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Uncertainty Relations for Shift-Invariant Analog
Signals
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Abstract—The past several years have witnessed a surge of
research investigating various aspects of sparse representations
and compressed sensing. Most of this work has focused on the
finite-dimensional setting in which the goal is to decompose a
finite-length vector into a given finite dictionary. Underlying
many of these results is the conceptual notion of an uncertainty
principle: a signal cannot be sparsely represented in two different
bases. Here, we extend these ideas and results to the analog, infi-
nite-dimensional setting by considering signals that lie in a finitely
generated shift-invariant (SI) space. This class of signals is rich
enough to include many interesting special cases such as multiband
signals and splines. By adapting the notion of coherence defined
for finite dictionaries to infinite SI representations, we develop an
uncertainty principle similar in spirit to its finite counterpart. We
demonstrate tightness of our bound by considering a bandlimited
lowpass train that achieves the uncertainty principle. Building
upon these results and similar work in the finite setting, we show
how to find a sparse decomposition in an overcomplete dictionary
by solving a convex optimization problem. The distinguishing
feature of our approach is the fact that even though the problem is
defined over an infinite domain with infinitely many variables and
constraints, under certain conditions on the dictionary spectrum
our algorithm can find the sparsest representation by solving a
finite-dimensional problem.

Index Terms—Analog compressed sensing, coherence, shift-in-
variant signals, sparse decompositions, uncertainty relations.

I. INTRODUCTION

U NCERTAINTY relations date back to the work of Weyl
and Heisenberg who showed that a signal cannot be

localized simultaneously in both time and frequency. This basic
principle was then extended by Landau, Pollack, Slepian, and
later Donoho and Stark to the case in which the signals are not
restricted to be concentrated on a single interval [1]–[4]. The
uncertainty principle has deep philosophical interpretations.
For example, in the context of quantum mechanics it implies
that a particle’s position and momentum cannot be simultane-
ously measured. In harmonic analysis, it imposes limits on the
time–frequency resolution [5].
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Recently, there has been a surge of research into discrete
uncertainty relations in more general finite-dimensional bases
[6]–[8]. This work has been spurred in part by the relation-
ship between sparse representations and the emerging field of
compressed sensing [9], [10]. In particular, several works have
shown that discrete uncertainty relations can be used to estab-
lish uniqueness of sparse decompositions in different bases rep-
resentations. Furthermore, there is an intimate connection be-
tween uncertainty principles and the ability to recover sparse
expansions using convex programming [6], [7], [11].

The vast interest in representations in redundant dictionaries
stems from the fact that the flexibility offered by such systems
can lead to decompositions that are extremely sparse, namely,
use only a few dictionary elements. However, finding a sparse
expansion in practice is in general a difficult combinatorial op-
timization problem. Two fundamental questions at the heart of
overcomplete representations are what is the smallest number
of dictionary elements needed to represent a given signal, and
how can one find the sparsest expansion in a computationally
efficient manner. In recent years, several key papers have ad-
dressed both of these questions in a discrete setting, in which
the signals to be represented are finite-length vectors [6], [7],
[11]–[14], [10], [8].

The discrete generalized uncertainty principle for pairs of or-
thonormal bases states that a vector in cannot be simultane-
ously sparse in two orthonormal bases. The number of nonzero
representation coefficients is bounded below by the inverse co-
herence [6], [7]. The coherence is defined as the largest abso-
lute inner product between vectors in each basis [15], [6]. This
principle has been used to establish conditions under which a
convex optimization program can recover the sparsest pos-
sible decomposition in a dictionary consisting of both bases [6],
[7], [11]. These results where later generalized in [13], [12], [14]
to representations in arbitrary dictionaries and to other efficient
reconstruction algorithms [14].

The classical uncertainty principle is concerned with ex-
panding a continuous-time analog signal in the time and
frequency domains. However, the generalizations outlined
above are mainly focused on the finite-dimensional setting. In
this paper, our goal is to extend these recent ideas and results
to the analog domain by first deriving uncertainty relations for
more general classes of analog signals and arbitrary analog
dictionaries, and then suggesting concrete algorithms to de-
compose a continuous-time signal into a sparse expansion in an
infinite-dimensional dictionary.

In our development, we focus our attention on contin-
uous-time signals that lie in shift-invariant (SI) subspaces of
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[16]–[18]. Such signals can be expressed in terms of linear
combinations of shifts of a finite set of generators

(1)

where are the SI generators, and are
the expansions coefficients. Clearly, is characterized by
infinitely many coefficients . Therefore, the finite results
which provide bounds on the number of nonzero expansion co-
efficients in pairs of bases decompositions are not immediately
relevant here. Instead, we characterize analog sparsity as the
number of active generators that comprise a given representa-
tion, where the th generator is said to be active if
is not identically zero.

Starting with expansions in two orthonormal bases, we show
that the number of active generators in each representation
obeys an uncertainty principle similar in spirit to that of finite
decompositions. The key to establishing this relation is in
defining an analog coherence between the two bases. Our
definition replaces the inner product in the finite setting by the
largest spectral value of the sampled cross correlation between
basis elements, in the analog case. The similarity between the
finite and infinite cases can also be seen by examining settings
in which the uncertainty bound is tight. In the discrete scenario,
the lower uncertainty limit is achieved by decomposing a spike
train into the spike and Fourier bases, which are maximally
incoherent [4]. To generalize this result to the analog domain
we first develop an analog spike–Fourier pair and prove that
it is maximally incoherent. The analog spike basis is obtained
by modulations of the basic lowpass filter (LPF), which is
maximally spread in frequency. In the time domain, these
signals are given by shifts of the sinc function, whose samples
generate shifted spikes. The discrete Fourier basis is replaced
by an analog Fourier basis, in which the elements are frequency
shifts of a narrow LPF in the continuous-time frequency do-
main. Tightness of the uncertainty relation is demonstrated by
expanding a train of narrow LPFs in both bases.

We next address the problem of sparse decomposition in an
overcomplete dictionary, corresponding to using more than
generators in (1). In the finite setting, it can be shown that under
certain conditions on the dictionary, a sparse decomposition can
be found using computationally efficient algorithms such as
optimization [19], [7], [11], [9]. However, directly generalizing
this result to the analog setting is challenging. Although in prin-
ciple we can define an optimization program similar in spirit
to its finite counterpart, it will involve infinitely many variables
and constraints and therefore it is not clear how to solve it in
practice. Instead, we develop an alternative approach by ex-
ploiting recent results on analog compressed sensing [20]–[23],
that leads to a finite-dimensional convex problem whose solu-
tion can be used to find the analog sparse decomposition. Our
algorithm is based on a three-stage process: In the first step, we
sample the analog signal ignoring the sparsity, and formulate the
decomposition problem in terms of sparse signal recovery from
the given samples. In the second stage, we exploit results on

infinite measurement models (IMV) and multiple measurement
vectors (MMV) [24], [22], [25], [26] in order to determine the
active generators, by solving a finite-dimensional convex opti-
mization problem. Finally, we use this information to simulta-
neously solve the resulting infinite set of equations by inverting
a finite matrix [27]. Our method works under certain technical
conditions, which we elaborate on in the appropriate section. We
also indicate how these results can be extended to more general
classes of dictionaries.

