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Abstract—A lower bound on the minimum mean-squared error
(MSE) in a Bayesian estimation problem is proposed in this paper.
This bound utilizes a well-known connection to the deterministic
estimation setting. Using the prior distribution, the bias function
which minimizes the Cramér–Rao bound can be determined, re-
sulting in a lower bound on the Bayesian MSE. The bound is devel-
oped for the general case of a vector parameter with an arbitrary
probability distribution, and is shown to be asymptotically tight in
both the high and low signal-to-noise ratio (SNR) regimes. A nu-
merical study demonstrates several cases in which the proposed
technique is both simpler to compute and tighter than alternative
methods.

Index Terms—Bayesian bounds, Bayesian estimation, minimum
mean-squared error (MSE) estimation, optimal bias, performance
bounds.

I. INTRODUCTION

T HE goal of estimation theory is to infer the value of an un-
known parameter based on observations. A common ap-

proach to this problem is the Bayesian framework, in which the
estimate is constructed by combining the measurements with
prior information about the parameter [1]. In this setting, the pa-
rameter is random, and its distribution describes the a priori
knowledge of the unknown value. In addition, measurements
are obtained, whose conditional distribution, given , provides
further information about the parameter. The objective is to con-
struct an estimator , which is a function of the measurements,
so that is close to in some sense. A common measure of the
quality of an estimator is its mean-squared error (MSE), given
by .

It is well-known that the posterior mean is the tech-
nique minimizing the MSE. Thus, from a theoretical perspec-
tive, there is no difficulty in finding the minimum MSE (MMSE)
estimator in any given problem. In practice, however, the com-
plexity of computing the posterior mean is often prohibitive.
As a result, various alternatives, such as the maximum a pos-
teriori probability (MAP) technique, have been developed [2].
The purpose of such methods is to approach the performance of
the MMSE estimator with a computationally efficient algorithm.
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An important goal is to quantify the performance degradation
resulting from the use of these suboptimal techniques. One way
to do this is to compare the MSE of the method used in practice
with the MMSE. Unfortunately, computation of the MMSE is
itself infeasible in many cases. This has led to a large body of
work seeking to find simple lower bounds on the MMSE in var-
ious estimation problems [3]–[12].

Generally speaking, previous bounds can be divided into
two categories. The Weiss–Weinstein family is based on a
covariance inequality and includes the Bayesian Cramér–Rao
bound [3], the Bobrovski–Zakai bound [8], and the Weiss–We-
instein bound [9], [10]. The Ziv–Zakai family of bounds is
based on comparing the estimation problem to a related detec-
tion scenario. This family includes the Ziv–Zakai bound [4]
and its improvements, notably the Bellini–Tartara bound [6],
the Chazan–Zakai–Ziv bound [7], and the generalization of
Bell et al. [11]. Recently, Renaux et al. have combined both
approaches [12].

The accuracy of the bounds described above is usually tested
numerically in particular estimation settings. Few of the pre-
vious results provide analytical proofs of accuracy, even under
asymptotic conditions. Bellini and Tartara [6] briefly discuss
performance of their bound at high signal-to-noise ratio (SNR),
and Bell et al. [11] prove that their bound converges to the
true value at low SNR for a particular family of Gaussian-like
probability distributions. To the best of our knowledge, there
are no other results concerning the asymptotic performance of
Bayesian bounds.

A different estimation setting arises when one considers as
a deterministic unknown parameter. In this case, too, a common
goal is to construct an estimator having low MSE. However,
the term MSE has a very different meaning in the deterministic
setting, since in this case, the expectation is taken only over the
random variable . One elementary difference with far-reaching
implications is that in the Bayesian case, the MSE is a single
real number, whereas the deterministic MSE is a function of the
unknown parameter [13]–[15].

Many lower bounds have been developed for the determin-
istic setting, as well. These include classical results such as
the Cramér–Rao [16], [17], Hammersley–Chapman–Robbins
[18], [19], Bhattacharya [20], and Barankin [21] bounds, as
well as more recent results [22]–[27]. By far, the simplest and
most commonly used of these approaches is the Cramér–Rao
bound (CRB). Like most other deterministic bounds, the CRB
deals explicitly with unbiased estimators, or, equivalently,
with estimators having a specific, prespecified bias function.
Although many later bounds are sharper [14], [25], [28], the
CRB is known to be asymptotically tight in many cases.
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While the deterministic and Bayesian settings stem from dif-
ferent points of view, there exist insightful relations between the
two approaches. The basis for this connection is the fact that
by adding a prior distribution for , any deterministic problem
can be transformed to a corresponding Bayesian setting. Sev-
eral theorems relate the performance of corresponding Bayesian
and deterministic scenarios [13]. As a consequence, numerous
bounds have both a deterministic and a Bayesian version [3],
[10], [12], [29].

The simplicity and asymptotic tightness of the deterministic
CRB motivate its use in problems in which is random. Such
an application was described by Young and Westerberg [5], who
considered the case of a scalar constrained to the interval

. They used the prior distribution of to determine the
optimal bias function for use in the biased CRB, and thus ob-
tained a Bayesian bound. It should be noted that this result dif-
fers from the Bayesian CRB of Van Trees [3]; the two bounds
are compared in Section II-C. We refer to the result of Young and
Westerberg as the optimal-bias bound (OBB), since it is based
on choosing the bias function which optimizes the CRB using
the given prior distribution.

This paper provides an extension and a deeper analysis of
the OBB. Specifically, we generalize the bound to an arbitrary

-dimensional estimation setting [30]. The bound is determined
by finding the solution to a certain partial differential equa-
tion. Using tools from functional analysis, we demonstrate that a
unique solution exists for this differential equation. Under suit-
able symmetry conditions, it is shown that the method can be
reduced to the solution of an ordinary differential equation and,
in some cases, presented in closed form.

The mathematical tools employed in this paper are also used
for characterizing the performance of the OBB. Specifically, it
is demonstrated analytically that the proposed bound is asymp-
totically tight for both high and low SNR values. Furthermore,
the OBB is compared with several other bounds; in the exam-
ples considered, the OBB is both simpler computationally and
more accurate than all relevant alternatives.

