may seek
to maximize the parameter set for which requirements are satis-
fied, resulting in the MPS estimator. Alternatively, we may seek
to maintain the required error for as large a noise level as possi-
ble, using the MNL estimator. As we have seen, in many cases,
the MPS and MNL estimators equal the minimax estimator whose

worst-case error isεm. This allows us to efficiently calculate many
such estimators.

The maximum allowed error is often a function of system de-
sign parameters, and can be influenced by design decisions. In
such cases, a plot of the worst-case error as a function of the size
of the parameter set (as in Figure 1) can be used as a design tool.
Such a plot can be interpreted in two complementary ways. It
describes the worst-case error obtained if a minimax estimator is
used with a given parameter set bound; it also defines the size of
the parameter set obtained if an MPS estimator is used with a given
maximum error. Thus, such a plot can be used to select a mean-
ingful value for the maximum error, based on the tradeoff between
estimation error and parameter set bound.

The choice of an appropriate estimator for a given problem de-
pends on the data available to the designer. The maximum allowed
estimation error is an example of added information which may be
known to the designer; as we have shown, incorporating this infor-
mation can considerably improve estimation performance.
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