The paper is organized as follows. In Section II, we review
the generalized discrete uncertainty principle and introduce the
class of analog signals we will focus on. The analog uncertainty
principle is formulated and proved in Section III. In Section IV,
we consider a detailed example illustrating the analog uncer-
tainty relation and its tightness. In particular, we introduce the
analog version of the maximally incoherent spike–Fourier pair.
Sparse decompositions in two orthonormal analog bases are dis-
cussed in Section V. These results are extended to arbitrary dic-
tionaries in Section VI.

In the sequel, we denote signals in by lower case letters
e.g., , and SI subspaces of by . Vectors in are
written as boldface lowercase letters e.g., , and matrices as
boldface uppercase letters, e.g., . The th element of a vector

is denoted . The identity matrix of appropriate dimension
is written as . For a given matrix and are its trans-
pose and conjugate transpose, respectively, is its th column,
and is the th row. The standard Euclidean norm is denoted

, is the norm of , and
is the cardinality of namely, the number of nonzero ele-

ments. The complex conjugate of a complex number is de-
noted . The Fourier transform of a signal in is de-
fined as . We use the convention
that upper case letters represent Fourier transforms. The dis-
crete-time Fourier transform (DTFT) of a sequence in
is defined by . To emphasize the
fact that the DTFT is -periodic we use the notation .

II. PROBLEM FORMULATION

A. Discrete Uncertainty Principles

The generalized uncertainty principle is concerned with pairs
of representations of a vector in two different or-
thonormal bases [6], [7]. Suppose we have two orthonormal
bases for : and . Any
vector in can then be decomposed uniquely in terms of
each one of these vector sets

(2)

Since the bases are orthonormal, the expansion coefficients are
given by and . Denoting by the
matrices with columns , respectively, (2) can be written
as , with and .

The uncertainty relation sets limits on the sparsity of the de-
composition for any vector . Specifically, let
and denote the number of nonzero elements in each
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one of the expansions. The generalized uncertainty principle [7],
[6] states that

(3)

where is the coherence between the bases and and
is defined by

(4)

The coherence measures the similarity between basis elements.
This definition was introduced in [15] to heuristically charac-
terize the performance of matching pursuit, and later used in [6],
[7], [12], [14] in order to analyze the basis pursuit algorithm.

It can easily be shown that [6]. The
upper bound follows from the Cauchy–Schwarz inequality and
the fact that the bases elements have norm . The lower bound
is the result of the fact that the matrix is unitary and
consequently . This in turn implies that the sum
of the squared elements of is equal to . Since there are
variables, the value of the largest cannot be smaller than .
The lower bound of can be achieved, for example, by
choosing the two orthonormal bases as the spike (identity) and
Fourier bases [4]. With this choice, the uncertainty relation, (3)
becomes

(5)

Assuming is an integer, the relations in (5) are all satisfied
with equality when is a spike train with spacing , resulting
in nonzero elements. This follows from the fact that the
discrete Fourier transform of is also a spike train with the same
spacing. Therefore, can be decomposed both in time and in
frequency into basis vectors.

As we discuss in Section V, the uncertainty relation provides
insight into how sparse a signal can be represented in an over-
complete dictionary consisting of and . It also sheds light on
the ability to compute such decompositions using computation-
ally efficient algorithms. Most of the research to date on sparse
expansions has focused on the discrete setting in which the goal
is to represent a finite-length vector in in terms of a given
dictionary using as few elements as possible. First general steps
towards extending the notions and ideas underlying sparse rep-
resentations and compressed sensing to the analog domain have
been developed in [20], [22], [23], [28]. Here we would like to
take a further step in this direction by extending the discrete un-
certainty principle to the analog setting.

B. Shift-Invariant Signal Expansions

In order to develop a general framework for analog uncer-
tainty principles we first need to describe the set of signals we
consider. A popular model in signal and image processing are
signals that lie in SI spaces. A finitely generated SI subspace in

is defined as [16]–[18]

(6)

The functions are referred to as the generators of . Ex-
amples of SI spaces include multiband signals [20], [23] and
spline functions [29], [27]. Expansions of the type (6) are also
encountered in communication systems, when the analog signal
is produced by pulse amplitude modulation. In the Fourier do-
main, we can represent any as

(7)

where

(8)

is the DTFT of at frequency , and is periodic.
In order to guarantee a unique stable representation of

any signal in by a sequence of coefficients , the gen-
erators are typically chosen such that the functions

form a Riesz basis for .
This means that there exist constants and such
that

(9)

where , and the norm in the
middle term is the standard norm. Condition (9) implies that
any has a unique and stable representation in terms
of the sequences . By taking Fourier transforms in (9) it
follows that the shifts of the generators form a Riesz basis
if and only if [17]

a.e. (10)

where

...
...

... (11)

and for any two functions with Fourier transforms

(12)

Note that is the DTFT of the cross-correlation se-
quence , where the inner product on

is defined as

(13)

In Section VI, we consider overcomplete signal expansions
in which more than generators are used to represent a
signal in . In this case (9) can be generalized to allow for
stable overcomplete decompositions in terms of a frame for .
The functions form a frame
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for the SI space if there exist constants and
such that

(14)

for all , where .
Our main interest is in expansions of a signal in an SI

subspace of in terms of orthonormal bases for . The
generators of form an orthonormal basis1 if

(15)

for all , where if and otherwise.
Since

(15) is equivalent to

(16)

Taking the Fourier transform of (16), the orthonormality condi-
tion can be expressed in the Fourier domain as

(17)

Given an orthonormal basis for , the unique
representation coefficients in (6) are given by

. This can be seen by taking the inner product
of in (6) with and using the orthogonality
relation (15). Evidently, computing the expansion coefficients
in an orthonormal decomposition is straightforward. There is
also a simple relationship between the energy of and the
energy of the coefficient sequence in this case, as incorporated
in the following proposition.

Proposition 1: Let generate an
orthonormal basis for a SI subspace , and let

. Then

(18)

where and is the DTFT of
.
Proof: See Appendix I.

C. Analog Problem Formulation

In the finite-dimensional setting, sparsity is defined in terms
of the number of nonzero expansion coefficients in a given basis.
In an analog decomposition of the form (1), there are in general
infinitely many coefficients so that it is not immediately clear
how to define the notion of analog sparsity.

1Here and in the sequel, when we say that a set of signals �� ���� forms
(or generates) a basis, we mean that the basis functions are �� ��� �� �� � �
� � � � � ��.