The remainder of this paper is organized as follows. In Sec-
tion II, we derive the OBB for a vector parameter. Section III
discusses some mathematical concepts required to ensure the
existence of the OBB. In Section IV, a practical technique for
calculating the bound is developed using variational calculus.
In Section V, we demonstrate some properties of the OBB, in-
cluding its asymptotic tightness. Finally, in Section VI, we com-
pare the performance of the bound with that of other relevant
techniques.

II. THE OPTIMAL-BIAS BOUND

In this section, we derive the OBB for the general vector case.
To this end, we first examine the relation between the Bayesian
and deterministic estimation settings (Section II-A). Next, we
focus on the deterministic case and review the basic properties
of the CRB (Section II-B). Finally, the OBB is derived from the
CRB (Section II-C).

The focus of this paper is the Bayesian estimation problem,
but the bound we propose stems from the theory of deterministic
estimation. To avoid confusion, we will indicate that a partic-
ular quantity refers to the deterministic setting by appending the

symbol to it. For example, the notation denotes expec-
tation over both and , i.e., expectation in the Bayesian sense,
while expectation solely over (in the deterministic setting) is
denoted by . The notation indicates Bayesian
expectation conditioned on .

Some further notation used throughout the paper is as follows.
Lower case boldface letters signify vectors and upper case bold-
face letters indicate matrices. The th component of a vector is
denoted , while signifies a sequence of vectors.
The derivative of a function is a vector function
whose th element is . Similarly, given a vector func-
tion , the derivative is defined as the matrix function
whose th entry is . The squared Euclidean norm

of a vector is denoted , while the squared Frobe-
nius norm of a matrix is denoted . In Sec-
tion III, we will also define some functional norms, which will
be of use later in the paper.

A. The Bayesian-Deterministic Connection

We now review a fundamental relation between the Bayesian
and deterministic estimation settings. Let be an unknown
random vector in and let be a measurement vector.
The joint probability density function (pdf) of and is

, where is the prior distribution
of and is the conditional distribution of given . For
later use, define the set of feasible parameter values by

(1)

Suppose is an estimator of . Its (Bayesian) MSE is
given by

MSE

(2)

By the law of total expectation, we have

MSE

(3)

Now consider a deterministic estimation setting, i.e., suppose
is a deterministic unknown which is to be estimated from

random measurements . Let the distribution of (as a
function of ) be given by , i.e., the dis-
tribution of in the deterministic case equals the conditional
distribution in the corresponding Bayesian problem.

The estimator defined above is simply a function of the
measurements, and can therefore be applied in the deterministic
case as well. Its deterministic MSE is given by

(4)

Since , we have

(5)
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Combining this fact with (3), we find that the Bayesian MSE
equals the expectation of the MSE of the corresponding deter-
ministic problem, i.e.,

(6)

This relation will be used to construct the OBB in Section II-C.

B. The Deterministic CRB

Before developing the OBB, we review some basic results in
the deterministic estimation setting. Suppose is a deterministic
parameter vector and let be a measurement vector having pdf

. Denote by the set of all possible values of
. We assume for technical reasons that is an open set.1

Let be an estimator of from the measurements . We re-
quire the following regularity conditions to ensure that the CRB
holds [31, Sec. 3.1.3].

1) is continuously differentiable with respect to .
This condition is required to ensure the existence of the
Fisher information.

2) The Fisher information matrix , defined by

(7)

is bounded and positive definite for all . This en-
sures that the measurements contain data about the un-
known parameter.

3) Exchanging the integral and derivative in the equation

(8)

is justified for any measurable function , in the sense
that, if one side exists, then the other exists and the two
sides are equal. A sufficient condition for this to hold is
that the support of does not depend on .

4) All estimators are Borel measurable functions which
satisfy

for all (9)

for some integrable function . This technical require-
ment is needed in order to exclude certain pathological es-
timators whose statistical behavior is insufficiently smooth
to allow the application of the CRB.

The bias of an estimator is defined as

(10)

1This is required in order to ensure that one can discuss differentiability of
� with respect to ��� at any point ��� � �. In the Bayesian setting to which we
will return in Section II-C, � is defined by (1); in this case, adding a boundary
to � essentially leaves the setting unchanged, as long as the prior probability
for ��� to be on the boundary of� is zero. Therefore, this requirement is of little
practical relevance.

Under the above assumptions, it can be shown that the bias of
any estimator is continuously differentiable [5, Lemma 2]. Fur-
thermore, under these assumptions, the CRB holds, and thus, for
any estimator having bias , we have

CRB

(11)

A more common form of the CRB is obtained by restricting at-
tention to unbiased estimators (i.e., techniques for which

). Under the unbiasedness assumption, the bound simplifies to
MSE . However, in the sequel we will make use
of the general form (11).

C. A Bayesian Bound From the CRB

The OBB of Young and Westerberg [5] is based on applying
the Bayesian-deterministic connection described in Section II-A
to the deterministic CRB (11). Specifically, returning now to the
Bayesian setting, one can combine (6) and (11) to obtain that,
for any estimator with bias function

CRB (12)

where the expectation is now performed over both and . Note
that (12) describes the Bayesian MSE as a function of a deter-
ministic property (the bias) of . Since any estimator has some
bias function, and since all bias functions are continuously dif-
ferentiable in our setting, minimizing over all continuously
differentiable functions yields a lower bound on the MSE of
any Bayesian estimator. Thus, under the regularity conditions of
Section II-B, a lower bound on the Bayesian MSE is given by

(13)

where is the space of continuously differentiable functions
.

Note that the OBB differs from the Bayesian CRB of
Van Trees [3]. Van Trees’ result is based on applying the
Cauchy–Schwarz inequality to the joint pdf , whereas the
deterministic CRB is based on applying a similar procedure
to . As a consequence, the regularity conditions required
for the Bayesian CRB are stricter, requiring that be twice
differentiable with respect to . By contrast, the OBB requires
differentiability only of the conditional pdf . An example
in which this difference is important is the case in which the
prior distribution is discontinuous, e.g., when is uniform.
The performance of the OBB in this setting will be examined
in Section VI.