In our development, analog sparsity is measured by the
number of generators needed to represent . In other words,
some of the sequences in (1) may be identically zero, in
which case

(19)

where the notation means a sum over at most el-
ements. Evidently, in our definition, sparsity is determined by
the energy of the entire sequence and not by the values of
the individual elements.

In general, the number of zero sequences depends on the
choice of basis. Suppose we have an alternative representation

(20)

where also generate an orthonormal basis for . An
interesting question is whether there are limitations on and

. In other words, can we have two representations that are
simultaneously sparse so that both and are small? This
question is addressed in the next section and leads to an analog
uncertainty principle, similar to (3). In Section IV, we prove
that the relation we obtain is tight, by constructing an example
in which the lower limits are satisfied.

As in the discrete setting, we expect to be able to use fewer
generators in an SI expansion by allowing for an overcomplete
dictionary. In particular, if we expand using both sets of
orthonormal bases we may be able to reduce the number of
sequences in the decomposition beyond what can be achieved
using each basis separately. The problem is how to find a sparse
representation in the joint dictionary in practice. Even in the dis-
crete setting this problem is NP-complete. However, results of
[7], [13], [12], [14] show that under certain conditions a sparse
expansion can be determined by solving a convex optimiza-
tion problem. Here we have an additional essential complica-
tion due to the fact that the problem is defined over an infinite
domain so that it has infinitely many variables and infinitely
many constraints. In Section V, we show that despite the com-
binatorial complexity and infinite dimensions of the problem,
under certain conditions on the bases functions, we can recover
a sparse decomposition by solving a finite-dimensional convex
optimization problem.

III. UNCERTAINTY RELATIONS IN SI SPACES

We begin by developing an analog of the discrete uncertainty
principle for signals in SI subspaces. Specifically, we show
that the minimal number of sequences required to express
in terms of any two orthonormal bases has to satisfy the same
inequality (3) as in the discrete setting, with an appropriate mod-
ification of the coherence measure.

Theorem 1: Suppose we have a signal where
is an SI subspace of . Let and

denote two orthonormal generators of ,

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on November 26, 2009 at 02:45 from IEEE Xplore.  Restrictions apply. 



5746 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009

so that can be expressed in both bases with coefficient se-
quences

(21)

Then
(22)

where
(23)

and is defined by (12).
The coherence of (23) is a generalization of the

notion of discrete coherence (4) defined for finite-dimensional
bases. To see the analogy, note that is the DTFT of
the correlation sequence . On the
other hand, the finite-dimensional coherence can be written
as , where is the discrete
Fourier transform of and is the length of .

Proof: Without loss of generality, we assume that
. Since and both generate or-

thonormal bases, we have from Proposition 1 that

(24)

Using the norm constraint and expressing once in terms
of and once in terms of

(25)

The third equality follows from rewriting the integral over the
entire real line as the sum of integrals over intervals of length

as in (109) in Appendix I, and the second inequality is a

result of (23). Applying the Cauchy–Schwarz inequality to the
integral in (25) we have

(26)

Using the same inequality we can upper-bound the sum in (26)

(27)

Combining with (26), (25), and (24) leads to

(28)

Using the well-known relation between the arithmetic and geo-
metric means completes the proof.

An interesting question is how small can be made by
appropriately choosing the bases. From Theorem 1, the smaller

, the stronger the restriction on the sparsity in both de-
compositions. As we will see in Section V, such a limitation is
helpful in recovering the true sparse coefficients. In the finite
setting we have seen that [6]. The next
theorem shows that the same bounds hold in the analog case.

Theorem 2: Let and
denote two orthonormal generators of a SI subspace and
let , where is
defined by (12). Then

(29)

Proof: We begin by proving the upper bound, which fol-
lows immediately from the Cauchy–Schwarz inequality and the
orthonormality of the bases

(30)

where the last equality is a result of (17). Therefore,
To prove the lower bound, note that since is in for

each , we can express it as

(31)

for some coefficients , or in the Fourier domain

(32)
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Fig. 1. Discrete Fourier-domain representation of the spike–Fourier bases in . The left-hand side is the discrete Fourier transform of the spike basis. The
right-hand side represents the discrete Fourier transform of the Fourier basis. The top row corresponds to the first basis function, while the bottom row represents
the �th basis function.

Since and are orthonormal, we have from
Proposition 1 that

(33)

Now, using (32) and the orthonormality condition (17) it follows
that

(34)

Therefore

(35)

where the last equality follows from (33) by performing a
change of variables in the integral. If

, then a.e. on and

(36)

which contradicts (35).

It is easy to see that the lower bound in (29) is achieved if
for all and . In this case, the uncer-

tainty relation (22) becomes

(37)

As discussed in Section II, in the discrete setting with
an integer, the inequalities in (37) are achieved using the
spike–Fourier basis and equal to a spike train. In the next

section, we show that equality in (37) can be satisfied in the
analog case as well using a pair of bases that is analogous to
the spike–Fourier pair, and a bandlimited signal equal to
a lowpass train.

IV. ACHIEVING THE UNCERTAINTY PRINCIPLE

A. Minimal Coherence

Consider the space of real signals bandlimited to
. As we show below, any signal in can be

expressed in terms of SI generators. We would like to choose
two orthonormal bases, analogous to the spike–Fourier pair in
the finite setting, for which the coherence achieves its lower
limit of . To this end, we first highlight the essential
properties of the finite spike–Fourier bases in , and then
choose an analog pair with similar characteristics.

The basic properties of the spike–Fourier pair are illustrated
in Fig. 1. The first element of the spike basis, , is equal to a
constant in the discrete Fourier domain, as illustrated in the left-
hand side of Fig. 1. The remaining basis vectors are generated
by shifts in time, or modulations in frequency, as depicted in
the bottom part of the figure. In contrast, the first vector of the
Fourier basis is sparse in frequency: it is represented by a single
frequency component as illustrated in the right-hand side of the
figure. The rest of the basis elements are obtained by shifts in
frequency.

We now construct two orthonormal bases for with min-
imal coherence by mimicking these properties in the contin-
uous-time Fourier domain. Since we are considering the class
of signals bandlimited to , we only treat this frequency
range. As we have seen, the basic element of the spike basis oc-
cupies the entire frequency spectrum. Therefore, we choose our
first analog generator to be constant over the frequency
range . The remaining generators are obtained
by shifts in time of or modulations in frequency

otherwise
(38)
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Fig. 2. Continuous Fourier-domain representation of the analog spike-Fourier bases in �. The left-hand side is the Fourier transform of the spike basis. The
right-hand side represents the Fourier transform of the Fourier basis. The top row corresponds to the first generator, while the bottom row represents the �th
generator.

corresponding to

(39)

with . The normalization constant is chosen to ensure
that the basis vectors have unit norm. With slight abuse of ter-
minology, we refer to the set as the analog
spike basis (the basis is actually constructed by shifts of this
set with period ). Note that the samples of at times
create a shifted spike sequence, further justifying the analogy.
The Fourier transform of the analog spike basis is illustrated in
the left-hand side of Fig. 2.

To construct the second orthonormal basis, we choose
to be sparse in frequency, as in the finite case. The remaining
generators are obtained by shifts in frequency. To ensure that
the generators are real we must have that .
Therefore, we consider only the interval . Since we
have real generators, we divide this interval into equal sec-
tions of length , and choose each to be constant over
the corresponding interval, as illustrated in Fig. 2. More specif-
ically, let

(40)

be the th interval. Then

otherwise.
(41)

The analog pair of bases generated by
is referred to as the analog spike–Fourier pair. In

order to complete the analogy with the discrete spike–Fourier
bases we need to show that both analog sets are orthonormal
and generate , and that their coherence is equal to .
The latter follows immediately by noting that

otherwise.
(42)

It is easy to see that replicas of at distance will not
overlap. Furthermore, these replicas tile the entire frequency
axis; therefore, , and .

To show that generate , note that any
can be expressed in the form (6) (or (7)) by choosing

for . If is zero on one of the
intervals , then will also be zero, leading to the multi-
band structure studied in [20], [23]. Since the intervals on which

are nonzero do not overlap, the basis is also orthogonal.
Finally, orthonormality follows from our choice of scaling.

Proving that generate an orthonormal
basis is a bit more tricky. To see that these functions span
note that from Shannon’s sampling theorem, any function
bandlimited to with can be written as

(43)

Substituting , we can replace the sum over
by the double sum over and , resulting in

(44)

with , proving that generate
. Orthonormality of the basis follows from

(45)

where we used the relation

(46)
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Fig. 3. Discrete and analog signals satisfying the uncertainty principle with equality. The left-hand side is the discrete Fourier transform of the spike train. The
right-hand side represents the analog Fourier transform of the LPF train.

B. Tightness of the Uncertainty Relation

Given any signal in , the uncertainty relation for the
analog spike–Fourier pair states that the number of nonzero se-
quences in the spike and Fourier bases must satisfy (37). We
now show that when is an integer, these inequalities can
be achieved with equality with an appropriate choice of , so
that the uncertainty principle is tight. To determine such a signal

, we again mimic the construction in the discrete case.
As we discussed in Section II, when using the finite Fourier-

spike pair, we have equalities in (37) when is a spike
train with non-zero values, equally spaced, as illustrated in
the left-hand side of Fig. 3. This follows from the fact that the
spike train has the same form in both time and frequency. To
construct a signal in satisfying the analog uncertainty rela-
tion, we replace each Fourier-domain spike in the discrete set-
ting by a shifted LPF of width in the analog Fourier do-
main. To ensure that there are nonzero intervals of length

in , the frequency spacing between the
LPFs is set to , as depicted in the right-hand side of
Fig. 3. This signal can be represented in frequency by basis
functions , with , and

. It therefore remains
to be shown that can also be expanded in time using
signals .

Since is bandlimited to

(47)

where . In the Fourier domain we
have

(48)
Due to the fact that is a real sequence,

. Therefore, we consider on the interval
. For values of in this interval, is

nonzero only for indices with
. Thus

(49)

where is an arbitrary integer. The last equality follows from
(46) and the fact that the sum is over consecutive values.

Since is nonzero for indices , so that
can be expanded in terms of generators .

V. RECOVERY OF SPARSE REPRESENTATIONS

A. Discrete Representations

One of the important implications of the discrete uncertainty
principle is its relation to sparse approximations [6], [7], [13],
[14]. Given two orthonormal bases for , an interesting
question is whether one can reduce the number of nonzero ex-
pansion coefficients required to represent a vector by
decomposing it in terms of the concatenated dictionary

(50)

In many cases such a representation can be much sparser than
the decomposition in either of the bases alone. The difficulty
is in actually finding a sparse expansion in which
has as few nonzero components as possible. Since has more
columns than rows, the set of equations is underde-
termined and therefore can have multiple representations .
Finding the sparsest choice can be translated into the combina-
torial optimization problem

s.t. (51)

Problem (51) is NP-complete in general and cannot be solved ef-
ficiently. A surprising result of [6], [7], [11], summarized below
in Proposition 2, is that if the coherence between the
two bases is small enough with respect to the sparsity of , then
the sparsest possible is unique and can be found by the basis
pursuit algorithm. This algorithm is a result of replacing the non-
convex norm by the convex norm

s.t. (52)

Proposition 2: Let be a dictionary con-
sisting of two orthonormal bases with coherence

. If a vector has a sparse decomposition in
such that and , then this repre-
sentation is unique, namely, there cannot be another with

and . Furthermore, if

(53)

then the unique sparse representation can be found by solving
the optimization problem (52).
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As detailed in [6], [7], the proof of Proposition 2 follows from
the generalized discrete uncertainty principle.

Another useful result on dictionaries with low coherence is
that every set of columns are linearly in-
dependent [13, Theorem 6]. This result can be stated in terms
of the Kruskal-rank of [30], which is the maximal number
such that every set of columns of is linearly independent.

Proposition 3: [13, Theorem 6] Let be a dic-
tionary consisting of two orthonormal bases with coherence

. Then where is the
Kruskal-rank of .

B. Analog Representations

We would now like to generalize these recovery results to the
analog setup. However, it is not immediately clear how to extend
the finite basis pursuit algorithm of (52) to the analog domain.

To set up the analog sparse decomposition problem, suppose
we have a signal that lies in a space , and let

be two orthonormal generators of
. Our goal is to represent in terms of the joint dictionary

with

(54)

using as few nonzero sequences as possible. Denoting by
the vector at point- whose elements are , our problem is
to choose the vector sequence such that

(55)

and is identically zero for the largest possible number of
indices .

We can count the number of nonzero sequences by first com-
puting the -norm of each sequence. Clearly, is equal to
for all if and only if its norm
is zero. Therefore, the number of nonzero sequences is
equal to where . For ease of notation, we
denote , and similarly, . Finding
the sparsest decomposition (55) can then be written as

s.t. (56)

Problem (56) is the analog version of (51). However, in addition
to being combinatorial as its finite counterpart, (56) also has
infinitely many variables and constraints.

In order to extend the finite-dimensional decomposition re-
sults to the analog domain, there are two main questions we need
to address.

1. Is there a unique sparse representation for any input signal
in a given dictionary?

2. How can we compute a sparse expansion in practice,
namely, solve (56), despite the combinatorial complexity
and infinite dimensions?

The first question is easy to answer. Indeed, the uniqueness con-
dition of Proposition 2 can be readily extended to the analog
case. This is due to the fact that its proof is based on the uncer-
tainty relation (3) which is identical to (22), with the appropriate
modification to the coherence measure.

Proposition 4: Suppose that a signal has a sparse
representation in the joint dictionary

of (54) which consists of two orthonormal bases
. If the co-

efficient sequences of (55) satisfy
where is the coherence defined by (23), then this rep-
resentation is unique.