In the next section, we will see that it is advantageous to per-
form the minimization (13) over a somewhat modified class of
functions. This will allow us to prove the unique existence of
a solution to the optimization problem, a result which will be
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Fig. 1. A sequence of continuous functions for which both ������ and �� �
� ���� tend to zero for almost every value of �.

of use when examining the properties of the bound later in the
paper.

III. MATHEMATICAL SAFEGUARDS

As we have seen, a lower bound on the MMSE can be ob-
tained by solving the minimization problem (13). However, at
this point, we have no guarantee that the solution of (13) is any-
where near the true value of the MMSE. Indeed, at first sight,
it may appear that for any estimation setting. To see
this, note that is a sum of two components, a bias gradient
part and a squared bias part. Both parts are nonnegative, but the
former is zero when the bias gradient is , while the latter is
zero when the bias is zero. No differentiable function satis-
fies these two constraints simultaneously for all , since if the
squared bias is everywhere zero, then the bias gradient is also
zero. However, it is possible to construct a sequence of functions

for which both the bias gradient and the squared bias norm
tend to zero for almost every value of . An example of such a
sequence in a one-dimensional setting is plotted in Fig. 1. Here,
a sequence of smooth, periodic functions is presented. The
function period tends to zero, and the percentage of the cycle in
which the derivative equals increases as increases. Thus,
the pointwise limit of the function sequence is zero almost ev-
erywhere (a.e.), and the pointwise limit of the derivative is
a.e.

In the specific case depicted in Fig. 1, it can be shown that
the value of does not tend to zero; in fact, tends
to infinity in this situation. However, our example illustrates that
care must be taken when applying concepts from finite-dimen-
sional optimization problems to variational calculus.

The purpose of this section is to show that , so that
the bound is meaningful, for any problem setting satisfying the
regularity conditions of Section II-B. (This question was not
addressed by Young and Westerberg [5].) While doing so, we
develop some abstract concepts which will also be used when
analyzing the asymptotic properties of the OBB in Section V.

As often happens with variational problems, it turns out that
the minimum of (13) is not necessarily achieved by any contin-
uously differentiable function. In order to guarantee an achiev-
able minimum, one must instead minimize (13) over a slightly
modified space, which is defined below. As explained in Sec-
tion II-B, all bias functions are continuously differentiable, so
that the minimizing function ultimately obtained, if it is not dif-
ferentiable, will not be the bias of any estimator. However, as we
will see, the minimum value of our new optimization problem is
identical to the infimum of (13). Furthermore, this approach al-
lows us to demonstrate several important theoretical properties
of the OBB.

Let be the space of -measurable functions
such that

(14)

Define the associated inner product

(15)

and the corresponding norm . Any function
has a derivative in the distributional sense, but this

derivative might not be a function. For example, discontinuous
functions have distributional derivatives which contain a Dirac
delta. If, for every , the distributional derivative of is
a function in , then is said to be weakly differentiable [32],
and its weak derivative is the matrix function . Roughly
speaking, a function is weakly differentiable if it is continuous
and its derivative exists a.e..

The space of all weakly differentiable functions in is
called the first-order Sobolev space [32], and is denoted .
Define an inner product on as

(16)
The associated norm is . An important prop-
erty which will be used extensively in our analysis is that is
a Hilbert space.

Note that since is an open set, not all functions in are
in . For example, in the case , the function

, for some nonzero constant , is continuously differentiable
but not integrable. Thus, is in but not in , nor even
in . However, any measurable function which is not in
has , meaning that either or has infinite

norm. Consequently, either the bias norm part or the bias
gradient part of is infinite. It follows that performing the
minimization (13) over , rather than over , does
not change the minimum value. On the other hand,
is dense in , and is continuous, so that minimizing (13)
over rather than also does not alter the minimum.
Consequently, we will henceforth consider the problem

(17)

The advantage of including weakly differentiable functions
in the minimization is that a unique minimizer can now be guar-
anteed, as demonstrated by the following result.
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Proposition 1: Consider the problem

(18)

where is given by (12) and is positive definite and
bounded with probability . This problem is well defined, i.e.,
there exists a unique which minimizes . Further-
more, the minimum value is finite and nonzero.

Proving the unique existence of a minimizer for (17) is a tech-
nical exercise in functional analysis which can be found in Ap-
pendix B. However, once the existence of such a minimizer is
demonstrated, it is not difficult to see that . To see
that , we must find a function for which .
One such function is , for which is finite since
is bounded. Now suppose by contradiction that , which
implies that there exists a function such that .
Therefore, both the bias gradient and the squared bias parts of

are zero. In particular, since the squared bias part equals
zero, we have . Hence, , because is a normed
space. But then, by the definition (12) of ,

(19)

which is positive; this is a contradiction.
Note that functions in are defined up to changes on a set

having zero measure. In particular, the fact that is unique
does not preclude functions which are identical to a.e.
(which obviously have the same value ).

Summarizing the discussion of the last two sections, we have
the following theorem.

Theorem 1: Let be an unknown random vector with pdf
over the open set , and let be a measure-

ment vector whose pdf, conditioned on , is given by .
Assume the regularity conditions of Section II-B hold. Then, for
any estimator ,

CRB (20)

The minimum in (20) is nonzero and finite. Furthermore, this
minimum is achieved by a function , which is unique up
to changes having zero probability.

Two remarks are in order concerning Theorem 1. First, the
function solving (20) might not be the bias of any estimator;
indeed, under our assumptions, all bias functions are continu-
ously differentiable, whereas need only be weakly differen-
tiable. Nevertheless, (20) is still a lower bound on the MMSE.
Another important observation is that Theorem 1 arises from the
deterministic CRB; hence, there are no requirements on the prior
distribution . In particular, can be discontinuous or
have bounded support. By contrast, many previous Bayesian
bounds do not apply in such circumstances.