The second, more difficult question, is how to find a unique
sparse representation when it exists. We may attempt to develop
a solution by replacing the norm in (56) by an norm, as in
the finite-dimensional case. This leads to the convex program

s.t. (57)

However, in practice, it is not clear how to solve (57) since it is
defined over an infinite set of variables , and has infinitely
many constraints (for all ).

Our approach to treating the analog decomposition problem is
to first sample the signal at a high enough rate, so that
can be determined from the given samples. We will then show
that the decomposition problem can be recast in the Fourier do-
main as that of recovering a set of sparse vectors that share
a joint sparsity pattern, from the given sequences of samples.
The importance of this reformulation is that under appropriate
conditions, it allows to determine the joint support set (or the
active generators) by solving a finite-dimensional optimization
problem. Once the active generators are determined, the corre-
sponding coefficient sequences can be readily found.

We begin by noting that since generate an or-
thonormal basis for is uniquely determined by the
sequences of samples

(58)

where is the convolution . Indeed,
orthonormality of immediately implies that

(59)

Therefore, constraining is equivalent to imposing restric-
tions on the expansion coefficients . Taking the inner prod-
ucts on both sides of (55) with respect to leads to

(60)
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where . In the Fourier domain,
(60) can be written as

(61)

Thus, instead of finding satisfying the constraints in (56)
we can alternatively seek the smallest number of functions

that satisfy (61).
To simplify (61), we use the definition (54) of . Since

and the Fourier transform
of is equal to , (61) can be
written as

(62)

Denoting by the vectors with elements
respectively, we can express (62) as

(63)

where is the sampled cross-correlation matrix

...
...

... (64)

with defined by (12). Our sparse recovery problem (56) is
therefore equivalent to

s.t. (65)

Problem (65) resembles the MMV problem, in which the goal
is to jointly decompose vectors in a dic-
tionary [25], [26], [24], [31]. In the next section, we review
the MMV model and a recently developed generalization to the
case in which it is desirable to jointly decompose infinitely many
vectors in terms of a given dictionary . This extension is re-
ferred to as the IMV [21]. In Section V-D, we show how these
ideas can be used to solve (65).

As we will show, the ability to sparsely decompose a set of
signals in the IMV and MMV settings depends on the properties
of the corresponding dictionary. In our formulation (65), the
dictionary is given by

(66)

The next proposition establishes some properties of that
will be used in Section V-D in order to solve (65).

Proposition 5: Let
denote two orthonormal bases for an SI space . Let

denote the cross-correlation matrix defined by (64),
and let , be the analog and discrete coherence
measures defined by (23), (4). Then, for each :

1. is a unitary matrix;
2. .

Proof: See Appendix B.

C. MMV and IMV Models

The basic results of [7], [12], [13] on expansions in dictio-
naries consisting of two orthonormal bases can be generalized
to the MMV problem in which we would like to jointly decom-
pose vectors in a dictionary . Denoting by

the matrix with columns , our goal is to seek a matrix
with columns such that and has as few nonzero
rows as possible. In this model, not only is each representation
vector sparse, but in addition the vectors share a joint spar-
sity pattern. The results in [25], [26], [24] establish that under
the same conditions as Proposition 2, the unique can be found
by solving an extension of the program

s.t. (67)

Here is a vector whose th element is equal to where
is the th row of , and the norm is an arbitrary vector norm.

When is equal to a single vector for any
choice of norm and (67) reduces to the standard optimiza-
tion problem (52).

Proposition 6: Let be an matrix with columns
that have a joint sparse representation in the

dictionary consisting of two orthonormal bases, so
that with . If where

, then this representation is unique.
Furthermore, if

(68)

then the unique sparse representation can be found by solving
(67) with any vector norm.

The MMV model has been recently generalized to the IMV
case in which there are infinitely many vectors of length ,
and infinitely many coefficient vectors

(69)

where is some set whose cardinality can be infinite. In par-
ticular, may be uncountable, such as the set of frequencies

. The -sparse IMV model assumes that the vec-
tors , which we denote for brevity by , share a joint
sparsity pattern, so that the nonzero elements are all supported
on a fixed location set of size [21]. This model was first in-
troduced in [20] in the context of blind sampling of multiband
signals, and later analyzed in more detail in [21].

A major difficulty with the IMV model is that it is not clear
in practice how to determine the entire solution set since
there are infinitely many equations to solve. Thus, using an
optimization, or a greedy approach, are not immediately rele-
vant here. In [21] it was shown that (69) can be converted to a
finite MMV without losing any information by a set of opera-
tions that are grouped under a block refereed to as the contin-
uous-to-finite (CTF) block. The essential idea is to first recover
the support of , namely the nonzero location set, by solving
a finite MMV. We then reconstruct from the data and
the knowledge of the support, which we denote by . The reason
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for this separation is that once is known, the linear relation of
(69) becomes invertible when the coherence is low enough.

To see this, let denote the matrix containing the subset
of the columns of whose indices belong to . The system of
(69) can then be written as

(70)

where the superscript is the vector that consists of the en-
tries of in the locations . Since is -sparse, .
In addition, from Proposition 3 it follows that if
then every columns of are linearly independent. There-
fore, consists of linearly independent columns implying that

, where is the Moore–Pen-
rose pseudo-inverse of . Multiplying (70) by on the left
gives

(71)

The elements in not supported on are all zero. Therefore,
(71) allows for exact recovery of once the finite set is
correctly identified.

In order to determine by solving a finite-dimensional
problem, we exploit the fact that is finite, since

is of length . Therefore, has dimension
at most . In addition, it is shown in [21] that if there exists
a solution set with sparsity , and the matrix has
Kruskal rank , then every finite collection of
vectors spanning the subspace contains sufficient
information to recover exactly. Therefore, to find all we
need is to construct a matrix whose range space is equal to

. We are then guaranteed that the linear system

(72)

has a unique -sparse solution whose row support is equal
. This result allows to avoid the infinite structure of (69) and

to concentrate on finding the finite set by solving the single
MMV system of (72). The solution can be determined using an

relaxation of the form (67) with replacing , as long as
the conditions of Proposition 6 hold, namely, the coherence is
small enough with respect to the sparsity.

In practice, a matrix with column span equal to
can be constructed by first forming the matrix

, assuming that the integral exists.
Every satisfying will then have a column span
equal to [21]. In particular, the columns of can
be chosen as the eigenvectors of multiplied by the square
root of the corresponding eigenvalues.

We summarize the steps enabling a finite-dimensional solu-
tion to the IMV problem in the following theorem.