IV. CALCULATING THE BOUND

In finite-dimensional convex optimization problems, the re-
quirement of a vanishing first derivative results in a set of equa-
tions, whose solution is the global minimum. Analogously, in

the case of convex functional optimization problems such as
(20), the optimum is given by the solution of a set of differential
equations. The following theorem, whose proof can be found in
Appendix C, specifies the differential equation relevant to our
optimization problem.

In this section and in the remainder of the paper, we will con-
sider the case in which the set is bounded.
From a practical point of view, even when consists of the en-
tire set , it can be approximated by a bounded set containing
only those values of for which .

Theorem 2: Under the conditions of Theorem 1, suppose
is a bounded subset of with a smooth boundary . Then, the
optimal of (20) is given by the solution to the system of
partial differential equations

(21)

for , within the range , which satisfies the
Neumann boundary condition

(22)

for all points . Here, is a normal to the boundary at .
All derivatives in this system of equations are to be interpreted
in the weak sense.

Note that Theorem 1 guarantees the existence of a unique so-
lution in to the differential equation (21) with the boundary
conditions (22).

The bound of Young and Westerberg [5] is a special case of
Theorem 2, and is given here for completeness.

Corollary 1: Under the settings of Theorem 1, suppose
is a bounded interval in . Then, the bias function

minimizing (20) is a solution to the second-order ordinary dif-
ferential equation

(23)

within the range , subject to the boundary conditions
.

Theorem 2 can be solved numerically, thus obtaining a bound
for any problem satisfying the regularity conditions. However,
directly solving (21) becomes increasingly complex as the
dimension of the problem increases. Instead, in many cases,
symmetry relations in the problem can be used to simplify the
solution. As an example, the following spherically symmetric
case can be reduced to a one-dimensional setting equivalent to
that of Corollary 1. The proof of this theorem can be found in
Appendix D.

Theorem 3: Under the setting of Theorem 1, suppose that
is a sphere centered on the origin,

is spherically symmetric, and , where
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is a scalar function. Then, the optimal-bias bound
(20) is given by

(24)

Here, is the Gamma function, and is a solution to the
ODE

(25)

subject to the boundary conditions , . The
bias function for which the bound is achieved is given by

(26)

In this theorem, the requirement indicates
that the Fisher information matrix is diagonal and that its com-
ponents are spherically symmetric. Parameters having a diag-
onal matrix are sometimes referred to as orthogonal. The
simplest case of orthogonality occurs when, to each parameter

, there corresponds a measurement , in such a way that the
random variables are independent. Other orthogonal sce-
narios can often be constructed by an appropriate parametriza-
tion [33].

The requirement that have spherically symmetric compo-
nents occurs, for example, in location problems, i.e., situations
in which the measurements have the form , where

is additive noise which is independent of . Indeed, under
such conditions, is constant in [31, Sec. 3.1.3]. If, in ad-
dition, the noise components are independent, then this setting
also satisfies the orthogonality requirement, and thus application
of Theorem 3 is appropriate. Note that this estimation problem
is not separable, since the components of are correlated; thus,
the MMSE in this situation is lower than the sum of the com-
ponents’ MMSE. An example of such a setting is presented in
Section VI.

V. PROPERTIES

In this section, we examine several properties of the OBB.
We first demonstrate that the optimal bias function has zero
mean, a property which also characterizes the bias function of
the MMSE estimator. Next, we prove that, under very general
conditions, the resulting bound is tight at both low and high
SNR values. This is an important result, since a desirable prop-
erty of a Bayesian bound is that it provides an accurate estimate
of the ambiguity region between high and low SNR [11]. Re-
liable estimation at the two extremes increases the likelihood
that the transition between these two regimes will be correctly
identified.

A. Optimal Bias Has Zero Mean

In any Bayesian estimation problem, the bias of the MMSE
estimator has zero mean. Indeed

(27)

so that

(28)

Thus, it is interesting to ask whether the optimal bias which
minimizes (20) also has zero mean. This does in fact occur, as
shown by the following theorem.

Theorem 4: Let be the solution to (20). Then

(29)

Proof: Assume by contradiction that has nonzero
mean . Define . From (11),
we then have

CRB CRB

(30)

Using the functional defined in (12), we obtain

(31)

Thus, , contradicting the fact that minimizes
(20).

B. Tightness at Low SNR

Bell et al. [11] examined the performance of the extended
Ziv–Zakai bound at low SNR and demonstrated that, for a par-
ticular family of distributions, the extended Ziv–Zakai bound
achieves the MSE of the optimal estimator as the SNR tends
to . We now examine the low-SNR performance of the OBB,
and demonstrate tightness for a much wider range of problem
settings.

Bell et al. did not define the general meaning of a low-SNR
value, and only stated that “[a]s observation time and/or SNR
become very small, the observations become useless [and]
the minimum MSE estimator converges to the a priori mean.”
This statement clearly does not apply to all estimation problems,
since it is not always clear what parameter corresponds to the ob-
servation time or the SNR. We propose to define the zero-SNR
case more generally as any situation in which with
probability . This definition implies that the measurements do
not contain information about the unknown parameter, which is
the usual informal meaning of zero SNR. In the case ,
it can be shown that the MMSE estimator is the prior mean, so
that our definition implies the statement of Bell et al..

The OBB is inapplicable when , since the CRB is
based on the assumption that is positive definite. To avoid
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this singularity, we consider a sequence of estimation settings
which converge to zero SNR. More specifically, we require all
eigenvalues of to decrease monotonically to zero for -al-
most all . The following theorem, the proof of which can be
found in Appendix E, demonstrates the tightness of the OBB in
this low-SNR setting.