Theorem 3: Consider the system of (69) where is
a dictionary consisting of two orthonormal bases with coherence

. Suppose (69) has a -sparse solu-
tion set with support set . If the Kruskal-rank

, then is unique. In addition, let be a matrix whose
column-space is equal to . Then, the linear system

has a unique -sparse solution whose row sup-
port is equal to . Denoting by the columns of whose
indices belong to , the nonzero elements are given by

. Finally, if

(73)

then and the unique sparse can be found by
solving (67) with any vector norm.

D. Analog Dictionaries

In Section V-B we showed that the analog decomposition
problem (56) is equivalent to (65). The later is very similar to the
IMV problem (69). Indeed, we seek a continuous set of vectors

with joint sparsity that have the smallest number of nonzero
rows, and satisfy an infinite set of linear equations. However,
in contrast to (69), the matrix in (65) depends on . Therefore,
Theorem 3 cannot be applied since it is not clear what matrix
figures in the finite MMV representation. Nonetheless, the es-
sential idea of separating the support recovery from that of the
actual values of is still valid. In particular, we can solve
(65) by first determining the support set of . Once the
support is known, we have that

(74)

where is defined by (66). The inverse in (74) exists if
is smaller than . From Proposition 5, it is

sufficient to require that .
To find the support set we distinguish between two different

cases.
1. The constant case in which of (64) can be

written as

(75)

Here is a fixed matrix independent of , and
is an invertible diagonal matrix with diagonal elements

; the columns of are normalized such that
for all .

2. The rich case in which the support of every subset of
of a given size , is equal to the support of the

entire set.
The first case involves a condition on the dictionary. The second
allows for arbitrary dictionaries, but imposes a constraint on the
expansion sequences. This restriction is quite mild, and satis-
fied for a large class of dictionaries and signals. In both cases,
we show that the support can be found by solving a finite-di-
mensional optimization problem.

Constant case: We begin by treating the setting in which
the sampled cross-correlation matrix can be written as in (75).
For example, consider the case in which is the space of
real signals bandlimited to , as in Section IV. Then

defined by (38), (41) satisfy (75) (for ) with
, where denotes the Fourier matrix

and .
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The unitarity of , which follows from Proposi-
tion 5, implies that must be unitary
as well. Indeed, for all , we have

(76)

Therefore, is independent of . Since
, we conclude that

for all so that , which together with
(76) proves the unitarity of .

To obtain a correlation structure of the form (75) we may start
with a given orthonormal basis , and then create
another orthonormal basis by choosing

(77)

Here, is any set of sequences for which
with an arbitrary unitary matrix, and is an

arbitrary diagonal unitary matrix. This is a direct consequence
of the proof of Proposition 5.

Under the condition (75) we now show that we can convert
(65) to a finite MMV problem. Indeed, let the first elements
of be denoted by and the remaining elements
by . Then (65) becomes

s.t. (78)

where , and we used the fact that since
is diagonal and invertible,

so that the two vector sequences have the same sparsity. Problem
(78) has the required IMV form. It can be solved by first finding
the sparsest matrix that satisfies where the
columns of form a basis for the span of

. As we have seen, a basis can be determined in frequency by
first forming the correlation matrix

(79)

Alternatively, we can find a basis in time by creating

(80)

The basis can then be chosen as the eigenvectors corresponding
to nonzero eigenvalues of or , which we denote by . To
find we consider the convex program

s.t. (81)

Let denote the rows in that are not identically zero and
let be the corresponding sequences . Then

(82)

where , and denotes the rows in between
and . The remaining sequences are identically zero.
Proposition 6 provides conditions under which (81) will find the
sparsest representation in terms of the coherence (where
we rely on the fact that is unitary). Since , we
have that and .

We summarize our results on analog sparse decompositions
in the following theorem.

Theorem 4: Let and
denote two orthonormal generators of an SI subspace of
with coherence . Let be a signal in and suppose
there exists sequences such that

(83)

with satisfying .
Let be the cross-correlation matrix defined by (64)
and suppose that it can be written as ,
where is unitary and is a diagonal unitary matrix.
Then, the sequences and can be found by solving

s.t. (84)

Here is chosen such that its columns form a basis for
the range of where the th compo-
nent of is the Fourier transform at frequency of

, and is a vector whose th
element is equal to where the norm is arbitrary. Let
denote the rows of that are not identically equal to ,
and define . Then the nonzero sequences

are given in the Fourier domain by

(85)

In Theorem 4, the sparse decomposition is determined from
the samples . However, the theorem
also holds when is replaced by any sequence of samples

with being an orthonormal basis for
such that both and are constant up to

a diagonal matrix

(86)

In this case, the matrix in (84) should be replaced by the
matrix . Once we find the sparsity set , the sequences
that are not zero can be found as in (85) with the identity in the
first matrix replaced by the appropriate rows of .

Rich case: We next consider the case of an arbitrary ,
and impose a condition on the sequences . Specifically, we
assume that there exists a finite number such that the sup-
port set of is equal . In other words, the
joint support of any vectors is equal to the support
of the entire set. Under this assumption, the support recovery
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problem reduces to an MMV model and can therefore be solved
efficiently using MMV techniques. Specifically, we select a set
of frequencies , and seek the matrix with columns
that is the solution to

s.t. (87)

If we choose as the norm, then (87) is equivalent to
separate problems, each of the form

s.t. (88)

were and is a unitary matrix (see
Proposition 5). From Proposition 2, the correct sparsity pattern
will be recovered if is low enough, which due to Propo-
sition 5 can be guaranteed by upper-bounding .

In some cases, even one frequency may be sufficient in
order to determine the correct sparsity pattern; this happens
when the support of is equal to the support of the en-
tire set of sequences . In practice, we can solve for an
increasing number of frequencies, with the hope of recovering
the entire support in a finite number of steps. Although we can
always construct a set of signals whose joint support cannot be
detected in a finite number of steps, this class of signals is small.
Therefore, if the sequences are generated at random, then with
high probability choosing a finite number of frequencies will be
sufficient to recover the entire support set.

VI. EXTENSION TO ARBITRARY DICTIONARIES

Until now we discussed the case of a dictionary comprised of
two orthonormal bases. The theory we developed can easily be
extended to treat the case of an arbitrary dictionary comprised
of sequences that form a frame (14) for . These results
follow from combining the approach of the previous section
with the corresponding statements in the discrete setting devel-
oped in [12]–[14].

Specifically, suppose we would like to decompose a vector
in terms of a dictionary with columns using as

few vectors as possible. This corresponds to solving

s.t. (89)

Since (89) has combinatorial complexity, we would like to re-
place it with a computationally efficient algorithm. If has low
coherence, where in this case the coherence is defined by

(90)

then we can determine the sparsest solution by solving the
problem

s.t. (91)

The coherence of a dictionary measures the similarity between
its elements and is equal to only if the dictionary consists of
orthonormal vectors. A general lower bound on the coherence

of a matrix of size is [14]
. The same results hold true for the corresponding MMV

model, and are incorporated in the following proposition [13],
[12], [14], [25].