Theorem 5: Let be a random vector whose pdf is
nonzero over an open set . Let be a se-
quence of observation vectors having finite Fisher information
matrices , respectively. Suppose that, for all

, the matrix is positive definite for -almost all ,
and that all eigenvalues of decrease monotonically to
zero as for -almost all . Let denote the op-
timal-bias bound for estimating from . Then

(32)

C. Tightness at High SNR

We now examine the performance of the OBB for high SNR
values. To formally define the high-SNR regime, we consider a
sequence of measurements of a single parameter
vector . It is assumed that, when conditioned on , all measure-
ments are independent and identically distributed (i.i.d.).
Furthermore, we assume that the Fisher information matrix of a
single observation is well defined, positive definite, and fi-
nite for -almost all . We consider the problem of estimating

from the set of measurements , for a given
value of . The high-SNR regime is obtained when is large.

When tends to infinity, the MSE of the optimal estimator
tends to zero. An important question, however, concerns the rate
of convergence of the minimum MSE. More precisely, given the

optimal estimator of from , one would

like to determine the asymptotic distribution of ,
conditioned on . A fundamental result of asymptotic estimation
theory can be loosely stated as follows [28, Sec. III.3], [13, Sec.
6.8]. Under some fairly mild regularity conditions, the asymp-

totic distribution of , conditioned on , does not

depend on the prior distribution ; rather, con-
verges in distribution to a Gaussian random vector with mean
zero and covariance . It follows that

(33)

Since the minimum MSE tends to zero at high SNR, any
lower bound on the minimum MSE must also tend to zero as

. However, one would further expect a good lower
bound to follow the behavior of (33). In other words, if rep-
resents the lower bound for estimating from ,
a desirable property is . The following
theorem, whose proof is found in Appendix E, demonstrates
that this is indeed the case for the OBB.

Except for a very brief treatment by Bellini and Tartara [6],
no previous Bayesian bound has shown such a result. Although
it appears that the Ziv–Zakai and Weiss–Weinstein bounds may
also satisfy this property, this has not been proven formally. It

is also known that the Bayesian CRB is not asymptotically tight
in this sense [34, eqs. (37)–(39)].

Theorem 6: Let be a random vector whose pdf is
nonzero over an open set . Let be a se-
quence of measurement vectors, such that are
i.i.d. Let be the Fisher information matrix for estimating

from , and suppose is finite and positive definite for
-almost all . Let be the optimal-bias bound (20) for esti-

mating from the observation sequence . Then

(34)

Note that for Theorem 6 to hold, we require only that
be finite and positive definite. By contrast, the various theo-
rems guaranteeing asymptotic efficiency of Bayesian estimators
all require substantially stronger regularity conditions [28, Sec.
III.3], [13, Sec. 6.8]. One reason for this is that asymptotic ef-
ficiency describes the behavior of conditioned on each pos-
sible value of , and is thus a stronger result than the asymptotic
Bayesian MSE of (33).

VI. EXAMPLE: UNIFORM PRIOR

The original bound of Young and Westerberg [5] predates
most Bayesian bounds, and, surprisingly, it has never been cited
by or compared with later results. In this section, we measure
the performance of the original bound and of its extension to the
vector case against that of various other techniques. We consider
the case in which is uniformly distributed over an -dimen-
sional open ball , so that

(35)

where equals when and otherwise, and

(36)

is the volume of an -ball of radius [35]. We further assume
that

(37)

where is zero-mean Gaussian noise, independent of , having
covariance . We are interested in lower bounds on the MSE
achievable by an estimator of from .

We begin by developing the OBB for this setting, as well
as some alternative bounds. We then compare the different ap-
proaches in a one-dimensional and a three-dimensional setting.

The Fisher information matrix for the given estimation
problem is given by , so that the conditions of
Theorem 3 hold. It follows that the optimal bias function is
given by , where is a solution to the
differential equation

(38)

with boundary conditions , . The general
solution to this differential equation is given by

(39)
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where and are the modified Bessel functions of
the first and second types, respectively [36]. Since is
singular at the origin, the requirement leads to .
Differentiating (39) with respect to , we obtain

(40)

so that the requirement leads to

(41)

Substituting this value of into (24) yields the OBB, which
can be computed by evaluating a single one-dimensional inte-
gral. Alternatively, in the one-dimensional case, the integral can
be computed analytically, as will be shown below.

Despite the widespread use of finite-support prior distribu-
tions [4], [10], the regularity conditions of many bounds are vi-
olated by such prior pdf functions. Indeed, the Bayesian CRB of
Van Trees [3], the Bobrovski–Zakai bound [8], and the Bayesian
Abel bound [12] all assume that has infinite support, and
thus cannot be applied in this scenario.

Techniques from the Ziv–Zakai family are applicable to con-
strained problems. An extension of the Ziv–Zakai bound for
vector parameter estimation was developed by Bell et al. [11].
From [11, Property 4], the MSE of the th component of is
bounded by

(42)

where is a unit vector in the direction of the th component,
is the valley-filling function defined by

(43)

(44)

and is the minimum probability of error for the problem
of testing hypothesis versus . In
the current setting, is given by ,
where is the tail function of the
normal distribution. Also, in the present setting we have

(45)

where
(46)

and . Thus, is the
volume of the intersection of two -balls whose centers are at a
distance of units from one another. Substituting these results
into (42), we have

(47)

Note that both and decrease with .
Therefore, the maximum in (47) is obtained for . Also,
since the argument of is monotonically decreasing, the
valley-filling function has no effect and can be removed. Finally,
since for , the integration can be limited to
the range . Thus, the extended Ziv–Zakai bound is given
by

(48)

We now compute the Weiss–Weinstein bound for the setting
at hand. This bound is given by

(49)

where is a matrix containing an arbitrary
number of test vectors and is a matrix whose elements are
given by

(50)

in which

(51)

and

(52)

The vectors and the scalars are arbitrary,
and can be optimized to maximize the bound (49). To avoid a
multidimensional nonconvex optimization problem, we restrict
attention to , , and , as suggested by
[10]. This results in a dependency on a single scalar parameter .

Under these conditions, can be written as

(53)

where

(54)

and

(55)

Note that we have used the corrected version of the Weiss–We-
instein bound [37]. Substituting the probability distribution of
and into the definitions of and , we have

(56)

and similarly

(57)
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Thus, is a function only of , and is a func-
tion only of , , and . Since , it
follows that, for , the numerator of (53) vanishes. Thus,
is a diagonal matrix, whose diagonal elements equal

(58)

The Weiss–Weinstein bound is given by substituting this result
into (49) and maximizing over , i.e.,

(59)

The value of yielding the tightest bound can be determined by
performing a grid search.

To compare the OBB with the alternative approaches devel-
oped above, we first consider the one-dimensional case in which

is uniformly distributed in the range . Let
be a single noisy observation, where is zero-mean

Gaussian noise, independent of , with variance . We wish
to bound the MSE of an estimator of from .

The optimal bias function is given by (39). Using the fact that
, we obtain

(60)

which also follows [5] from Corollary 1. Substituting this ex-
pression into (20), we have that, for any estimator

(61)

Apart from the reduction in computational complexity, the
simplicity of (61) also emphasizes several features of the esti-
mation problem. First, the dependence of the problem on the
dimensionless quantity , rather than on and separately,
is clear. This is to be expected, as a change in units of measure-
ment would multiply both and by a constant. Second, the
asymptotic properties demonstrated in Theorems 5 and 6 can
be easily verified. For , the bound converges to the noise
variance , corresponding to an uninformative prior whose
optimal estimator is ; whereas, for , a Taylor
expansion of immediately shows that the bound
converges to , corresponding to the case of uninformative
measurements, where the optimal estimator is . Thus, the
bound (61) is tight both for very low and for very high SNR, as
expected.

In the one-dimensional case, we have and
, so that the extended Ziv–Zakai

bound (48) and the Weiss–Weinstein bound (59) can also be
simplified somewhat. In particular, the extended Ziv–Zakai
bound (48) can be written as

(62)

Using integration by parts, (62) becomes

(63)

where is the incomplete
Gamma function. Like the expression (61) for the OBB, this
bound can be shown to converge to the noise variance when

and to the prior variance when . However,
while the convergence of the OBB to these asymptotic values
has been demonstrated in general in Theorems 5 and 6, the
asymptotic tightness of the Ziv–Zakai bound in the general
case remains an open question.

The Weiss–Weinstein bound (59) can likewise be simplified
further in the one-dimensional case, yielding

(64)

However, calculating this bound still requires a numerical search
for the optimal value of .

These bounds are compared with the exact value of the
MMSE in Fig. 2. In this figure, the SNR is defined as

SNR (dB)

(65)

The MMSE was computed by Monte Carlo approximation of
the error of the optimal estimator , which was itself
computed by numerical integration. Fig. 2(a) plots the MMSE
and the values obtained by the aforementioned bounds, while
Fig. 2(b) plots the ratio between each of the bounds and the ac-
tual MMSE in order to emphasize the difference in accuracy
between the various bounds. As can be seen from this figure,
the OBB is closer to the true MSE than all other bounds, for all
tested SNR values.

The improvements provided by the OBB continue to hold in
higher dimensions as well, although in this case it is not pos-
sible to provide a closed form for any of the bounds. For ex-
ample, Fig. 3 compares the aforementioned bounds with the true
MMSE in the three-dimensional case. In this case, the SNR is
given by

SNR (dB)

(66)

Here, computation of the minimum MSE requires multidimen-
sional numerical integration, and is by far more computationally
complex than the calculation of the bounds. Again, it is evident
from this figure that the OBB is a very tight bound in all ranges
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Fig. 2. Comparison of the MSE bounds and the minimum achievable MSE in a one-dimensional setting for which � � � ���� �� and ��� � ���� � �.

Fig. 3. Comparison of the MSE bounds and the minimum achievable MSE in a three-dimensional setting for which ��� is uniformly distributed over a ball of radius
� and ������� � ������ � ����.

of operation, and is considerably closer to the true value than
either of the alternative approaches.

VII. CONCLUSION

Although often considered distinct settings, there are in-
sightful connections between the Bayesian and deterministic
estimation problems. One such relation is the use of the deter-
ministic CRB in a Bayesian problem. The application of this
deterministic bound to the problem of estimating the minimum
Bayesian MSE results in a Bayesian bound which is provably
tight at both high and low SNR values. Numerical simulation of
the location estimation problem demonstrates that the technique
is both simpler and tighter than alternative approaches.

APPENDIX A
SOME TECHNICAL LEMMAS

The proof of several theorems in the paper relies on the fol-
lowing technical results.

Lemma 1: Consider the minimization problems

(67)

where is positive definite and bounded a.e. ( )

(68)
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and is convex, closed, and bounded under the norm
(16). Then, for each , there exists a function such that

. If or , then the minimizer of (67) is
unique.

Note that equals of (12); the notation is in-
troduced for simplicity. Also note that under mild regularity as-
sumptions on , uniqueness can be demonstrated for
as well, but this is not necessary for our purposes.

Proof: The space is a Cartesian product of Sobolev
spaces , each of which is a separable Hilbert space [38,
Section 3.7.1]. Therefore, is also a separable Hilbert space.
It follows from the Banach-Alaoglu theorem [39, Section
3.17] that all bounded sequences in have weakly conver-
gent subsequences [32, Section 2.18]. Recall that a sequence

is said to converge weakly to
(denoted ) if

(69)

for all continuous linear functionals [32, Section 2.9].
Given a particular value , let be a sequence

of functions in such that . This is a bounded
sequence since is bounded, and therefore there exists a subse-
quence which converges weakly to some . Fur-

thermore, since is closed,2 we have . We will now

prove that .
To this end, we will first show that is weakly lower semi-

continuous, i.e., for any sequence which converges
weakly to , we must show that

(70)

Consider a weakly convergent sequence . Then,
(69) holds for any continuous linear functional . Specifically,
choose the continuous linear functional

(71)

We then have

2In fact, we require that� be “weakly closed” in the sense that weakly conver-
gent sequences in � converge to an element in �. However, since � is convex,
this notion is equivalent to the ordinary definition of closure [39, Section 3.13].

(72)

where we have used the Cauchy–Schwarz inequality. It follows
that

(73)

and therefore , so that is
weakly lower semicontinuous.