Proposition 7: Let be an arbitrary dictionary with co-
herence given by (90). Then the Kruskal-rank satisfies

. Furthermore, if there exists a choice of
coefficients such that and

(92)

then the unique sparse representation can be found by solving
(67).

We now apply Proposition 7 to the analog design problem.
Suppose we have a signal that lies in an SI space , and
let denote an arbitrary frame for

with . As an example, consider the space of real
signals bandlimited to , which was introduced
in Section IV. As we have seen, this space can be generated by
the functions

(93)

with . Suppose now that we define the functions

(94)

where and . Using similar reasoning as
that used to establish the basis properties of the generators (39),
it is easy to see that constitute an orthonormal basis
for the space of signals bandlimited to which
is larger than . Filtering each one of the basis signals with a
(scaled) LPF with cutoff will result in a redundant set of
functions

(95)

that form a frame for [32], [33].
Our goal is to represent a signal in using as few se-

quences as possible. More specifically, our problem is to
choose the vector sequence such that

(96)

and is minimized.
To derive an infinite-dimensional alternative to (91), let

generate a basis for . Then is uniquely deter-
mined by the sampling sequences

(97)

where is the convolution . Therefore,
satisfies (96) only if

(98)
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where . In the Fourier domain (98)
becomes

(99)

Denoting by the vectors with elements
, respectively we can write (99) as

(100)

Therefore, our problem is to find the sparsest set of that
satisfies (100).

In order to solve the sparse decomposition problem we first
treat the case in which are chosen such that

(101)

where is a fixed matrix independent of , is an invert-
ible diagonal matrix with diagonal elements satisfying

, and is an arbitrary invertible
matrix. Going back to the bandlimited frame (95) it can be easily
seen that with , (101) is satisfied. Indeed, we get

defined in (102) (given at the bottom of the page).
Therefore

(103)

where is a function only of the indices and not the fre-
quency . Choosing and as a
diagonal matrix with diagonal elements
leads to the representation (101).

When has the form (101), the system of (100) be-
comes

(104)

where we denoted ,
, and used (101). Clearly,

because is invertible and diagonal. There-
fore, the sparse decomposition problem is equivalent to finding

satisfying (104) and such that is minimized.
As in the previous section, the sparsest can be

determined by first converting (104) to a finite MMV
problem, in which we seek the sparsest matrix that sat-
isfies where the columns of form a basis for the
span of . The matrix can
be determined by solving the convex problem

s.t. (105)

From Proposition 7 it follows that the unique sparse matrix
can be recovered as long as satisfies (92). Once we de-
termine the nonzero rows in , we can find the nonzero se-

quences by noting that from Proposition 7 the columns
of corresponding to are linearly independent. There-

fore

(106)

If (101) is not satisfied, but instead is rich, so that the
support of every set of vectors (for different frequencies)
is equal to the span of the entire set, then we can still convert
the problem into an MMV. To do this, we choose frequency
values and seek the set of vectors with the
sparsest joint support that satisfy

(107)

Once the support is determined, we can find the nonzero se-
quences using (106).

We have outlined a concrete method to find the sparsest rep-
resentation of a signal in in terms of an arbitrary dictio-
nary. In our proposed approach, the reconstruction is performed
with respect to the samples . We
may alternatively view our algorithm as a method to reconstruct

from these samples assuming the knowledge that has a
sparse decomposition in the given dictionary. Thus, our results
can also be interpreted as a reconstruction method from a given
set of samples, and in that sense complements the results of [22].

VII. CONCLUSION

In this paper, we extended the recent line of work on general-
ized uncertainty principles to the analog domain, by considering
sparse representations in SI bases. We showed that there is a
fundamental limit on the ability to sparsely represent an analog
signal in an infinite-dimensional SI space in two orthonormal
bases. The sparsity bound is similar to that obtained in the fi-
nite-dimensional discrete setting: In both cases, the joint spar-
sity is limited by the inverse coherence of the bases. However,
while in the finite setting, the coherence is defined as the max-
imal absolute inner product between elements from each basis,
in the analog problem the coherence is the maximal absolute
value of the sampled cross spectrum between the signals.

As in the finite domain, we can show that the proposed uncer-
tainty relation is tight by providing a concrete example in which
it is achieved. Our example mimics the finite setting by consid-
ering the class of bandlimited signals as the signal space. This
leads to a Fourier representation that is defined over a finite, al-
beit continuous, interval. Within this space, we can achieve the
uncertainty limit by considering a bandlimited train of LPFs.
This choice of signal resembles the spike train which is known
to achieve the uncertainty principle in the discrete setting.

Finally, we treated the problem of sparsely representing an
analog signal in an overcomplete dictionary. Building upon the
uncertainty principle and recent works in the area of compressed
sensing for analog signals, we showed that under certain con-
ditions on the Fourier domain representation of the dictionary,
the sparsest representation can be found by solving a finite-di-
mensional convex optimization problem. The fact that sparse

otherwise
(102)
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decompositions can be found by solving a convex optimization
problem has been established in many previous works in com-
pressed sensing in the finite setting. The additional twist here is
that even though the problem has infinite dimensions, it can be
solved exactly by a finite-dimensional program in many inter-
esting cases.

In this paper, we have focused on analog signals in SI spaces.
A very interesting further line of research is to extend these
ideas and notions to a larger class of analog signals, leading
to a broader notion of analog sparsity and analog compressed
sensing.

APPENDIX I
PROOF OF PROPOSITION 1

To prove the proposition, note that

(108)

where the last equality follows from (7). To simplify (108), we
rewrite the integral over the entire real line, as the sum of inte-
grals over intervals of length

(109)

for all . Substituting into (108) and using the fact that
is -periodic, we obtain

(110)

where we used (17).

APPENDIX II
PROOF OF PROPOSITION 5

To prove the proposition, we first note that since is in
for each , we can express it as

(111)

for some coefficients with Fourier transform . We
have shown in the proof of Theorem 2 that the orthonormality
condition (17) of implies that

(112)

Now, since is an orthonormal basis for
. From (111)

(113)

where denotes the th row of . The second equality in
(113) follows from the orthonormality of , and
the last equality is a result of (112). Since ,
it follows from (113) that the matrix is unitary for
all .

Since is unitary, the coherence is
well defined. Now for any unitary .
In addition, , so that

, completing the proof.

ACKNOWLEDGMENT

The author would like to thank Prof. Arie Feuer for carefully
reading a draft of the manuscript and providing many construc-
tive comments.

REFERENCES

[1] D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions,
Fourier analysis and uncertainty-I,” Bell Syst. Tech. J, vol. 40, pp.
43–64, 1961.

[2] H. J. Landau and H. O. Pollack, “Prolate spheroidal wave functions,
Fourier analysis and uncertainty-II,” Bell Syst. Tech. J, vol. 40, pp.
65–84, 1961.