Similarly, consider the continuous linear functional

(74)

for which we have

(75)

Note that, for any positive definite matrix , is an
inner product of the two matrices and . Therefore, by the
Cauchy–Schwarz inequality

(76)

Applying this to (75), we get (77) shown at the bottom of the
page. Once again using the Cauchy–Schwarz inequality results
in

(78)

and therefore , so that is
weakly lower semicontinuous. Since , it
follows that is also weakly lower semicontinuous.

Now recall that and . By the
definition (70) of lower semicontinuity, it follows that

(79)

and since is the infimum of , we obtain .

Thus, is a minimizer of (67).

(77)
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It remains to show that for , the minimizer of (67)
is unique. We will demonstrate this by showing that and

are strictly convex. Let be two essentially
different functions, i.e.,

(80)

Let for some ,
so that by convexity. We then have

(81)

where the inequality follows from strict convexity of the squared
Euclidean norm . Thus, is strictly convex, and hence
has a unique minimum.

Note that . Since is strictly convex
and is convex, it follows that is strictly convex, and
thus also has a unique minimum. This completes the proof.

The following lemma can be thought of as a triangle in-
equality for a normed space of matrix functions over .

Lemma 2: Let be a probability measure over , and let
be a matrix function. Suppose

(82)

for some constant . It follows that

(83)

Proof: By the triangle inequality

(84)

Since , we have

(85)

Using the fact that

(86)

and combining with (82), it follows that

(87)

which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 1

The following proof of Proposition 1 makes use of the results
developed in Appendix A.

Proof of Proposition 1: Recall that of (68) equals
. Thus, we would like to apply Lemma 1 (with ) to

prove the unique existence of a minimizer of (17). However,
Lemma 1 requires that the minimization be performed over a
closed, bounded, and convex set , whereas (17) is performed
over the unbounded set . To resolve this issue, we must show
that the minimization (17) can be reformulated as a minimiza-
tion over a closed, bounded, and convex set .

To this end, note that

(88)

and therefore . Thus, it suffices to perform the
minimization (17) over those functions for which . We
now show that this can be achieved by minimizing over a closed,
bounded, and convex set . First, note that , so
that one may choose to minimize (17) only over functions for
which

(89)

Similarly, we have

(90)
so that it suffices to minimize (17) over functions for which

(91)

Note that is bounded a.e., and therefore
a.e., for some constant . It follows that

a.e. (92)

Combining with (91) yields

(93)
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From Lemma 2, we then have

(94)

From (89) and (94) it follows that the minimization (17) can be
limited to the closed, bounded, convex set

(95)

Applying Lemma 1 proves the unique existence of a minimizer
of (17). The proof that appears immediately after
the statement of Proposition 1.

APPENDIX C
PROOF OF THEOREM 2

The following is the proof of Theorem 2 concerning the cal-
culation of the OBB.

Proof of Theorem 2: Consider the more general problem
of minimizing the functional

(96)

where is smooth and convex in , and
is a bounded set with a smooth boundary . Then, is

also smooth and convex in , so that is a global minimum of
if and only if the differential equals zero at for all

admissible functions [40].
By a standard technique [40, Sec. 35], it can be shown that

(97)

where is an infinitesimal quantity, , and
is an outward-pointing normal at the boundary point .
We now seek conditions for which for all .
Consider first functions which equal zero on the boundary

. In this case, the second integral vanishes, and we obtain the
Euler–Lagrange equations

(98)

Substituting this result back into (97), and again using the fact
that for all , we obtain the boundary condition

(99)

Plugging CRB into (98) and (99) provides
the required result.

APPENDIX D
PROOF OF THEOREM 3

Before proving Theorem 3, we provide the following two
lemmas, which demonstrate some symmetry properties of the
CRB.

Lemma 3: Under the conditions of Theorem 3, the func-
tional of (12) is rotation and reflection invariant, i.e.,

for any unitary matrix .
Proof: We first demonstrate that is rotation invariant.

From the definitions of and CRB , we have

(100)

The second integral is clearly rotation invariant, since a rotation
of does not alter its norm. It remains to show that the first
integral, which we denote by , does not change when is
rotated. To this end, we begin by considering a rotation about
the first two coordinates, such that is transformed to ,
where the rotation matrix is defined such that

(101)

We must thus show that . Let us perform the change
of variables , where . Rewriting the trace in
(100) as a sum, we have

(102)

where we have used the facts that and that does
not change under the change of variables.

We now demonstrate some properties of the transformation
of and . First, we have, for any

(103)

Also, for any

(104)
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where we used the fact that . Third, we have

(105)

so that

(106)

We now show that

(107)

For terms with , we have and , so that
replacing with and with does not change the result. The
terms with and do not change because of (103),
while the terms with and do not change because
of (104). It remains to show that the terms do not
modify the sum. To this end, we write out these four terms as

(108)

where, in the second transition, we have used (103), (104), and
(106). It follows that of (102) is equal to , and hence

. The result similarly holds for rotations about any
other pair of coordinates. Since any rotation can be decomposed
into a sequence of two-coordinate rotations, we conclude that

is rotation invariant.
Next, we prove that is invariant to reflections through hy-

perplanes containing the origin. Since is invariant to rota-
tions, it suffices to choose a single hyperplane, say .
Let

(109)

be the reflection of , and consider the corresponding change of
variables

(110)

By the symmetry assumptions, and are unaffected by the
change of variables; furthermore, . It follows
that CRB CRB , and therefore .

Lemma 4: Suppose is radial and rotation invariant,
i.e., for some function . Also suppose
that , where is a scalar function. Then,
CRB of (11) is rotation invariant in , i.e., CRB
CRB for any rotation matrix .

Proof: We will show that CRB depends on only
through , and is therefore rotation invariant. For the given
value of and , we have

CRB

(111)

where, for notational convenience, we have omitted the depen-
dence of on . It remains to show that the trace in the above
expression is a function of only through . To this end, we
note that

(112)

where is the Kronecker delta. It follows that

(113)
Therefore

(114)

Thus, CRB depends on only through , completing
the proof.

Proof of Theorem 3: We have seen in Theorem 2 that the
solution of (20) is unique. Now suppose that the optimum is
not rotation invariant, i.e., there exists a rotation matrix such
that is not identical to . By Lemma 3, is also
optimal, which is a contradiction.

Furthermore, suppose that is not radial, i.e., for some value
of , contains a component perpendicular to the vector .
Consider a hyperplane passing through the origin, whose normal
is the aforementioned perpendicular component. By Lemma 3,
The reflection of through this hyperplane is also an optimal
solution of (20), which is again a contradiction. Therefore, the
optimum is spherically symmetric and radial, so that it can be
written as

(115)

where is a scalar function.
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To determine the value of , it suffices to analyze the dif-
ferential equation (21) along a straight line from the origin to
the boundary. We choose a line along the axis, and begin by
calculating the derivatives of , , and along
this axis. The derivative of is given by

(116)

where we have denoted , so that is weakly differen-
tiable and

(117)

Along the axis, we have while ,
so that

(118)

Similarly, since

(119)

so that along the axis

(120)

From (115), we have

(121)

Thus, on the axis, we have

(122)

The second derivative of can be shown to equal

(123)

Therefore, on the axis

(124)

Substituting these derivatives into (21), we obtain

(125)

which is equivalent to (25).

To obtain the boundary conditions, observe that Lemma 3
implies , whence, we conclude that . Next,
evaluate the boundary condition (22) at boundary point ,
where the surface normal equals , so that

(126)

which is equivalent to the boundary condition .
To find the OBB (24), we must now calculate for the

obtained bias function (115). To this end, note that, by Lemma 4,
CRB is rotation invariant in for the required . Thus,
the integrand CRB is constant on any -sphere
centered on the origin, so that

CRB (127)

where

(128)

is the hypersurface area of an -sphere of radius [35]. It
thus suffices to calculate the value of CRB at points along
the axis. From (121), it follows that

(129)

Substituting this into the definition of CRB , we obtain

CRB

(130)

Combining (130) with (127) yields (24), as required.

APPENDIX E
PROOFS OF ASYMPTOTIC PROPERTIES

Theorems 5 and 6 demonstrate asymptotic tightness of the
OBB. The proofs of these two theorems follow.

Proof of Theorem 5: We begin the proof by studying a
certain optimization problem, whose relevance will be demon-
strated shortly. Let be a constant and consider the problem

s.t. (131)

Notice that for all , since an objective having a
value of is achieved by the function . Thus, it suf-
fices to perform the minimization (131) over functions
satisfying

(132)

It follows from Lemma 2 that such functions also satisfy

(133)
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Therefore, (131) is equivalent to the minimization

(134)

where

(135)

The set is convex, closed, and bounded in . Applying
Lemma 1 (with ) implies that there exists a function

which minimizes (134), and hence also minimizes
(131).

Note that the objective in (131) is zero if and only if

a.e. (136)

The only functions in satisfying this requirement are the
functions

(137)

for some constant . Let and define

(138)

For functions of the form (137), the constraint of (131) is given
by

(139)

In (139), equality is obtained if and only if . Therefore, if
, no functions satisfying (136) are feasible, and thus

if

if (140)

We now return to the setting of Theorem 5. We must show
that as . We denote functions corresponding to
the problem of estimating from with a superscript .
Thus, for example, denotes the functional of (12)
for the problem corresponding to the measurement vector .

Since all eigenvalues of decrease monotonically
with for -almost all , we have

CRB CRB (141)

for any , for -almost all , and for all . Therefore

(142)

for any and for all . It follows that for all

(143)

so that is a nondecreasing sequence. Furthermore, note that

(144)

where is given by (138). Therefore, for all . Thus,
converges to some value , and we have

(145)

To prove the theorem, it remains to show that .
Let be the minimizer of (17) when is estimated from

; this minimizer exists by virtue of Proposition 1. We then
have

(146)

and therefore

(147)

It follows that satisfies the constraint of the optimization
problem (131) with . As a consequence, we have

(148)

Define

(149)

and note that for all , since is positive defi-
nite. Thus

(150)

Assume by contradiction that . From (140), it then follows
that . Since all eigenvalues of decrease to zero,
we have , and thus

(151)

This contradicts the fact (145) that . We conclude that
, as required.

Proof of Theorem 6: The structure of this proof is similar
to that of Theorem 5. We begin by considering the optimization
problem

s.t.

(152)

for some constant . Denote the solution of (152) by .
Let and note that satisfies the constraint
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in (152) for any , and has an objective equal to of (138).
Thus, to determine , it suffices to minimize (152) over the
set

Define

(153)

Since is positive definite a.e., we have . For any
, we have

(154)

and, therefore, by Lemma 2

(155)

Hence, for any

(156)

Thus, is bounded for all . It is straightforward to show that
is also closed and convex. Therefore, employing Lemma 1 (with

) ensures that there exists a (unique) minimizing
(152).

Note that the objective in (152) is if and only if
a.e. So, if , we have , and otherwise .
Let us define

(157)

and note that if and only if . Thus

for

otherwise (158)

Let us now return to the setting of Theorem 6. For simplicity,
we denote functions corresponding to the problem of estimating

from with a superscript . For example,
from the additive property of the Fisher information [2, Sec.
3.4], we have

(159)

It follows that

CRB CRB (160)

for all , all , and all . Therefore

(161)

for all , and hence

(162)

Thus, is a nondecreasing sequence. Furthermore, we
have

(163)

so that for all . It follows that is nonde-
creasing and bounded, and therefore converges to some value
such that

for all (164)

To prove the theorem, we must show that .
Let denote the minimizer of (17) when is esti-

mated from (the existence of is guaran-
teed by Proposition 1). We then have ,
so that

(165)

Thus, satisfies the constraint of (152) with . As a
consequence, we have

(166)

and therefore

(167)

Now suppose by contradiction that . It follows from (158)
that . Hence, by (167), , which contra-
dicts the fact that is bounded. We conclude that , as
required.
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