[3] H. J. Landau and H. O. Pollack, “Prolate spheroidal wave functions,
Fourier analysis and uncertainty-III,” Bell Syst. Tech. J, vol. 41, pp.
1295–1336, 1962.

[4] D. L. Donoho and P. B. Stark, “Uncertainty principles and signal re-
covery,” SIAM J. Appl. Math., vol. 49, no. 3, pp. 906–931, 1989.

[5] D. Gabor, “Theory of communications,” J. Inst. Elec. Eng., vol. 93, pp.
429–457, 1946.

[6] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic de-
composition,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2845–2862,
Nov. 2001.

[7] M. Elad and A. M. Bruckstein, “A generalized uncertainty principle
and sparse representation in pairs of bases,” IEEE Trans. Inf. Theory,
vol. 48, no. 9, pp. 2558–2567, Sep. 2002.

[8] E. J. Candes and J. Romberg, “Quantitative robust uncertainty prin-
ciples and optimally sparse decompositions,” Foundations of Comput.
Math., vol. 6, no. 2, pp. 227–254, 2006.

[9] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.
52, no. 4, pp. 1289–1306, Apr. 2006.

[10] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[11] A. Feuer and A. Nemirovski, “On sparse representation in pairs of
bases,” IEEE Trans. Inf. Theory, vol. 49, no. 6, pp. 1579–1581, Jun.
2003.

[12] R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3320–3325, Dec.
2003.

[13] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization,” Proc. Nat. Acad.
Sci., vol. 100, no. 5, pp. 2197–2202, 2003.

[14] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxi-
mation,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, Oct.
2004.

[15] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp.
3397–3415, Dec. 1993.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on November 26, 2009 at 02:45 from IEEE Xplore.  Restrictions apply. 



ELDAR: UNCERTAINTY RELATIONS FOR SHIFT-INVARIANT ANALOG SIGNALS 5757

[16] C. de Boor, R. DeVore, and A. Ron, “The structure of finitely generated
shift-invariant spaces in � � �,” J. Funct. Anal., vol. 119, no. 1, pp.
37–78, 1994.

[17] J. S. Geronimo, D. P. Hardin, and P. R. Massopust, “Fractal functions
and wavelet expansions based on several scaling functions,” J. Approx.
Theory, vol. 78, no. 3, pp. 373–401, 1994.

[18] O. Christensen and Y. C. Eldar, “Generalized shift-invariant systems
and frames for subspaces,” J. Fourier Analys. Appl., vol. 11, pp.
299–313, 2005.

[19] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Scient. Comp., vol. 20, pp. 33–61, 1999.

[20] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction:
Compressed sensing for analog signals,” IEEE Trans. Signal Process.,
vol. 57, no. 3, pp. 993–1009, Mar. 2009.

[21] M. Mishali and Y. C. Eldar, “Reduce and boost: Recovering arbitrary
sets of jointly sparse vectors,” IEEE Trans. Signal Process., vol. 56, no.
10, pp. 4692–4702, Oct. 2008.

[22] Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant
spaces,” IEEE Trans. Signal Process., vol. 57, no. 8, pp. 2986–2997,
Aug. 2009.

[23] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-Nyquist
sampling of sparse wideband analog signals,” IEEE Sel. Topics Signal
Process. [Online]. Available: arXiv 0902.4291, to be published

[24] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a struc-
tured union of subspaces,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp.
5302–5316, Nov. 2009.

[25] J. Chen and X. Huo, “Theoretical results on sparse representations of
multiple-measurement vectors,” IEEE Trans. Signal Process., vol. 54,
no. 12, pp. 4634–4643, Dec. 2006.

[26] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse so-
lutions to linear inverse problems with multiple measurement vectors,”
IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477–2488, Jul. 2005.

[27] Y. C. Eldar and T. Michaeli, “Beyond bandlimited sampling,” IEEE
Signal Process. Mag., vol. 26, no. 3, pp. 48–68, May 2009.

[28] K. Gedalyahu and Y. C. Eldar, “Low rate sampling schemes for time
delay estimation,” IEEE Trans. Signal Process., submitted for publica-
tion.

[29] I. J. Schoenberg, Cardinal Spline Interpolation. Philadelphia, PA:
SIAM, 1973.

[30] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear de-
compositions, with application to arithmetic complexity and statistics,”
Linear Alg. Its Applic., vol. 18, no. 2, pp. 95–138, 1977.

[31] Y. C. Eldar and H. Rauhut, “Average case analysis of multichannel
sparse recovery using convex relaxation,” IEEE Trans. Inf. Theory, to
be published.

[32] O. Christensen, An Introduction to Frames and Riesz Bases. Boston,
MA: Birkhäuser, 2002.

[33] E. Margolis and Y. C. Eldar, “Nonuniform sampling of periodic
bandlimited signals,” IEEE Trans. Signal Process., vol. 56, no. 7, pp.
2728–2745, Jul. 2008.

Yonina C. Eldar (S’98–M’02–SM’07) received the B.Sc. degree in physics
in 1995 and the B.Sc. degree in electrical engineering in 1996 both from Tel-
Aviv University (TAU), Tel-Aviv, Israel, and the Ph.D. degree in electrical en-
gineering and computer science in 2001 from the Massachusetts Institute of
Technology (MIT), Cambridge.

From January 2002 to July 2002, she was a Postdoctoral Fellow at the Dig-
ital Signal Processing Group at MIT. She is currently an Associate Professor
in the Department of Electrical Engineering at the Technion–Israel Institute of
Technology, Haifa, Israel. She is also a Research Affiliate with the Research
Laboratory of Electronics at MIT. Her research interests are in the general areas
of signal processing, statistical signal processing, and computational biology.

Dr. Eldar was in the program for outstanding students at TAU from 1992 to
1996. In 1998, she held the Rosenblith Fellowship for study in Electrical En-
gineering at MIT, and in 2000, she held an IBM Research Fellowship. From
2002 to 2005 she was a Horev Fellow of the Leaders in Science and Tech-
nology program at the Technion and an Alon Fellow. In 2004, she was awarded
the Wolf Foundation Krill Prize for Excellence in Scientific Research, in 2005
the Andre and Bella Meyer Lectureship, in 2007 the Henry Taub Prize for Ex-
cellence in Research, in 2008 the Hershel Rich Innovation Award, the Award
for Women with Distinguished Contributions, and the Muriel & David Jacknow
Award for Excellence in Teaching, and in 2009 the Technion’s Award for ex-
cellence in teaching. She is a member of the IEEE Signal Processing Theory
and Methods technical committee and the Bio Imaging Signal Processing tech-
nical committee, an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL

PROCESSING, the EURASIP Journal of Signal Processing, the SIAM Journal on
Matrix Analysis and Applications, and the SIAM Journal on Imaging Sciences,
and serves on the Editorial Board of Foundations and Trends in Signal Pro-
cessing.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on November 26, 2009 at 02:45 from IEEE Xplore.  Restrictions apply. 


